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Abstract To test these ideas, we have implemented such a hard-
ware extension to a simple processor prototyped using FP-

This paper proposes the use of processor support for pro-GAs (Field Programmable Gate Arrays). In this paper, we
gram rollback, as a key primitive to enhance software de- describe the operation and software interface of our proto-
bugging in production-run environments. We discuss howtype. In addition,, we describe some of the uses that such
hardware support for program rollback can be used to hardware support can have in helping software debugging.
characterize bugs on-the-fly, leverage code versioning for Such uses are to fully characterize a bug on-the-fly, lewerag
performance or reliability, sandbox device drivers, cotle  code versioning, sandbox the kernel's device drivers, col-
monitoring information with very low overhead, support lect and sample information with very low overhead, sup-
failure-oblivious computing, and perform fault injectiofo port failure-oblivious computing, and perform fault injec
test our ideas, we built an FPGA prototype. We run several tion, among other issues.
buggy applications on top of a version of Linux. This paper also evaluates the FPGA-based prototype
we built [16]. The extensions added include hold-
ing speculative data in the cache, register checkpointing,
and software-controlled transitions between speculatie
non-speculative execution. We experiment with several
buggy applications running on top of a version of Linux.

Dynamic bug-detection tools (e.g., [9, 13]) face major Overall, we show that this rollback primitive can be very
challenges when targetimmyoduction-run environmentsn effective in production-run environments.
such environments, bug monitoring and detection have to
be done with very low overhead. In addition, it is often
desirable to provide graceful recovery from bugs, so that
the system can continue to work.

One way to accomplish these goals is to provide hard- The system we propose allows the rollback and re-
ware support in the processor for low-overhead software execution of large sections of code (typically up to tens of
bug characterization, and for graceful recovery from bugs. thousands of instructions) with very low overhead. This is
For this, we propose a hardware primitive that quickly un- achieved through a few relatively simple changes to an ex-
does (rolls back) sections of code. When a certain suspi-isting processor.
cious event that may be a bug has been detected, the hard- We have implemented two main extensions: (1) the
ware rolls the program thousands of instructions back with cache can hold speculative data and, on demand, quickly
very little overhead. At that point, several options are-pos commit it or discard it all, and (2) the register state can
sible. We can either choose to re-execute the same sectiobe quickly checkpointed into a special storage and restored
of code or to jump off to another section where additional from there on demand. These two operations are done in
monitoring can be done. If we choose the former, we can hardware. When entering speculative execution, the hard-
re-execute the code section with the same input data set butvare checkpoints the registers and the cache starts buffer-
with more instrumentation enabled, so that we can furthering speculatively written data. During speculative execu-
characterize the bug. Alternatively, we can re-execute thetion, speculative data in the cache gets marked as such and
section with a different input or algorithm, to skip the bug is not allowed to be displaced from the cache. When transi-
altogether. tioning back to normal execution, any mark of speculative

1. Introduction

2 System overview



data is deleted and the register checkpoint is discarded. If processor triggers an exception. The exception handler de-
rollback is necessary, the speculatively written datavalin ~ cides what to do, one possibility being to commit the current
idated and the register state is restored from the checkpoin speculative data and continue executing normally.

2.1 Speculative Execution Control 3 Using Program Rollback for Software De-
bugging

The speculative execution can be controlled either in
hardware or in software. There are benefits on both sides The architectural support presented in this work provides
and deciding which is best is dependent on what specula-a flexible environment for software debugging and system
tion is used for. reliability. In this section, we list some its possible uses

911 HardwareControl 3.1 An Integrated Debugging System
If we want the system to always execute code speculatively The system dgscrlbed here is par'_[ of a larger dgbuggmg
and be able to guarantee a minimum rollback window, the effort for producuon—run codes that mcludes archneatu_r

hardware control is more appropriate. As the program runs,"’_lnd compl_ler support for bug dete(_:tlon and cha_racterlza-
the cache buffers the data generated and always marks therﬂ?n‘ In this system, program sections execute in one of

as speculative. There are always tefpoch<f speculative iree statesnormal, speculativeor re-execute While run-
data buffered in the cache at a time, each one with a correMNg iN speculative mode, the hardware guarantees that the

sponding register checkpoint. When the cache is about toCOde (typically up to qbouttens of thousands of instrujon
get full, the earliest epoch is committed, and a new check- 2" be rolled back with very low overhead and re-executed.

point is created. With this support, the program can always This is used for thorough characterization of code sections
that are suspected to be buggy.

roll back at least one of the two execution epochs (a number H ior 61 ] ible f lect hich
of instructions that filled roughly half of the L1 data cache) . e compiler [6] is responsible for selecting which sec-
tions of code are more error-prone and thus, should be exe-

cuted in speculative mode. Potential candidates are func-
2.1.2 SoftwareControl tions that deal with user input, code with heavy pointer
_ arithmetic, or newer, less tested functions. The program-
If, on the other hand, we need to execute speculatively onlymer can also assist by indicating the functions that he or she
some sections of code, and the compiler or user is able tozgnsiders less reliable.
identify these sections, it is best to expose the speculatio  |n addition, a mechanism is needed to detect potential
control to the software. This approach has two main be”e'problems, and can be used as a starting point in the bug de-
overhead is incurred since only parts of the code executefrom a simple crash detection system to more sophisticated

speculatively. N anomaly detection mechanisms. Examples of the latter in-
In this approach, the software explicitly marks the be- clude software approaches like Artemis [3] or hardware

ginning and the end of the speculative section WBiE- approaches like iwWatcher [19].

GIN_SPEC and END_SPEC instructions. When &BE- Artemis is a lightweight run-time monitoring system that

GIN_SPECinstruction executes, the hardware checkpoints yses execution contexts (values of variables and function
the register state and the cache starts buffering dateewritt parameters) to detect anomalous behavior. It uses training
to the cache, marking them as speculative. data to learn the normal behavior of an application and will
If, while executing speculatively, a suspicious event that detect unusual situations. These situations can act ag-a tri
may be a bug is detected, the software can seta spealial  ger for program rollbacks and re-executions for code char-
backregister. Later, wheEND_SPECis encountered, two  acterization.
cases are possible. If the Rollback register is clear, thleeca iWatcher is an architecture proposed for dynamically
commits the speculative data, and the hardware returns tanonitoring memory locations. The main idea of iWatcher
the normal mode of execution. If, instead, the Rollback is to associate programmer-specified monitoring functions
register is set, the program execution is rolled back to thewith monitored memory objects. When a monitored object
checkpoint, and the code is re-executed, possibly with moreis accessed, the monitoring function associated with tfHs o
instrumentation or different parameters. ject is automatically triggered and executed by the hardwar
If the cache runs out of space before H¥D_SPECin- without generating an exception to the operating system.
struction is encountered, or the processor attempts to perThe monitoring function can be used to detect a wide range
form an uncacheable operation (such as an 1/O access), thef memory bugs that are otherwise difficult to catch.



We provide two functions, namefnt er _spec to be- L S S
gin speculative execution areki t _spec to end it with enter_spec(); enter_spec(; enter_spec): | cache
commit or rollback. In addition, we have a function |p=maeqeay; p = mlapay; | rol o= miarAlieay; | SO

bac
proc_state() used to probe the state of the processor. | fag=1: i (er) flag =1 i em) flag = L
A return value ofd means normal mode, means specula- | dtsec(iag) extt_spec(iag): exit_spec(iag):
3 . num-++; num-++; num++;
tive mode, an@® means re-execute mode (which follows a |~
rollback) (a) No error (flag=0) (b) Error (flag=1) (c) Exeption
. Commit Rollback Early commit

The following code shows how these functions are Specuiative execution
used. exi t _spec takes one argument, ag, that con-
trols whether speculation ends with commit or rollback. Figure 1. Speculative execution ends with
If an anomaly is detected, the software immediately sets  .ommit (a), a rollback (b), or an early com-
the f | ag variable. When the execution finally reaches it due to cache overflow (©).
exi t _spec, a rollback is triggered. The execution re-
sumes from thent er _spec point.

D Non-speculative execution

nunrl
of the processor is first checked. Since the processor is no
longer speculative (due to the early commit), the instorcti

is simply ignored.

[+ begin speculation */
enter_spec();
/+* heavy pointer arithnetic */

SN AN 3.2 Other Usesof Program Rollback

[~ info collection «/ 3.2.1 Code Versioning

/+* only in re-execute node */

H l(:oroc—?tfat e() ==REEXEQUTE) { Code versioning, or N-version programming [8] is a tech-
}CO ect_info(): nigue that involves generating multiple, different vensio
exit_spec(flag); of the same code. It can be used for performance or reli-
[+ end specul ation / ability. When targeting performance, a compiler generates
nume+; a main version that is aggressively optimized, and poten-

tially sometimes incorrect. Using our hardware, this ver-

The compiler inserts code in the speculative section to sion can be executed speculatively, with some verification
collect relevant information about the program execution code in place. If the function fails or produces an incorrect
that can help characterize a potential bug. This code is onlyresult as indicated by the verification code, the processor i
executed if the processor is in re-execute mode (sstate() rolled back, and a second, unoptimized but safe version of
returns 2). the code is executed.

Figure 1 shows the three possible execution scenarios In the same way, when targeting reliability, we can have
for the example given above. Case (a) represents normatwo versions of the same function that are safe, have similar
execution: no error is found, thiel ag variable remains  performance, but use different functional units in the pro-
clear and, whemrxi t spec(fl ag) is reached, specula- cessor. Each version includes some verification code that
tion ends with commit. checks that the computation was correct. We can first run

In case (b), an abnormal behavior that can lead to a bugthe first function and its verification code. If the verificati
is encounteredF| ag is set when the anomaly is detected code fails, we then run the second function and its verifi-
and, later, when execution reachesi t spec(fl ag), cation code. Since the functions use different parts of the
the program rolls back to the beginning of the speculative processor, they are unlikely to both fail.
region and continues in re-execute mode. This can be re-
peated, possibly even inside a debugger, until the b_ug is3'2.2 OSKerne and Driver Debugging
fully characterizedFl ag can be set as a result of a failed
assertion or data integrity test. One of the major challenges in OS reliability is to ensure

Finally, in case (c) the speculative state can no longer fit correct execution of the OS kernel in the presence of faulty
in the cache. The overflow is detected by the cache con-drivers. In fact, in Linux, the frequency of coding errors
troller and an exception is raised. The software is expectedis seven times higher for device drivers than for the rest
to handle this case. The example assumes that the excemf the kernel [1]. Several solutions have been proposed to
tion handler commits the speculative data. When the execu-this problem including many that involve isolating the ker-
tion reaches thexi t _spec(f | ag) instruction, the state  nel from the device drivers with some protection layer [15].



In general, these solutions require major changes to OS deaccesses are detected, but, instead of terminating the exe-
sign and implementation and can introduce significant over-cution or raising an exception, the program discards the in-
heads. valid writes and manufactures values for invalid reads, en-

We propose a simpler solution with potentially very low abling the program to continue execution.
overhead that takes advantage of the rollback support im- A failure-oblivious system can greatly benefit from our
plemented in the hardware. rollback support. When a read results in an invalid access,

In general, the kernel and driver code interact through in- the system enters speculative mode, generates a fake value,
terface functions, and maintain data structures in both ker and uses it in order to continue execution. It is unknown
nel and driver memory. In a system like ours, function calls however, whether the new value can be used successfully
from kernel to driver or vice-versa could be executed spec-or, instead, will cause further errors. Since the code that
ulatively. If an error is detected, the changes made to kerne uses the fake value executes speculatively, it can roll back
memory would then be rolled back. The idea is to preventif a new error is detected. Then, the program can use a
the kernel from becoming corrupted or even crashing due todifferent predicted value and re-execute the code again, or
a faulty driver. A cleanup procedure could then be called to finally raise an exception.
shut down the driver and either attempt to reinitialize it or
report the error to the user.

The current system cannot roll back any 1/0O operations.
This is because we currently buffer only cacheable data.Qur rollback hardware can also be used as a platform for
However, we can still roll back the processor in case of a performing fault injection inproduction systemsilt offers
fault. Any communication with the faulty device is lost but g way of testing the resilience of systems to faulty code, or
the processor is restored to the state before the device actestwhat if conditions, without causing system crashes. The
cess began. If the device somehow corrupted the kernelcode that is injected with faults is executed speculatjtely
the correct state can still be recovered from the checkpoint determine what effect it has on the overall system. Even
The fault model for a system like this would target kernel if the fault propagates, the code can be rolled back and the
integrity rather than guaranteeing the correct operatfon o system not allowed to crash. The process can be repeated
individual devices. multiple times, with low overhead, to determine how a sys-

tem behaves in the presence of a wide array of faults.

3.25 Fault Injection

3.2.3 Lightweight Information Collection and Sam-
pling 4 Evaluation

Detecting bugs in production code can be challenging be- )

cause it is hard to obtain substantial information about pro 41 FPGA infrastructure

gram execution. It is hard to collect relevant information

without incurring a large overhead. Previous solutions to  As a platform for our experiments, we used a synthesiz-
this problem have suggested using statistical sampling toable VHDL implementation of a 32-bit processor [4] com-
obtain execution information with small overheads [7]. pliant with the SPARC V8 architecture.

We propose using our system to perform lightweightcol-  The processor has an in-order, single-issue, five stage
lection of execution information based on anomaly detec- pipeline. This system is part of a system-on-a-chip infras-
tion. In this case, the processor would always execute intructure that includes a synthesizable SDRAM controller,
speculative state. When an anomaly is detected (an unusugCl and Ethernet interfaces. The system was synthesized
return value, a rarely executed path, etc.), the processor i using Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx
rolled back as far as its speculative window allows and then Virtex Il XC2V3000 running on a GR-PCI-XC2V develop-
re-executed. Upon re-execution, instrumentation present ment board [10].
the code is turned on, and the path that led to the anoma- On top of the hardware, we run a version of the SnapGear
lous execution recorded. This allows more precise infor- Embedded Linux distribution [2]. SnapGear Linux is a full
mation about anomalous program behavior than statisticalsource package, containing kernel, libraries and appsicat
sampling would. Also, because the additional code is rarely code for rapid development of embedded Linux systems. A
executed, the overhead should be very low. cross-compilation tool-chain for the SPARC architectsre i
used for the compilation of the kernel and Linux applica-
tions.

To get a sense of the hardware overhead imposed by our
A failure-oblivious system [12] enables programs to con- scheme, we synthesize the processor core with and with-
tinue executing through memory errors. Invalid memory out the support for speculative execution. We look at the

3.24 Failure-Oblivious Computing



utilization of the main resources in FPGA chips, the Con- buggy section, performed a rollback when the end specula-
figurable Logic Blocks (CLBs). Virtex Il CLBs are orga- tion instruction was reached, and then re-executed theeenti
nized in an array and are used to build the combinatorial section. On the other hand, a failed rollbagolymorph)

and synchronous logic components of the design. The CLBmeans that before reaching the end speculation instryction
overhead of our scheme is small (less than 4.5% on averagea condition is encountered that forces the early commit of

[16]. the speculative section. Rollback is no longer possible in
this case.
4.2 Speculative execution of buggy applications The fifth column shows the number of dynamic instruc-

tions that were executed speculatively. Notice that in the

We run experiments, using standard Linux applications case opolymorptthe large number of dynamic instructions
that have known (reported) bugs. For these applications, wecauses the cache to overflow the speculative data, and forces
want to determine whether we can speculatively execute aan early commit.
section of dynamic instructions that is large enough to con-
tain both the bug and the location where the bug is caught 5 Related work
by a detection mechanism like iWatcher [19]. Some param-
eters of the experimental setup are given in Table 1.

We assume that the compiler has identified the suspi-
cious region of code that should be executed speculatively.
We also assume the existence of a detection mechanis
(such as iWatcher), which can tell us that a bug has oc-
curred. We want to determine if, under these circumstances
we can roll back the buggy section of code in order to char-
acterize the bug thoroughly by enabling additional instru-

mentation. . s
Recorder” [17] enables off-line deterministic replay of ap

We use five buggy programs from the open-source com- licati q b dqf mort vsis of a b
munity. The bugs were introduced by the original pro- plications and can be used 1or postmortem analysis ot a bug.
It has a significant overhead that could prevent its use in

grammers. They represent a broad spectrum of memory- .
related bugs. The programs argzip, man, polymorph, productlop codes. . . ' .

ncompress and taiGzipis the popular compression utility, There IS oth_er _extenswe work in the f|eId. of dynamic
manis a utility used to format and display on-line manual gxecuuon monitoring. Well—known examples mclude_tools
pages polymorphis a tool used to convert Windows style like Eraser [13] or Valgrind [9]. Eraser targets detectién o

file names to something more portable for UNIX systems, data_ races in multi-threaded programs. Valgrind is a dy-
ncompresss a compression and decompression utility, and namic checker to detect general memory-related bugs such
tar is a tool to create and manipulate archives as memory leaks, memory corruption and buffer overflow.

In the tests we use the bug-exhibiting inputs to generateMost of these systems have overheads that are too large to

the abnormal runs. All the experiments are done under re_make them acceptable in production code.
alistic conditions, with the applications running on topeof There have also been proposals for hardware support for
version of Linux running on our hardware. detecting bugs, such as iWatcher [19] and AccMon [18].

These systems offer dynamic monitoring and bug detection

capabilities that are sufficiently lightweight to allow the
Table 1. Main parameters of the experimental use on production software. This work is mostly compl_e-
setup. mentary to ours. In fact we assume some of the detection

capabilities of iWatcher when evaluating our system.

Some of the hardware presented in this work builds on
extensive work on Thread-Level Speculation (TLS) (e.qg.
5, 14]). We employ some of the techniques first proposed
or TLS to provide lightweight rollback and replay capabil-
ities. TLS hardware has also been proposed as a mechanism
to detect data races on-the-fly [11].

Previous work has also focused on various methods
for collecting information about bugs. The “Flight Data

Processor LEON2, SPARC V8 compliant

Clock frequency 40MHz .

Instruction cache BKB 6 Conclusionsand futurework

Data cache 32KB

RAM 64MB . . . .

Windowed register file| 8 windows < 24 registers each This Work shows that with relatively S|mple hardwa_re
Global registers 8 registers we can provide powerful support for debugging production

codes. We show it by building a hardware prototype of the
envisioned system, using FPGA technology. Finally, we run

Table 2 shows that the buggy sections were successexperiments on top of Linux running on this system.
fully rolled back in most cases, as shown in column four.  The hardware presented in this work is part of a compre-
This means that the system executed speculatively theentir hensive debugging infrastructure. We are working toward



Application Bug location Bug description Successful| Speculative
rollback instructions
ncompress-4.2.4| compress42.c: Input file name longer than 1024 Yes 10653
line 886 bytes corrupts stack return address
polymorph-0.4.0 polymorph.c: Input file name longer than 2048 No 103838
lines 193 and 200, bytes corrupts stack return address
tar-1.13.25 prepargs.c: Unexpected loop bounds Yes 193
line 92 causes heap object overflow
man-1.5h1 man.c: Wrong bounds checking Yes 54217
line 998 causes static object corruption
gzip-1.2.4 gzip.c: Input file name longer than 1024 Yes 17535
line 1009 bytes overflows a global variable|

Table 2. Speculative execution in the presence of bugs.

integrating compiler support to identify vulnerable code r

[11]

gions as well as to instrument the code with speculation

control instructions.

We have presented several uses of this hardware for de-

bugging, including to characterize bugs on-the-fly, legera
code versioning for performance or reliability, sandbox de

[12]

vice drivers, collect monitoring information with very low
overhead, support failure-oblivious computing, and prenfo

fault injection. We will be implementing some of these

techniques in the near future.
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