
EXPLODE: A Lightweight, General Approach to Finding
Serious Errors in Storage Systems

Junfeng Yang, Paul Twohey, Ben Pfaff, Can Sar, Dawson Engler ∗

Computer Systems Laboratory
Stanford University

Stanford, CA 94305, U.S.A.

{junfeng,twohey,blp,csar,engler}@cs.stanford.edu

ABSTRACT
File systems, RAID systems, and applications that require
data consistency, among others, assure data integrity by
carefully forcing valuable data to stable storage. Unfortu-
nately, verifying that a system can recover from a crash to a
valid state at any program counter is very difficult. Previous
techniques for finding data integrity bugs have been heavy-
weight, requiring extensive effort for each OS and file system
to be checked. We demonstrate a lightweight, flexible, easy-
to-apply technique by developing a tool called Explode and
show how we used it to find 25 serious bugs in eight Linux
file systems, Linux software RAID 5, Linux NFS, and three
version control systems.

1. INTRODUCTION
Many systems prevent the loss of valuable data by care-

fully forcing it to stable storage. Applications such as ver-
sion control and mail handling systems ensure data integrity
via file system synchronization services. The file system in
turn uses synchronous writes, journaling, etc. to assure in-
tegrity. At the block device layer, RAID systems use re-
dundancy to survive disk failure. At the application layer,
software based on these systems is often trusted with the
only copy of data, making data loss irrevocable and arbi-
trarily serious. Unfortunately, verifying that a system can
recover from a crash to a valid state at any program counter
is very difficult.

Our goal is to comprehensively test real systems for data
persistence errors, adapting ideas from model checking. Tra-
ditional model checking [5] requires that the implementor
rewrite the system in an artificial modeling language. A
later technique, called implementation-level model checking,
eliminates this requirement [19, 18, 21] by checking code di-
rectly. It is tailored to effectively find errors in system code,
not verify correctness. To achieve this goal, it aggressively
deploys unsound state abstractions to trade completeness
for effectiveness. One major disadvantage of this technique

∗This research was supported by NSF grant CCR-0326227
and 0121481, DARPA grant F29601-03-2-0117, an NSF Ca-
reer award and Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

is that it cannot check software without source code and re-
quires porting the entire OS to run on top of a model checker,
which necessitates many intrusive, non-portable modifica-
tions. Checking a new OS or a different version of the same
OS requires a new port. Even checking new file systems
often requires about a week of effort.

This paper describes our improved approach that reme-
dies these problems. We reduce the infrastructure needed
for checking a system to a single device driver, which can be
run inside of a stock kernel that runs on real hardware. This
lightweight approach makes it easy to check new file sys-
tems (and other storage systems): simply mount and run.
Checking a new OS is just a matter of implementing a device
driver.

Our approach is also very general in that it rarely limits
the types of checks that can be done: if you can run a pro-
gram, you can check it. We used Explode to check CVS
and Subversion, both open source version control systems,
and BitKeeper, a commercial version control system, find-
ing bugs in all three. At the network layer, we checked the
Linux NFS client and server. At the file system layer, we
checked 8 different Linux file systems. Finally, at the block
device layer, we checked the Linux RAID 5 implementation.
Explode can find errors even in programs for which we do
not have the source, as we did with BitKeeper.

Explode can check almost all of the myriad ways the stor-
age layers can be stacked on one another, as shown on the
left side of Figure 1. This ability has three benefits. First,
Explode can reuse consistency checks for one specific layer
to check all the layers below it. For example, once we imple-
ment a consistency check for a file system on top of a single
disk, we can easily plug in a RAID layer and check that
RAID does not compromise this guarantee. Second, testing
entire stacks facilitates end-to-end checking. Data consis-
tency is essentially end-to-end: in a multi-layer system, if
one layer is broken, the entire system is broken. Simply
verifying that a single layer is correct may have little prac-
tical value for end-to-end consistency, and it may require a
huge amount of manual effort to separate this layer from
the system and build a test harness for it. Third, we can
cross-check different implementations of one layer and local-
ize errors. For example, if a bug occurs with an application
on top of 7 out of 8 file systems, the application is proba-
bly buggy, but if it occurs on only one file system, that file
system is probably buggy.

The contributions of this paper can be summarized as
follows:

� � � � � � � � � 	
 � � �
� � � � � �

� �
 � � � � � � � � � �

� � � � � � 	 �
� � � � �

� � � � � � 	 �
� � � � �

� � �

� � � � �

 ! " # $ % & " ' () * ! ('

+) , - . +

/ % $ # $ %
0 0 # (% 1 2 (
0 0 ' 3 "
0 0 + * ') (
0 0 3 4 $ # 5 (6 ' (7 ")

/ % $ # $ % 0 #

� � � � � � � � 8
� � � � �

� � � � � � � � 8
� � � � 9

� � �

: ; < = > ? @ A B C < D E ; F G H ; B I

J G G K L C F M > ? = ; B N C F ;

O P Q A J > ; ? =

O P Q Q ; B H ; B

R P Q

Figure 1: A snapshot of the Explode system with
a stack of storage systems being tested on the left
and the recovery tools being run on the right after
Explode “crashes” the system to generate a recovery
scenario.

• A lightweight, minimally invasive approach for check-
ing storage systems.

• Model checking every layer in a complex storage stack
from RAID at the bottom to version control systems
running over NFS at the top.

• A series of new file system specific checks for catch-
ing bugs in the data synchronization facilities used by
applications to ensure data integrity.

This paper is organized as follows. Section 2 gives an
overview of the checking system. Section 3 discusses the
new challenges for our approach. Section 4 explains the basic
template work needed to check a given subsystem, and how
to apply this template to different storage systems. Finally,
Section 5 discusses related work and Section 6 concludes.

2. SYSTEM OVERVIEW
Explode has three parts: a user-land model checking li-

brary (MCL), a specialized RAM disk driver (RDD), and a
test driver. We briefly describe each of them, highlighting
their most important functions and interactions. Figure 2
shows an overview.

MCL is similar in design to our prior implementation-level
model checking work [19, 18, 21]. It provides a key mech-
anism to enumerate all possible choices at a given “choice
point,” which is a program point where abstractly a pro-
gram can do multiple actions. For example, dynamic mem-
ory allocation can either succeed or fail. When such an allo-

S T U

V W X Y Z [\] W [

^ W [_ W ` T a b \ c W X d _ e
f g h h W [T d c a W U b i

j Z Z

k \ ` W
l m X Y W n

V a [W d e X

l m X Y W n T d ` ` Xl c a W e g ` W
V a [W d e X

^ W [_ W `

Figure 2: Explode overview with a local file file sys-
tem as an example storage system. Components of
Explode are shaded.

cator is properly instrumented, Explode can explore both
branches.

RDD provides the needed infrastructure so Explode can
explore all possible behaviors for a running Linux kernel,
using the “choice point” mechanism provided by MCL. It
exports a log of buffer cache operations, allows Explode

to schedule a kernel thread to run, and provides a generic
interface to install and remove “choice points” inside a run-
ning kernel. We defer the discussion of why we need this
functionality to §3.2.

The test driver exercises storage system operations on our
specialized RAM disks to trigger potential disk writes. It
also performs system-specific consistency checks once Ex-

plode is done simulating crash-recovery. To simulate all
possible crashes, Explode clones current disks, applies all
possible subsets of the potential disk writes1 to the disk
clones, and invokes system-specific utilities to recover them,
as noted previously. Figure 1 shows how Explode “crashes”
and recovers a running stack of a storage system.

3. IMPLEMENTATION
As mentioned in the introduction, our current approach

is much more lightweight and general than our previous ap-
proach. However, this approach also poses new challenges,
discussed in the following sections.

3.1 State Checkpoint and Restore
One challenge in checking live storage systems is how to

checkpoint and restore storage system states. State check-
pointing and restoring is essential for exploring all possible
behaviors of a system. Our previous work [21] runs an en-
tire kernel on top of a model checker, which makes check-
pointing and restoring states as easy as copying the entire
kernel memory and simulated disks. Since extracting rele-
vant kernel data from a live system is difficult, we no longer
checkpoint the kernel memory. Instead, to checkpoint a file
system state, we store the sequence of choices that led to
the current state, starting from the initial pristine disk. To

1In practice, if the set of potential writes grows larger than
a user specified limit, Explode no longer tests all subsets
but randomly tests a few.

restore a state, we unmount the current disk, then mount a
copy of the initial pristine disk and replay all the previously
made choices. Storage systems have the convenient property
that unmounting a file system clears its in-memory state,
and replaying the same set of operations on a pristine stor-
age system is deterministic in terms of the content contained
in the storage system. MCL also allows users to selectively
checkpoint non-pristine disks, given that all the dirty blocks
are flushed to disk.

This method for state checkpointing and restoration is
identical to the state compression technique used in tradi-
tional model checking where each state is represented by
a trace starting from the initial state to the current state.
Unlike traditional model checking where state compression
is simply a time/space tradeoff, it is essential to Explode

because it is the only practical method for a live kernel.

3.2 Exploring All Kernel Behaviors
With MCL we can explore the choice points we can see.

However, kernel choice points are often not exposed to user-
land. RDD provides three key mechanisms to expose these
kernel choice points to user-land, so Explode can explore
all possible kernel behaviors.

First, RDD monitors all buffer cache operations and stores
them in a temporal log. Explode retrieves this log using an
ioctl command provided by RDD and replays it to recon-
struct the set of all possible disk images that could result
from a crash. We use temporal logging instead of getting the
set of dirty buffers directly from the kernel because Linux
2.6, the OS we tested, has a complicated unified buffer and
page cache that makes the latter very difficult.

Second, our driver provides a general interface for in-
stalling and removing “choice points” within the kernel.
Practically, Explode uses this mechanism to induce arti-
ficial errors at critical places in the kernel. RDD provides
a new ioctl that allows a process to request a failure for
the nth kernel choice point in its next system call. Using
this mechanism for each system call, Explode fails the first
choice point, then the second, and so on until all the choice
points have been tested in turn. We could use this mech-
anism to fail more than one choice point at a time, but in
our experience kernel developers are not interested in bugs
resulting from multiple, simultaneous failures.

Third, our driver allows Explode to schedule any ker-
nel thread to run. Storage systems often have background
threads to commit disk I/O. Controlling such threads allows
Explode to explore more system behaviors. As an added
benefit, this makes our error traces deterministic. Without
this feature Explode would still find errors but it would be
unable to present traces to the user which would reliably
trigger the bug when replayed. Our driver implements this
function by simply setting a thread to have a very high pri-
ority. Although in theory this method is not guaranteed to
run the thread in all cases, in practice it works reliably.

4. CHECKING STORAGE SYSTEMS
Explode can check almost any storage system that runs

on Linux, be it a file system, a RAID system, a network file
system, a user-land application that handles data, or any
combination thereof.

Checking a new storage system at the top of the stack
is often a matter of providing Explode utilities to set up,
tear down and recover the storage system, and writing a

FS mount sync sync fsync O SYNC

ext2 ✘ ✓ ✘ ✘
ext3 ✓ ✓ ✓ ✓
ReiserFS ✘ ✓ ✘ ✘
JFS ✘ ✓ ✘ ✘
MSDOS ✘ ✘ n/a n/a
VFAT ✘ ✘ n/a n/a
HFS+ ✘ ✘ ✘ ?
XFS ✘ ✓ ✓ ?

Table 1: Sync checking results. ✓: no errors found;
✘: one or more errors found; n/a: could not com-
plete test; ?: not run due to lack of time.

test driver to mutate the storage system and check its con-
sistency. One nice feature is that one test driver can exercise
every storage system below it in the storage hierarchy.

This section discusses how we checked different storage
systems in detail. For each of them, we first list its setup,
tear-down, and recovery utilities, then describe how the test
driver mutates the storage system and what consistency
checks are performed. Lastly, we show the errors we found.

4.1 Checking File Systems
To set up a file system, Explode needs to create a new

file system (mkfs) and mount it. To tear it down, Explode

simply unmounts it. Explode uses fsck to repair the FS
after a crash.

Explode’s FS test driver enumerates topologies contain-
ing less than a user-specified number of files and directories.
At each step the test driver either modifies the file system
topology, by creating, deleting, or moving a file or directory,
or a file’s contents, by writing in or truncating a file. To
avoid being swamped by many different file contents, the FS
test driver only writes out 5 different possible file contents
chosen to require varying numbers of indirect and doubly
indirect blocks.

To avoid wasting time re-checking similar topologies, we
memoize file systems that have isomorphic directory struc-
ture and identical file contents, disregarding file names and
most metadata.

To check FS-specific crash recovery, FS developers need to
provide Explode with a model of how the file system should
look after crash recovery. Following the terminology in [21],
we call this model the StableFS. It describes what has been
committed to stable storage. We call the user-visible, in-
memory state of the file system the VolatileFS, because it
has not necessarily been committed to stable storage.

Without an FS-specific StableFS, Explode checks that
the four basic sync services available to applications that
care about consistency honor their guarantees. These ser-
vices are: synchronous mount, which guarantees that after
an FS operation returns, the StableFS and the VolatileFS
are identical; sync, which guarantees that after sync re-
turns, the StableFS and the VolatileFS are identical; fsync,
which guarantees that the data and metadata of a given file
are identical in both the StableFS and VolatileFS; and the
O SYNC flag for open, which guarantees that the data of the
opened file is identical in both the StableFS and VolatileFS.

Table 1 summarizes our results. Surprisingly, 7 of the 8
file systems we tested have synchronous mount bugs – ext3
being the only tested file system with synchronous mount
correctly implemented. Most file systems implement sync

correctly, except MSDOS, VFAT and HFS+. Crash and
fsck on MSDOS and VFAT causes these file systems to con-
tain directory loops, which prevents us from checking fsync

and O SYNC on them. Intuitively, fsync is more complicated
than sync because it requires the FS to carefully flush out
only the data and metadata of a particular file. Our results
confirm this intuition, as the fsync test fails on three widely
used file systems: ext2, ReiserFS and JFS. The JFS fsync

bug is quite interesting. It can only be triggered when sev-
eral mkdir and rmdir operations are followed by creating and
fsyncing a file and its enclosing directories. After a crash
this causes the file data to be missing. JFS developer Dave
Kleikamp quickly confirmed the bug and provided a fix. The
problem resided in the journal-replay code, triggered by the
reuse of a directory inode by a regular file inode, so that
reproducing the bug requires the journal to contain changes
to the inode both as a directory and as a file.

Note that when we say a service is “correct” we simply
mean Explode did not find an error before we stopped it
or all the possible topologies for a given number of file sys-
tem objects were enumerated. We found most bugs within
minutes of starting our test runs, although some took tens
of minutes to discover.

4.2 Checking RAID
We tested the Linux software implementation of RAID 5

along with its administration utility mdadm. To set up a test
run, we assembled several of our special RAM disks into a
RAID array. To tear down, we disabled the RAID array.
Crash recovery for RAID was not complex: we simply fsck

the file system running on top of RAID. To recover from a
disk failure, we used the mdadm command to replace failed
disks. Read failures in individual disks in the RAID array
were simulated using the kernel choice point mechanism dis-
cussed in §3.2.

We reused our file system checker on top of the RAID
block device. The consistency check we performed was that
the loss of any one disk in a RAID 5 array should not
lead to data loss—the disk’s contents can always be recon-
structed by computing the exclusive-or of the n−1 remaining
disks [20].

Explode found that the Linux RAID implementation
does not reconstruct bad sectors when a read error occurs.
Instead, it simply marks the disk faulty, removes it from the
RAID array, and returns an I/O error. Explode also found
that when two sector read errors happen on different disks,
requiring manual maintenance, almost all maintenance oper-
ations fail. Disk write requests also fail in this case, render-
ing the RAID array unusable until the machine is rebooted.
Software RAID developer Neil Brown confirmed that the
above behaviors were undesirable and should be fixed with
high priority.

4.3 Checking NFS
We used Explode to check Linux’s Network File System

version 3 (NFSv3) and its in-kernel NFS server. To set up
an NFS partition, we export a local FS as an NFS partition
over the loopback interface. To tear it down, we simply
unmount it. We use the fsck for the local file system to
repair crashed NFS partitions. Currently we do not model
network failures.

As NFS is a file system built on top of other file systems
we are able to leverage our existing FS test driver to test

the Linux NFS implementation. We can also reuse our con-
sistency checker for synchronously mounted file systems as
NFS should have identical crash recovery guarantees [4]

We found one inconsistency in NFS, in which writing to
a file, then reading the same file through a hard link in a
different directory yields inconsistent data. This was due to
a Linux NFS security feature called “subtree checking” that
adds the inode number of the file’s containing directory to
the file handle. Because the two links are in different direc-
tories, their file handles differ, causing the client to cache
their data separately. This bug was not known to us un-
til Explode found it, but the NFS developers pointed us
to a manpage describing subtree checking. The manpage
said that the client had to rename a file to trigger it, but
the checker did not do so. The NFS developers then clar-
ified that the manpage was inaccurate. It described what
could be done, not what Linux NFS actually implemented
(because it was too difficult).

We found additional data integrity bugs in specific file
systems exported as NFS, including JFS and ext2.

4.4 Checking Version Control
We tested the popular version control systems CVS, Sub-

version, and BitKeeper. We found serious errors that can
cause committed data to be permanently lost in all three.
Our test driver checks out a repository, does a local modifi-
cation, commits the changes, and simulates a crash on the
block device that stores the repository. It then runs fsck

and the version control system’s recovery tool (if any), and
checks the resulting repository for consistency.

The errors in both CVS and BitKeeper are similar: nei-
ther attempts to sync important version control files to disk,
meaning an unfortunate crash can permanently lose commit-
ted data. On the other hand, Subversion carefully fsyncs
important files in its database directory, but forgets to sync
others that are equally important. (Adding a sync call fixes
the problem for all three systems.)

If our system was not modular enough to allow us to
run application checkers on top of arbitrary file systems we
would have missed bugs in both BitKeeper and Subversion.
On ext3 fsync causes all prior operations to be committed to
the journal, and by default also guarantees that data blocks
are flushed to disk prior to their associated metadata, hiding
bugs inside applications. This ability to cross-check different
file systems is one of the key strengths in our system.

To demonstrate that Explode works fine with software
to which we do not have source, we further checked Bit-
Keeper’s atomic repository syncing operations “push” and
“pull.” These operations should be atomic: either the merge
happens as a whole or not at all. However, Explode found
traces where a crash during a “pull” can badly corrupt the
repository in ways that its recovery tool cannot fix.

5. RELATED WORK
In this section, we compare our approach to file system

testing techniques to software model checking efforts and
other generic bug finding approaches.

File system testing tools. There are many file system
testing frameworks that use application interfaces to stress
a “live” file system with an adversarial environment. These
testing frameworks are non-deterministic and less compre-
hensive than our approach, but they are more lightweight
and work “out of the box.” We view stress testing as com-

plementary to our approach — there is no reason not to
both test a file system and then test with Explode (or vice
versa). In fact, our approach can be viewed as deterministic,
comprehensive testing.

Software Model Checking. Model checkers have been
previously used to find errors in both the design and the
implementation of software systems [16, 15, 17, 2, 19, 18,
21, 6, 1]. Verisoft [15] is a software model checker that sys-
tematically explores the interleavings of a concurrent C pro-
gram. Unlike the technique we use, Verisoft does not store
states at checkpoints and thereby can potentially explore
a state more than once. Verisoft relies heavily on partial
order reduction techniques that identify (control and data)
independent transitions to reduce the interleavings explored.
Determining such independent transitions is extremely diffi-
cult in systems with tightly coupled threads sharing a large
amount of global data. As a result, Verisoft would not per-
form well for these systems, including the storage systems
checked in this paper.

Java PathFinder [2] uses related techniques to system-
atically check concurrent Java programs by checkpointing
states. It relies on a specialized virtual machine that is tai-
lored to automatically extract the current state of a Java
program. The techniques described in this paper are appli-
cable to Java PathFinder as well.

Generic bug finding. There has been much recent work
on bug finding, including both better type systems [9, 14,
12] and static analysis tools [8, 1, 7, 3, 10, 13]. Roughly
speaking, because static analysis can examine all paths and
only needs to compile code in order to check it, it is rela-
tively better at finding errors in surface properties visible in
the source (“lock is paired with unlock”) [11]. In contrast,
model checking requires running code, which makes it much
more strenuous to apply (days or weeks instead of hours)
and only lets it check executed paths. However, because it
executes code it can more effectively check the properties im-
plied by code, e.g. that the log contains valid records, that
cvs commit will commit versioned user data to stable stor-
age. Based on our experience with static analysis, the most
serious errors in this paper would be difficult to find with
that approach. But, as with testing, we view static analysis
as complementary to our lightweight model checking—it is
easy enough to apply that there is no reason not to apply it
and then use lightweight model checking.

6. CONCLUSION
This paper demonstrated that ideas from model check-

ing offer a promising approach to investigating crash recov-
ery errors and that these ideas can be leveraged with much
less work than previous, heavyweight implementation-level
model checkers. This paper introduced a lightweight, gen-
eral approach to finding such errors using a minimally inva-
sive kernel device driver. We developed an implementation,
Explode, that runs on a slightly modified Linux kernel on
raw hardware and applied it to a wide variety of storage sys-
tems, including eight file systems, Linux software RAID 5,
Linux NFS client and server, and three version control pack-
ages, including one for which we did not have source code.
We found serious data loss bugs in all of them, 25 in all. In
the future we plan on extending Explode in two directions:
checking more comprehensively by exploring better search
heuristics, and checking other mission critical storage sys-
tems such as databases.

7. REFERENCES
[1] T. Ball and S. Rajamani. Automatically validating

temporal safety properties of interfaces. In SPIN 2001
Workshop on Model Checking of Software, May 2001.

[2] G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In IEEE International Conference on
Automated Software Engineering (ASE), 2000.

[3] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for
finding dynamic programming errors. Software: Practice
and Experience, 30(7):775–802, 2000.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813:
NFS version 3 protocol specification, June 1995.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[6] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach,
C. Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In ICSE 2000.

[7] SWAT: the Coverity software analysis toolset.
http://coverity.com.

[8] M. Das, S. Lerner, and M. Seigle. Path-sensitive program
verification in polynomial time. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[9] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language
Design and Implementation, June 2001.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of Operating Systems
Design and Implementation (OSDI), Sept. 2000.

[11] D. Engler and M. Musuvathi. Static analysis versus
software model checking for bug finding. In Invited paper:
Fifth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI04), pages
191–210, Jan. 2004.

[12] C. Flanagan and S. N. Freund. Type-based race detection
for Java. In SIGPLAN Conference on Programming
Language Design and Implementation, 2000.

[13] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages
234–245. ACM Press, 2002.

[14] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, June 2002.

[15] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, 1997.

[16] G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279–295, 1997.

[17] G. J. Holzmann. From code to models. In Proc. 2nd Int.
Conf. on Applications of Concurrency to System Design,
pages 3–10, Newcastle upon Tyne, U.K., 2001.

[18] M. Musuvathi and D. R. Engler. Model checking large
network protocol implementations. In Proceedings of the
First Symposium on Networked Systems Design and
Implementation, 2004.

[19] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and
D. L. Dill. CMC: A pragmatic approach to model checking
real code. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation, 2002.

[20] D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). ACM
SIGMOD Conference, pages 109–116, June 1988.

[21] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. In
Proceedings of the Sixth Symposium on Operating Systems
Design and Implementation, Dec. 2004.

