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ABSTRACT
We present our experience of combining, in a realistic set-
ting, a static analysis for soundness and a statistical analysis
for false-alarm removal. The static analyzer is Airac that
we have developed in the abstract interpretation framework
for detecting buffer overruns in ANSI + GNU C programs.
Airac is sound (finding all bugs) but with false alarms. Airac
raised, for example, 1009 buffer-overrun alarms in commer-
cial C programs of 636K lines and 183 among the 1009
alarms were true. We addressed the false alarm problem
by computing a probability of each alarm being true. We
used Bayesian analysis and Monte Carlo method to estimate
the probabilities and their credible sets. Depending on the
user-provided ratio of the risk of silencing true alarms to
that of false alarming, the system selectively present the
analysis results (alarms) to the user. Though preliminary,
the performance of the combination lets us not hastily trade
the analysis soundness for a reduced number of false alarms.

1. Introduction
When one company’s software quality assurance depart-

ment started working with us to build a static analyzer that
automatically detects buffer overruns1 in their C softwares,
they challenged us on three aspects: they hoped the ana-
lyzer 1) to be sound, detecting all possible buffer overruns;
2) to have a “reasonable” cost-accuracy balance; 3) not to
assume a particular set of programming style about the C
programs to analyze. Building a C buffer-overrun analyzer
that satisfies all the three requirements was a big challenge.
In the literature, we have seen impressive static analyzers,
but their application targets allow them to drop one of the
three aspects [6, 3, 10, 8, 9].

In this article, we present our response that consists of
two things: a sound analyzer named Airac and a statisti-
cal analysis engine on top of it. Airac collects all the true
buffer-overrun points in C programs yet always with false
alarms. The soundness is maintained, and the analysis ac-

∗An extended version of this paper will be presented
in SAS 2005. This work was supported by Brain Korea
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1Buffer overruns happen when an index value is out of the
target buffer size. They are common bugs in C programs
and are main sources of security vulnerability. From 1/2[2]
to 2/3[1] of security holes are due to buffer overruns.

curacy is stretched to a point where the analysis cost remains
acceptable. The statistical engine, given the analysis results
(alarms), estimates the probability of each alarm being true.
Only the alarms that have true-alarm probabilities higher
than a threshold are reported to the user. The threshold is
determined by the user-provided ratio of the risk of silencing
true alarms to that of raising false alarms.

2. Airac, a Sound Analyzer
Automatically detecting buffer overruns in C programs is

not trivial. Arbitrary expressions from simple arithmetics
to values returned by function calls can be array indices.
Pointers pointing buffers can be aliased and they can be
passed over as function parameters and returned from func-
tion calls. Buffers and pointers are equivalent in C. Contents
of buffers themselves also can be used as indexes of arrays.
Pointer arithmetic complicates the problem once more.

Airac’s sound design is based on the abstract interpreta-
tion framework[4, 5]. To find out all possible buffer overruns
in programs, Airac has to consider all states which can occur
during programs executions. Airac computes sound approx-
imation of program state at every program point and reports
all possible buffer overruns by examining the approximate
program states.

For a given program, Airac computes a map from flow
edges to abstract machine states. The abstract machine
state consists of abstract stack, abstract memory and ab-
stract dump. Abstract stack, abstract memory and abstract
dump are maps of which range domains consist of abstract

values. We use interval domain bZ for abstract numeric val-
ues. [a, b] ∈ bZ represents an integer interval that has a as
minimum and b as maximum. And this interval means a
set of numeric values between a and b. To represent infinite
interval, we use −∞ and +∞. [−∞,+∞] means all integer
values. An abstract array (an abstract pointer to an array)
is a triple which consists of its base location, its size interval,
and an offset interval. We use allocation sites to denote ab-
stract memory locations. An integer array which is allocated
at l and has size s is represented as 〈l, [s, s], [0, 0]〉.

2.1 Striking a Cost-Accuracy Balance
Airac has many features designed to decrease false alarms

or to speed-up analysis and all techniques don’t violate the
analysis soundness.

2.1.1 Accuracy Improvement
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Time #Airac Alarms #Real
Software #Lines

(sec) #Buffers #Accesses bugs
GNU S/W tar-1.13 20,258 576.79s 24 66 1

bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

Table 1: Analysis speed and accuracy of Airac

We use the following techniques to improve the analysis
accuracy of Airac:

• Unique Renaming Memory locations are abstracted
by allocation sites. In Airac, sites of variable declara-
tions are represented by variable name and other sites
are assigned unique labels. So to prevent interferences
among variables, Airac renames all variables to have
unique names.

• Narrowing After Widening The height of integer
interval domain is infinite. Widening operator[4] is
essential for the analysis termination. But this opera-
tor decreases accuracy of analysis result. Narrowing is
used for recovering accuracy.

• Flow Sensitive Analysis Destructive assignment is
always allowed except for within cyclic flow graphs.

• Context Pruning We can confine interval values us-
ing conditional expressions of branch statements. Airac
uses these information to prune interval values and this
pruning improve analysis accuracy.

• Polyvariant Analysis Function-inlining effect by la-
beling function-body expressions uniquely to each call-
site: the number of different labels for an expression is
bound by a value from user. This method is weakened
within recursive call cycles.

• Static Loop Unrolling Loop-unrolling effect by la-
beling loop-body expressions uniquely to each itera-
tion: the number of different labels for an expression
is bound by a value from the user.

2.1.2 Cost Reduction
When the fixpoint iteration reaches the junction points,

we have to check the partial orders of abstract machines
and we also commit the join(t) operations. These tasks
take most of analysis time. The speed of the analysis highly
depends on how we handle such operations efficiently.

We developed techniques to reduce time required for par-
tial order checking and join operation.

• Stack Obviation We transform the original programs
whose effects on stack are reflected by the memory.
And this transformation makes Airac avoid scanning
abstract stacks during ordering abstract machines.

• Selective Memory Join Airac keeps track of in-
formation that indicates changed entries in abstract
memory. Join operation is applied only to those changed
values.

• Wait-at-Join For program points where many data
flows join, Airac delays the computation for edges start-
ing from the current point until all computations for
the incoming edges are done.

3. Performance of Airac
This section presents Airac’s performance. Numbers that

are before the statistical engine sift out alarms that are prob-
ably false.

Airac is implemented in nML2 and tested to analyze GNU
softwares, Linux kernel sources and commercial softwares.

2Korean dialect of ML programming language.
http://ropas.snu.ac.kr/n
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Figure 1: Airac’s scalability

The commercial softwares are all embedded softwares. Airac
found some fatal bugs in these softwares which were under
development. Table 1 shows the result of our experiment.
“#Lines” is the number of lines of the C source files be-
fore preprocessing them. “Time” is the user CPU time in
seconds. “#Buffers” is the number of buffers those may
be overrun. “#Accesses” is the number of buffer-access ex-
pressions that may overrun. “#Real Bugs” is the number
of buffer accesses that are confirmed to be able to cause real
overruns. Two graphs in Figure 1 show Airac’s scalability
behavior. X axis is the size (number of lines) of the input
program to analyze and Y axis is the analysis time in sec-
onds. (b) is a microscopic view of (a)’s lower left corner.
Experiment was done in a Linux system with a Pentium4
3.2GHz CPU and 4GB of RAM.

We found some examples in real codes that Airac’s accu-
racy and soundness shines:

• In GNU S/W tar-1.13 program rmt.c source, Airac de-
tected the overrun point inside the get string func-
tion to which a buffer pointer is passed:

static void
get_string (char *string)
{

int counter;

for (counter = 0;
counter < STRING_SIZE;
counter++) {

.....
}
string[counter] = ’\0’;

// counter == STRING_SIZE
}

int
main (int argc, char *const *argv)
{

char device_string[STRING_SIZE];
......
get_string(device_string);
......

}

• Airac catched errors in the following simple cases, for
which syntactic pattern matching or unsound analyzer
are likely to fail to detect.

– Function pointer is used for calculating an index
value:

int incr(int i) { return i+1;}
int decr(int i) { return i-1;}

main() {
int (*farr[]) (int) = {decr, decr, incr};
int idx = rand()%3;
int arr[10];
int num = farr[idx](10);
arr[num] = 10; //index:[9, 11]

}

– Index variable is increased in an infinite loop:

main() {
int arr[10];
int i = 0;
while(1){

*(arr + i) = 10; //index:[0, +Inf]
i++;

}
}

– Index variable is passed to a function by param-
eter and updated in the function:

simpleCal(int idx) {
int arr[10];
idx += 5;
idx += 10;
arr[idx]; //index:[17, 17]

}
main() {

simpleCal(2);
}

4. Sifting-out False Alarms
By Statistical Post Analysis

We use Bayesian approach [7] to compute the probability
of alarms being true. Let ⊕ denote the event an alarm raised
is true and ª the event an alarm is false. Si denotes a single
symptom is observed in the raised alarm and ~S is a vector of
such symptoms. P (E) denotes the probability of an event
E, and P (A | B) is the conditional probability of A given
B. Bayes’ rule is used to predict the probability of a new
event from prior knowledge. In our case, we accumulate
the number of true and false alarms having each specific
symptom from alarms already verified and classified to be
true or false by humans. From this knowledge we compute
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(a) Frequency of probability being true in true and false alarms.
False alarms are counted in negative numbers. 74.83% of false
alarms have probability less than 0.25.

(b) Cumulative percentage of observed alarms starting from prob-
ability 1 and down.

Figure 2: Experiment results

the probability of a new alarm with some symptoms being
a true one.

To compute the Bayesian probability, we need to define
symptoms featuring alarms and gather them from already
analyzed programs and classified alarms. We defined symp-
toms both syntactically and semantically. Syntactic symp-
toms describe the syntactic context before the alarmed ex-
pressions. The syntactic context consists of program con-
structs used before the alarmed expressions. Semantic symp-
toms are gathered during Airac’s fixpoint computation phase.
For such symptoms, we defined symptoms representing whether
context pruning was applied, whether narrowing was ap-
plied, whether an interval value has infinity and so forth.

From the Bayes’ theorem, probability P (⊕ | ~S) of an

alarm being true that has symptoms ~S can be computed
as the following:

P (⊕ | ~S) =
P (~S | ⊕)P (⊕)

P (~S)
=

P (~S | ⊕)P (⊕)

P (~S | ⊕)P (⊕) + P (~S | ª)P (ª)
.

By assuming each symptom in ~S occurs independently under
each class, we have

P (~S | c) =
Y

Si∈
~S

P (Si | c) where c ∈ {⊕,ª}.

Here, P (Si | c) is estimated by Bayesian analysis from our
empirical data. We assume prior distributions are uniform
on [0, 1]. Let p be the estimator of the probability P (⊕) of
an alarm being true. P (Si | ⊕) and P (Si | ª) are estimated
by θi and ηi respectively. Assuming that each Si are inde-
pendent in each class, the posterior distribution of P (⊕ | ~S)
taking our empirical data into account is established as fol-
lowing:

ψ̂j =
(
Q

Si∈
~S θi) · p

(
Q

Si∈
~S θi) · p+ (

Q
Si∈

~S ηi) · (1 − p)
(1)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(ª, Si) + 1, N(ª,¬Si) + 1)

and N(E) is the number of events E counted from our em-
pirical data.

Now the estimation of p, θi,ηi are done by Monte Carlo
method. We randomly generate pi, θij , ηij values N times
from the beta distributions and compute N instances of ψj .

Then the 100(1−2α)% credible set of ψ̂ is (ψjα·N
, ψj(1−α)·N

)
where ψj1 < ψj2 < · · · < ψjN

. We take the upper bound

ψj(1−α)·N
for ψ̂. After obtaining the upper bound ψ̂ of prob-

ability being true for each alarm, we have to decide whether
we should report the alarm or not. To choose a reasonable
threshold, user supplies two parameters defining the mag-
nitude of risk: rm for not reporting true alarms and rf for
reporting false alarms.

⊕ ª
risk of reporting 0 rf

risk of not reporting rm 0

Given an alarm whose probability being true is ψ, the ex-
pectation of risk when we raise an alarm is rf · (1 − ψ),
and rm · ψ when we don’t. To minimize the risk, we must
choose the smaller side. Hence, the threshold of probability
to report the alarm can be chosen as:

rm · ψ ≥ rf · (1 − ψ) ⇐⇒ ψ ≥
rf

rm + rf

.

If the probability of an alarm being true can be greater than
or equal to such threshold, i.e. if the upper bound of ψ̂ is
greater than such threshold, then the alarm should be raised
with 100(1−2α)% credibility. For example, user can supply
a1 = 3, a2 = 1 if (s)he believes that not alarming for true
errors have risk 3 times greater than raising false alarms.
Then the threshold for the probability being true to report
becomes 1/4 = 0.25 and whenever the estimated probability
of an alarm is greater than 0.25, we should report it. For
a sound analysis, to miss a true alarm is considered much
riskier than to report a false alarm, so it is recommended to
choose the two risk values a1 À a2 to keep more soundness.

We have done some experiments with our samples of pro-
grams and alarms. Some parts of the Linux kernel and pro-
grams that demonstrate classical algorithms were used for
the experiment. For a single experiment, samples were first
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divided into learning set and testing set. 50% of the alarms
were randomly selected as learning set, and the others for
testing set. Each symptom in the learning set were counted
according to whether the alarm was true or false. With
these pre-calculated numbers, ψ̂ for each alarm in the test-
ing set was estimated using the 90% credible set constructed
by Monte Carlo method. Using Equation (1), we computed
2000 ψj ’s from 2000 p’s and θi’s and ηi’s, all randomly gen-
erated from their distributions. We can view alarms in the
testing set as alarms from new programs, since their symp-
toms didn’t contribute to the numbers used for the estima-
tion of ψ̂.

Figure 2 was constructed from the data generated by re-
peating the experiment 15 times. For the histogram (a) on
the left, dark bars indicate true alarms and lighter ones are
false. 74.83% (≈1504/2010) of false alarms have probability
less than 0.25, so that they can be sifted out. For users who
consider the risk of missing true error is 3 times greater than
false alarming, almost three quarters of false alarms could
be sifted out, or preferably just deferred.

For a sound analysis, it is considered much riskier to miss
a true alarm than to report a false one, so it is recommended
to choose the two risk values rm À rf to keep more sound-
ness. For the experiment result Figure 2 presents, 31.40%
(≈146/465) of true alarms had probability less than or equal
to 0.25, and were also sifted out with false alarms. Although
we do not miss any true alarm by lowering the threshold
down to 0.07 (rm/rf ≈ 13) for this case, it does not guar-
antee any kind of soundness in general. However, to obtain
a sound analysis result, one can always set rf = 0, i.e. al-
lowing none of the alarms to be sifted out.

We can rank alarms by their probability to give effec-
tive results to user. This ranking can be used both with
and without the previous sifting-out technique. By ordering
alarms, we let the user handle more probable errors first.
Although the probable of true alarms are scattered over 0
through 1, we can see that most of the false alarms have
small probability. Hence, sorting by probability and showing
in decreasing order will effectively give true alarms first to
the user. (b) of Figure 2 shows the cumulative percentage of
observed alarms starting from probability 1 and down. Only
15.17% (=305/2010) of false alarms were mixed up until the
user observes 50% of the true alarms, where the probability
equals 0.3357.

5. Conclusion
Our Airac experience encourages us to conclude that in a

realistic setting it is not inevitable to trade the soundness
for a reduced number of false alarms. By striking a cost-
accuracy balance of a sound analyzer, we can first achieve
an analyzer that is itself useful with small false-alarm rate in
most cases (as the experiment numbers showed for analyzing
Linux kernels). Then, by a careful design of a Bayesian anal-
ysis of the analyzer’s false-alarm behaviors, we can achieve
a post-processing engine that sifts out false alarms from the
analysis results.

Though the Bayesian analysis phase still has the risk of
sifting out true alarms, it can reduce the risk at the user’s
desire. Given the user-provided ratio of the risk of silencing
true alarms to that of false alarming, a simple decision the-
ory determines the threshold probability that an alarm with
a lower probability is silenced as a false one. Because the
underlying analyzer is sound, if the user is willing to, (s)he

can receive a report that contain all the real alarms. For
Airac, when the risk of missing true alarms is three times
greater than that of false alarming, three quarters of false
alarms could be sifted out. Moreover, if user inspects alarms
having high probability first, only 15% of the false ones get
mixed up while 50% of the trues are observed.

The Bayesian analysis’ competence heavily depends on
how we define symptoms. Since the inference framework
is known to work well, better symptoms and feasible size
of pre-classified alarms is the key of this approach. We
think promising symptoms are tightly coupled with anal-
ysis’ weakness and/or its preciseness, and some fair insight
into the analysis is required to define them. However, since
general symptoms, such as syntactic ones, are tend to reflect
the programming style, and such patterns are well practiced
within organizations, we believe local construction and use
of the knowledge base of such simple symptoms will still be
effective. Furthermore, we see this approach easily adapt-
able to possibly any kind of static analysis.

Another approach to handling false alarms is to equip the
analyzer with all possible techniques for accuracy improve-
ment and let the user choose a right combination of the
techniques for her/his programs to analyze. The library of
techniques must be extensive enough to specialize the ana-
lyzer for as wide spectrum of the input programs as possi-
ble. This approach lets the user decide how to control false
alarms, while our Bayesian approach lets the analysis de-
signer decide by choosing the symptoms based on the knowl-
edge about the weakness and strength of his/her analyzer.
We see no reason we cannot combine the two approaches.
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