Experience from Developing the Dialyzer:
A Static Analysis Tool Detecting Defectsin Erlang Applications

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

kostis@it.uu.se

Abstract

We describe some of our experiences from developing theyBal
defect detection tool and overseeing its use in large-soae-
mercial applications of the telecommunications industritten in
Erlang. In particular, we mention design choices that in @pin-
ion have contributed to Dialyzer's acceptance in its usenroo-
nity, things that have so far worked quite well in its settitige
occasional few that have not, and the lessons we learnedifrom
teracting with a wide, and often quite diverse, variety adrgs

1. Introduction
Programmers occasionally make mistakes, even functior@l p

strongly encourages rapid prototyping and performing testing
early on in the development cycle. Like many functional izame
implementations, the Erlang/OTP system comes with andnter
tive shell where Erlang modules can be loaded and the furstio
them can easily be tested on an individual basis by simplyirigs
calls to them. If an exception occurs at any point, it is caugtd
presented to the user together with a stack trace which sti@vs
sequence of calls leading to the exception. Many errors laré-e
nated in this way. Of course, testing of multi-thousand (aftdn
million) LOC commercial applications such as e.g. the saftof
telecom switches is not limited to unit testing to catch @tioms
but is much more thorough and systematic; for one such exampl
see [7]. However, testing, no matter how thorough, cannotofse

grammers do. This latter species is by choice immune to some detect all software defects. Tools that complement testingh as

of the more typical kinds of software defects such as buffer-o
runs or accessing memory which has been freed, but canregiesc
many other kinds of programming errors, even the more mundan
ones such as simple typos. To catch some of these errorsiearly
the development phase, many functional programmers pusfieg
statically typed languages such as ML or Haskell. Theseuanes
impose a static type discipline on programs and report aisvigpe
violations during compilation. Static typing is not a paeaand
does have some drawbacks. First of all, the errors that arghta
are limited by the power of the currently employed type syster
example, none of the employed type systems statically eatdk
vision by zero errors or using a negative integer as an an@gxi
Another drawback is that static typing often imposes quitas
gent rules on what is considered a type-correct progranmegam-
ple, type systems often require that each variable has anijh
can be uniquely determined by constructors) and forcesgramo
development model with a fair amount of constraints (e.d.,rst
quires that the module structure of an application is haviaal and
that there are no calls to functions with unknown type sigres).

Mainly due to reasons such as those described above, some

programmers feel more at ease practicing a different arligihey
adopt a mordaissez-fairestyle of programming and choose to
program in dynamically typed functional languages, liksfd_br
Scheme, instead. Erlang [1] is such a language. In fact, ribts
only dynamically typed but it also extends pattern matcHiyg
allowing type guards in function heads and in case statesnént

is also a concurrent language which is used by large companie
in the telecommunications industry to develop large-s¢sdeeral
hundred thousand lines of code) commercial applications.

The Erlang/OTP development environment Since defect detec-
tion tools are only additional weapons in the war againsinsoe
bugs, we briefly describe the surroundings of our tool. The de
velopment environment of the Erlang/OTP system from Edigss

1OTP stands for Open Telecom Platform; see . erlang.org.

static analyzers, have their place in software developmegard-
less of language. Erlang is no exception to this.

2. Dialyzer: A brief overview

The Dialyzer [5] is a lightweight static analysis tool thdéntifies
some software defects such as obvious type errors, untaacha
code, redundant tests, virtual machine bytecode which safen
etc. in single Erlang modules or entire applications. Bseawot all
of defects identified by Dialyzer are software bugs, we thitee
collectively refer to them as codfiscrepancieg

Dialyzer starts its analysis either from Erlang source code
from the virtual machine bytecode that the Erlang/OTP cdenpi
has produced and reports to its user the functions wheregteg-
ancies occur and an indication of what each discrepancyoistab

Characteristics Notable characteristics of Dialyzer are:

e Currently Dialyzer isa push-button technology and completely
automatic In particular it accepts Erlang code “as is” and does
not require any annotations from the user, it is very easy to
customize, and supports various modes of operation (GUI vs.
command-line, module-local vs. application-global asmly
using analyses of different power, focusing on certain syqfe
discrepancies only, etc.)

e |ts analysis icomplete— though of course not guaranteed to
find all errors. In particular, Dialyzer's analysis repantsfalse
positives; more on this below.

e |ts basic analysis is typicallguite fast On a 2GHz Pentium 4
laptop it “dialyzes” about 800 lines of Erlang code per seton

Basic functionality explained using an example The simplest

way of using Dialyzer is via the command line. The command:

dialyzer --src -r dir

2DIALYZER stands for Dliscrepancy AnalLYZer of ERlang programs.

will find, recursively, all.erl Erlang source files underir and
will collectively analyze them for discrepancies. (Thesrc option
is needed because, for historical reasons, analysis Startsirtual
machine bytecode by default. The command with-therc option
omitted, will analyze all. beam bytecode files undetir.)

We illustrate some of the kinds of discrepancies that Diedyz
capable of identifying by the following, quite factitiovaxample.

Assume that we are analyzing a bunch of modules, among them

m1 andm2, and thatm2 contains a functiomar (denotedn2:bar)
called by functionfoo in modulem1. Because Dialyzer constructs
the inter-modular function dependency graph, functionbar
will be analyzed first. In doing so, let us assume that typerarice
determines that function2 : bar, when not throwing an exception,
returns a result of the following type:

‘gazonk’ | {’ok’, 0 | 42 | ’aaa’ | [{’0k’,_-}1}

i.e., its result is either the atongazonk’ or a pair (i.e., a 2-tuple)
whose first element is the atormvk’ and its second element is
either the integeo, or the integerd2, or the atom’aaa’, or a
list of pairs whose first element is the atork’. (The use of an
underscore in the second element denotes the universahiype

First of all, note that this is a type which will not be derivieg
the inferencers that statically typed language commonlpleyn
Type inferencers like those of e.g. ML would typically cqite the
integerso and42 to the built-inintegertype and would not allow
mixing primitive types such as integers and atoms withoutriga
them wrapped in appropriate constructors. More imporyatiiey
would never derive an unconstrained type (such as theagpgeat
some position.

So, how come Dialyzer’s type inferencer comes up withethg
type for the second element of pairs in the list? This can éaqr
various reasons:

e The most common reason is that the source code of function

m2:bar does not contain enough information to determine the
type of the second element of these paitsmay indeed be
the case that the function is polymorphic in this position, o
more likely that this position is not constrained by infotioa
derived by or supplied to the analysis. The latter can hajfpen
the second element of these pairs is manipulated by a functio
in some other module3 that Dialyzer knows nothing about
becausen3 was not included in the analysis. (Type analyzers
for statically typed languages would never tolerate thigagion

and simply give up here.)

The analysis has decided to over-approximate, throviglen-

ing, the inferred type. This can happen either to ensure termina
tion or for performance reasons.

Given the return type fai2 : bar shown above, when analyzing the
code of functiom1 : foo — shown with numbered discrepancies as
Program 1 — Dialyzer will report the following:

1. The call to the built-in functiodist_to_atom, if reached, will
raise a runtime exception since it is called with an argument
which is an atom rather than a list. (The programmer is ob-
viously confused here; for example, perhaps the intentias w
to use the functiortom_to_list instead.) In a similar man-
ner, type clashes in calling other analyzed functions whieh
not necessarily language built-ins (em@.: bar) will be identi-
fied. This is the kind of type errors that any static type arely
would also be able to detect.

2. The case clause guardedi®y integer (Num) , Num < O will
never succeed because its guard will never evaluate tofthge.
complete case clause is thus redundant. This is somethag th
most static type analyzers would not be able to catch, for rea

3Erlang programs contain no type declarations or any expyipe information.

Program 1 Code snippet which isfull of discrepancies.

-module(ml) .

foo(...) —>
case (m2:bar(...) = Bar) of
Atom when is_atom(Atom) ->
.., List = list_to_atom(Atom) !, ...;
{0k, 42} ->
{’answer’, 42};
{’0k’, Num} when is_integer(Num), Num < 0 2 ->
{’error’, "Negative integer - not handled yet"};
{?0k’, [HIT] = List} when size(List) 3 > 1 ->
{’ok’, [Bar|T]} 5 >
{’EXIT’, R} 4 ->
io:format ("Caught exception; reason: ~p~n", [R])
end, % end of the case statement

sons explained above. Strictly, this is not an error but fgwvi
redundant code like that scattered in the program is a strong
indication for programmer confusion — programmers rarely
fancy writing redundant code; see also [8]. Our experiesce i
that such discrepancies quite often indicate places whege b
may creep, or may be the remains of obsolete interfaces; per-
haps some time age2:bar was returning pairs with negative
integers in their second element but not anymore. Suchagiscr
ancies indicate code that can be eliminated, which ofteplsim
fies the interface between functions. Note that in this chitieea
callers ofm1: foo would also have to handle the 2-tuple where
the first element iserror’ besides answer’. In any case, re-
porting to the user that this case clause will never succeed i
true statement prompting the user for some action. In our-opi
ion, it cannot be considered a false positive; it is not a-siffiect
of inaccuracy in the analysis due to e.g. over-approximaio
path-insensitivity.

3. The guardsize (List) will fail since its argument is a list and
in Erlang thesize function only accepts tuples and binaries as
its argument, not lists. (The corresponding function fetsliis
called length and this is a common programming mistake.)
The problem here is that this defect will remain undetected
at runtime because, for good reasons, all exceptions indguar
contexts are intercepted and silenced; the semanticthaf
guards in Erlang dictates this. Testing has therefore vthy |
chance of discovering this error. (The only method is to fintl o
that the. . . code in the body of the case clause never executes).

4. The case clause with pattefnEXIT’, R} will never match.
This may seem obvious given the return typemat bar, but
it indicates another common Erlang programming error. The
programmer probably intended to handle exceptions hete, bu
forgot to protect the call tm2:bar with a catch construct;
i.e., write the case statement as:

case catch m2:bar(...) of

which would then match the 2-tupl€’EXIT’, R} in the case
whenm2:bar threw an exception. (Catch-based exceptions in
Erlang are wrapped in a 2-tuple whose first element is the atom
’EXIT’ and the second element is a symbolic representation of
the reason, which typically includes a detailed stack thace

5. This one is subtle. The pattefh= {’ok’, [Bar|T]} is actu-
ally type-correct, but the pattern matching of the term nreed
by m2:bar and assigned to the variakar will never match
with the patternP, with Bar being a sub-term of it. We are not
aware of any type checker that would catch this error.

On the other hand, notice that Dialyzer wilbt warn that the case
statement has no catch-all clause (similar to d¥gault) or that
the {’ok’, 0} return fromm2:bar is not handled. This is done
S0 as to minimize irrelevant ‘noise’ from the tool. In thispect,
Dialyzer differs from tools such asint [4].

As mentioned, the example code we just presented is faitio
albeit only slightly so. Dialyzer has yet to find a single ftion
that contains all these discrepancies in its code at the siamee
but all of them, even 5, are examples of discrepancies tradyar
actually found in well-tested, commonly-used code of comuiaé
products. Besides these, Dialyzer is also capable of igardgi
some other software defects in Erlang programs (e.g., lpgssi
unsafe bytecode generated by older versions of the Erldm/O
compiler and misuses of certain language constructs), Hmit t
illustration is beyond the scope of this short experiengeepa

Dialyzer is of course not guaranteed to report all softwae d
fects — not even all type errors — that an Erlang applicatioghin
contain. In fact, because Dialyzer's analysis is not patisgive,
Dialyzer currently suppresses all discrepancies that ntighdue
to losing information when joining the analysis resultafirdiffer-
ent paths. This is in contrast to other defect detectiorsttiat do
report false positives due to inaccuracies or heuristi@niayses
they employ.

Dialyzer comes with an extensive set of options that all@w it
user to focus on certain types of discrepancies only and ampl
analyses of varying precision vs. time complexity tradis-df also
comes with a graphical user interface in which the user ig abl
to inspect the information that led to the identification ofre
discrepancy of interest.

For more up-to-date information, see also Dialyzer's hoawep
www.it.uu.se/research/group/hipe/dialyzer/

3. Dialyzer’'susage so far

Even before its first public release, Dialyzer was appliedeta-
tively large code bases, both by us and more commonly by &rlan
application developers. We have been working closely wivet
opers of the AXD301 and GPR®rojects at Ericsson, and with a
T-Mobile team in the U.K. which also uses Erlang for some of it
product development. An early account of the effectivertdsan
internal and significantly less powerful version of the tappears
in [5].

The first releases of Dialyzer, versions 1.0.*, featuredyaim
starting from virtual machine bytecode only and the toolydmd
a GUI mode. We were somewhat (positively) surprised to vecei

a user contribution; before that, users were forced to mbnua
specify all files and directories to include in the analysis.

At the time of this writing, some of the code bases analyzed
by Dialyzer are open-source community programs (e.g., tlie c
of the Wings 3D subdivision graphics modelesf the Yaws web
server, and of theesdl graphical user interface librdty However,
the majority of Dialyzer's uses are large commercial agpians
from the telecommunications domain. Among them is the code
base of the AXD301 ATM switch consisting of about 2,000,000
lines of Erlang code, where by now Dialyzer has identifiedyai§i
icant number (many hundreds) of software defects that hawe g
unnoticed after years of extensive testing. It is also comtiisly
being used in the Erlang/OTP R10 (release 10) system to-elimi
nate numerous bugs that previous releases contained inafatee
standard libraries. We also know that Dialyzer is being usethe
code of some of Nortel's products, but we do not have any éurth
information on it.

At least in the commercial projects, Dialyzer is typicallynras
part of a centralized (often nightly) build. Perhaps beeanfshis,
many Dialyzer users typically complain that Dialyzer’sritiéca-
tion of discrepancies is not as clear and concise as the gessa
they are used to getting from the Erlang/OTP compiler. Altito
it is indeed the case that currently there is plenty of roomirfe
provement in Dialyzer's presentation of the identified cipan-
cies, it is clear that for many of the discrepancies simple-lame
explanations of the formline 42: unused variable X" will
never be possible. Some of the discrepancies identifiedare c
plex, involve interactions of functions from various moekiland it
is not always clear how to assign blame. As a simple exampte, n
discrepancy 4 of Program 1: Dialyzer will currently compl#hat:

The clause matching involving ’EXIT’ will never match;
argument is of type ’ok’

while the culprit is probably a missingatch construct after the
case. As a more involved example, for discrepancy 2, Dialyzel wil
report that the guard will always fail. But perhaps function bar
should return negative integers in this tuple position raétk.®
Finding why inter-modular type inference determines tttatbar
only returns the numbeigand42 in that tuple position might not
be at all trivial — especially to users who are not familiatiwtiype
systems.

4, Experiencesand lessonslearned

Requests for better explanations of identified discregasnaside,
Dialyzer has been extremely successful. It has manageandifigl

a significant number of software defects that have remainelé-u
tected after a long period of extensive testing. For exaniy@eause

of the high level of reliability required from telecom swtes, the
developers of AXD301, a team consisting of about 200 pedials,
over a period of more than eight years spent a consideralble pe

numerous user requests to develop a command-line version ofcentage of their effort on testing. Still Dialyzer managedtientify

the tool so that Dialyzer becomes more easily integratechéo t
purelymake-based build environment of some projetnce this
happened, we even received extensions to the tool's furadtiyp
contributed by users that made it into the next release.>@mple,
the code that supports ther (add files recursively) option was

4GPRS: General Packet Radio Service.

Swe thought that when academic projects gl users, it was supposed to be the
other way around: the users would demand a GUI! More segipthss is somewhat
contrary to experience reported in literature. For exarfgjleeports that a significant
portion of the effort is spent in explaining defects in a esiendly way (presumably
aided by a GUI). This probably does tell something about thleite of the Erlang
programmer community, which is mostly Unix-centered, batwill not try to analyze

it further.

many discrepancies and often serious bugs. As another éxamp
certain bugs in Erlang/OTP standard libraries managed rioveu
over many releases of the system, despite being in commeely u
modules of the system. Although this may sound a bit cortradi
tory, it has a simple explanation. Many of the bugs were iorerr
handling code or code paths of the library modules which wete
executed frequently enough.

6 Seewww.wings3d.com/.
7Yaws: Yet Another Web Server; sgavs . hyber . org/.
8 Erlang OpenGL/SDL API and utilities; se@urceforge.net/projects/esdl.

9Worse yet, there might even be a comment in its code to theteffi@atm2:bar
possibly returns a negative integer. Some programmersrlyitrust comments more
than output from static analyzers... but we are working owki changing this!

... % code for the body of this clause
remote_dirty_select(...) ->

% code for this and other clauses below handling select

remote_dirty_select(Tab, [{HeadPat,_,_}] = Spec, [HIT]) when tuple(HeadPat), size(HeadPat) > 2, H =< size(Spec) ->

queries with general specifications

Figurel. Code from themnesia database with a guard that will always fail making the bodtheffirst clause unreachable.

Observations Some qualitative observations can be made:

¢ The vast majority of (at least non-trivial) defects idewtifiby
Dialyzer are due to the interaction between multiple fuorei

a significant number of them span across module boundaries.
This is mainly due to the fact that Erlang is great for testing
functions on an individual basis (or in small sets), but entiy
provides little support for specifying and ensuring propse of
functions in other modules.

Probably due to the reason described above, we did not @bserv
the usual inverse correlation between the age of some piece
of code and the number of discrepancies in it, at least not di-
rectly. The problem is that callers of some function may be
significantly older than the callee and as the callee’s fater
evolves, the callers possibly remain unchanged. Havingrred
dant clauses handling return values that were perhapsestur
long ago but not anymore, is an extremely common discrep-
ancy. As mentioned, such code is typically harmless bunofte
desperately in need for cleanups. Doing so, simplifies tide co
where the discrepancy occurs and exposes opportunitiésfor
ther simplifications elsewhere, often significant ones.

Even in dynamically typed languages such as Erlang, the code
that is frequently executed does not have type errors. AsLdtre
Dialyzer tends to find most discrepancies off the commonty ex
ecuted paths. Commonly executed paths are often reasonably
well-tested and most discrepancies have already been-elimi
nated. On the other hand, exception- or error-handling ,code
code that handles timeouts in concurrent programs, etes doe
not always have this property.

Quite often, fixing even simple discrepancies in some paeic
piece of code exposes more serious ones in code which lies in
close proximity to the code which is fixed.

Most of these observations are not very surprising and ewith
those of other researchers in the area.

Myths On the other hand, our experience so far has made us

seriously doubt the validity of the following common betief 3.

1. Software defects identified by a static analysis tool ard-sha
low. Occasionally one might see such a statement, especially in
comparisons between static analysis and model checkihg tec
nigues; see e.g. [3]. It is of course very hard to dispute such
statement, as its validity depends on what one considers as a
“shallow” defect, but we will try to do so anyway.

Figure 1 shows a small code segment from the code of
Mnesia [6], a database management system distributed s par
of Erlang/OTP. It also shows an actual discrepancy idedtifie
by Dialyzer, which is now fixed. On the surface, the indi-
cated discrepancy is indeed shallow; a simple misuse of a li-
brary predicate (usingize on a list rather tharlength).
Viewed from this prism, there is indeed nothing “deep” here:
the programmer made a silly mistake. Because the function

mization purposes (in order to handle the common case of a
single-element specification list fast). The subsequesmises
also provided the functionality of the first clause, but gsin

a more general (handling specification lists of any size) and
thus more expensive mechanism. It is very difficult to idgnti
such performance-related software defects by means ofi (eve
exhaustive) testing. It is not clear to us that such softvare
fects, for which the correctness criterion cannot be speetifs-

ing a simple formula whose validity can be checked by model-
checking techniques, are of the “shallow” kind.

2. Software defects, once identified, are soon fix&aming from

academia, one is a bit shocked to discover that the “realdiorl

is somehow different. Fixing bugs, no matter how serious, is
not always a developer’s top-priority, because prograneldev
opment in the real world follows a different model than that
of open-source projects managed by small teams of individu-
als. Software evolution in big commercial projects goesdhan
in-hand with filling bug reports, sending them to the develop
who is responsible for the maintainance of the piece of code
containing the bug, caring about backwards compatibiligne
when the functionality is crippled, and often having to isive

a non-trivial amount of effort in order to modify or extend-ex
isting regression test suites, which are typically not rzained

by programmers but by a separate testing team. (Our experi-
ence here is actually in line with that of other researchees;
e.g.[2,3])

In fact, we even seriously doubt that an automatic classifi-
cation of the seriousness of defects would help here. As a con
crete example, we reported 18 discrepancies that Dialgeer i
tified in some library of Erlang/OTP to the library’s maimar,
which incidentally was not the original author. Most of them
were fixed pretty soon, but one in particular — which was the
most serious — was not. In fact, it remained unfixed for quite
some time. The reason for this was that it would involve seri-
ous redesign of the code and this might significantly chahge t
behaviour of the library.

Only programs written in low-level languages such as C se-
riously benefit from defect detection tooldot many serious
developers believe this statement anyway, but often onkeof t
arguments used in favour of high-level languages is thatethe
languages avoid common programmer errors. Although this is
a very true statement in some contexts (for example, one does
not have the possibility to free memory once, let alone twiite

a garbage-collected language), it often fails to point batfact
that any language, no matter how high a level of abstraction
it offers, has silly pitfalls and traps for developers, ahdse

are often directly connected, and difficult to separate frifra
language’s strengths. We hold that software defect detecti
tools, especially lightweight ones, have their place imsoé
development independently of the programming environment
and language which is employed.

remote_dirty_select is quite commonly used, what is sur- Final remarks Dialyzer is a static analysis tool identifying dis-
prising in this case is that this mistake managed to remain un crepancies — out of which some of them are serious bugs — in
noticed over many Erlang/OTP releases. The subtlety of the Erlang applications. We believe that the following, peshapique
problem was actually in the other clauses for the functidnis T characteristics, have played a crucial role in Dialyzecseptance
bug was not identified because this clause was there for opti- by its user community:

e The tool is extremely lightweight and requires absolutety n References
code changes or user-supplied annotations in order to figluse [1] J. Armstrong, R. Virding, C. Wikstrom, and M. William<£oncurrent

¢ The tool has so far tried its best to keep down the level ofsaoi Programming in Erlang Prentice Hall Europe, Herfordshire, Great
which it generates, often at the expense of failing to repost Britain, second edition, 1996.
tual bugs. For the first versions of Dialyzer, one desiretLiea [2] W.R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyfor finding
was to never issue a warning that could be perceived as mislea dynamic programming errorsSoftware — Practice and Experience
ing or be such that the user would find it extremely difficult to 30(7):775-802, June 2000.

interpret. For example, we noticed that when analyzingigirt ~ [3] D. Engler and M. Musuvathi. Static analysis versus safevmodel
machine bytecode which has been generated using aggressive checking for bug finding. In B. Steffen and G. Levi, editors,
inlining, it would probably be difficult for naive users to-i Verification, Model Checking, and Abstract Interpretati®mnoceedings
terpret the discrepancies. The approach we took was to wimpl of the 5th International Conferengeolume 2937 0 NCS pages 191—

suppress all discrepancies found in inline-compiled hydec 210. Springer, Ja_n' 2004. .
[4] S. C. Johnson. Lint, a C program checker. Technical te@omputer

Although some might no doubt find this approach a bit extreme, Science Technical Report 65, Bell Laboratories, Murray, 0, Dec.
we felt it was important for Dialyzer to succeed in gaining th 1977.
developers’ trust and be integrated in a non-disruptive inaye [5] T. Lindahl and K. Sagonas. Detecting software defecttelacom
development process (i.e., without requiring any methogiohl applications through lightweight static analysis: A wairgt In C. Wei-
changes from the users). Of course, this is only step nunmer o Ngan, editor,Programming Languages and Systems: Proceedings of
Once the developers’ attitude and expectation level has tassed the Second Asian Symposium (APLAS'@4)ume 3302 ofLlNCS
sufficiently, we intend to provide options that lift some tse pages 91-106. Springer, Nov. 2004. _ -
restrictions. [6] H. Mattsson, H. Nilsson, and C. Wikstrom. Mnesia - a idstted
robust DBMS for telecommunications applications. In G. Gup
editor, Practical Applications of Declarative Languages: Prociers
Acknowledgments of the PADL'1999 Symposiynolume 1551 oL NCS pages 152163,
Dialyzer's implementation would not have been possiblehauit Berlin, Germany, Jan. 1999. Springer. -
Tobias Lindahl. Thanks also go to all Dialyzer's users foefuks [7] U. Wiger, G. Ask, and K. Boortz. World-class product deration
contributions, feedback, thought-provoking requestsftensions using Erlang.SIGPLAN Notices37(12):25-34, Dec. 2002.
of its functionality, and often working code for these chesg [8] Y. Xie and D. Engler. Using redundancies to find errdiSEE Trans.

The research of the author has been supported in part by grant ~ S°ftware Eng.29(10):915-928, Oct. 2003.

#621-2003-3442 from the Swedish Research Council and by the
Vinnova ASTEC (Advanced Software Technology) competence
center with matching funds by Ericsson AB and T-Mobile U.K.

