
FindBugs
review of Glassfish v2 b09

William Pugh

Univ. of Maryland

http://www.cs.umd.edu/~pugh/

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

FindBugs

• Open source static analysis tool for finding
defects in Java programs

• Analyzes classfiles

• Generates XML or text output

• can run in Netbeans/Swing/Eclipse/Ant/SCA

• Total downloads from SourceForge: 231,861+

What is FindBugs?
• Static analysis tool to find defects in Java code

• not a style checker

• Can find hundreds of defects in each of large apps such
as Bea WebLogic, IBM Websphere, Sun's JDK

• real defects, stuff that should be fixed

• hundreds is conservative, probably thousands

• Doesn’t focus on security

• lower tolerance for false positives

Common Wisdom
about Bugs

• Programmers are smart

• Smart people don’t make dumb mistakes

• We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs
early

• So, bugs remaining in production code must be
subtle, and require sophisticated techniques to
find

Would You Write Code
Like This?

 if (in == null)

 try {

 in.close();

 ...

• Oops

• This code is from Eclipse

• You may be surprised what is lurking in your
code

6

Why Do Bugs Occur?

• Nobody is perfect

• Common types of errors:

• Misunderstood language features, API methods

• Typos (using wrong boolean operator, forgetting
parentheses or brackets, etc.)

• Misunderstood class or method invariants

• Everyone makes syntax errors, but the compiler
catches them

• What about bugs one step removed from a syntax error?

JDK 1.6.0-b92 results
• 44 classes that define equals() but inherit

hashCode() from Object

• 31 equals methods that don’t handle null

• 6 statements that always throw a NPE

• 46 branches that if taken guaranteed a NPE

• 11 comparisons of unrelated types

• 7 ignored return values

• 1 infinite recursive loop

Demo

• Live code review of glassfish-v2-b09

• Available as Java Webstart from

• http://www.cs.umd.edu/~pugh/glassfish/

http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/

Bug Patterns

10

Hashcode/Equals

• Equal objects must have equal hash codes

• Programmers sometimes override equals() but not
hashCode()

• Or, override hashCode() but not equals()

• Objects violating the contract won’t work in hash tables,
maps, sets

• Examples (53 bugs in 1.6.0-b29)

• javax.management.Attribute

• java.awt.geom.Area

Fixing hashCode

• What if you want to define equals, but don't think
your objects will ever get put into a HashTable?

• Suggestion:

public int hashCode() {
 assert false : "hashCode method not designed";
 return 42;
 }

12

Null Pointer Dereference

• Dereferencing a null value results in
NullPointerException

• Warn if there is a statement or branch that if executed,
guarantees a NPE

• Example:
// Eclipse 3.0.0M8

Control c = getControl();

if (c == null && c.isDisposed())

 return;

Bad Binary operations

 if ((f.getStyle () & Font.BOLD) == 1) {
 sbuf.append ("");
 isBold = true;
 }

if ((f.getStyle () & Font.ITALIC) == 1) {
 sbuf.append ("<i>");
 isItalic = true;
 }

Doomed Equals

public static final ASDDVersion
 getASDDVersion(BigDecimal version) {

if(SUN_APPSERVER_7_0.toString()
 .equals(version))
 return SUN_APPSERVER_7_0;

Unintended regular expression

String[] valueSegments
 = value.split("."); // NOI18N

Field Self Assignment

 public TagHelpItem(String name, String file,
 String startText, int startOffset,
 String endText, int endOffset,
 String textBefore, String textAfter){
 this.name = name;
 this.file = file;
 this.startText = startText;
 this.startTextOffset = startTextOffset;
 this.endText = endText;
 this.endTextOffset = endTextOffset;
 this.textBefore = textBefore;
 this.textAfter = textAfter;
 this.identical = null;
 }

17

Confusing/bad naming

• Methods with identical names and signatures
– but different capitalization of names
– could mean you don’t override method in

superclass
– confusing in general

• Method name same as class name
– gets confused with constructor

18

Bad naming in Eclipse

package org.eclipse.jface.dialogs;

public abstract class Dialog extends Window {

 protected Button getOKButton() {

 return getButton(IDialogConstants.OK_ID);

 };
}

public class InputDialog extends Dialog {

 protected Button getOkButton() {

 return okButton;

 };

}

Bad naming in BCEL
(shipped in jdk1.6.0-b29)

/** @return a hash code value
 *for the object.

 */

public int hashcode() {
 return basic_type.hashCode()
 ^ dimensions; }

19

20

Read Return Value Ignored

• InputStream.read() methods that read into a byte
array return the number of bytes read
– Can be less than the number requested
– Programmers sometimes fail to check return value

• May result in uninitialized array elements being used
• Program can get out of sync with input stream

• Example (GNU Classpath 0.08):
// java.util.SimpleTimeZone.readObject()
int length = input.readInt();
byte[] byteArray = new byte[length];
input.read(byteArray, 0, length);

21

Other Return Value Ignored
Errors

• Lots of methods for which return value
always should be checked
– E.g., operations on immutable objects

• Examples:
// Eclipse 3.0.0M8
String name= workingCopy.getName();
name.replace(’/’, ’.’);

Ignored Exception Creation
/**
 * javax.management.ObjectInstance
 * reference impl., version 1.2.1
 **/
 public ObjectInstance(ObjectName objectName,
 String className) {
 if (objectName.isPattern()) {
 new RuntimeOperationsException(
 new IllegalArgumentException(
 "Invalid name->"+ objectName.toString()));
 }
 this.name = objectName;
 this.className = className;
 }

22

23

Inconsistent Synchronization

• Common idiom for thread safe classes is to
synchronize on the receiver object (“this”)

• We look for field accesses
– Find classes where lock on “this” is sometimes,

but not always, held
– Unsynchronized accesses, if reachable from

multiple threads, constitute a race condition

24

Inconsistent Synchronization
Example

• GNU Classpath 0.08, java.util.Vector

public int lastIndexOf(Object elem)
{
 return lastIndexOf(elem, elementCount – 1);
}

public synchronized int lastIndexOf(
 Object e, int index)
{
 ...
}

25

Unconditional Wait

• Before waiting on a monitor, the condition should
be almost always be checked
– Waiting unconditionally almost always a bug
– If condition checked without lock held, could miss the

notification

• Example (JBoss 4.0.0DR3):
if (!enabled) {
 try {
 log.debug(...);
 synchronized (lock) {
 lock.wait();
 }

condition can
become true after it
is checked

but before the
wait occurs

Warning Density

Warning density

• Density of high and medium priority correctness
warnings (excluding HE and SE warnings)

Warnings/KNCSS Software
0.4 SleepyCat DB

0.5 Eclipse 3.2

0.9 JDK 1.5.0_03

1.0 JDK 1.6.0 b51

1.3 WebSphere

Some new-ish features

Behavior Annotations

• Allow you to provide lightweight specifications
through Java 5.0 annotations

• Examples

• @NonNull

• @CheckForNull

• @CheckReturnValue

• @Tainted/@Untainted/@Detainted

• proposed

Computing bug history

• Keeps track of when bug are introduced, when
they are resolved

• Historical bug data records all bugs reported for
any build

• Can see when bugs were introduced and removed

• For example, can report all bugs introduced in the
past 3 months

FindBugs
Best Practices

What to look at

• First review high and medium priority correctness

• Low priority warnings are of questionable value

• Other categories (style, performance) worth
examining in a code review, but insisting that they all
be reviewed immediately will make people unhappy

• Carefully consider and review FindBugs plugins

• Others have written plugins, some of which
generate a lot more false positives or give bad
advice

Incremental analysis
and/or marking

• For sustainable use, you need to have some way
to deal with false positives

• mark in database

• Only review new warnings

• Both of these require matching warnings from
one analysis with results from a previous analysis

Developers like incremental
analysis

• Developers don’t like to be asked to scrub a
million line code base and review 1000 warnings

• But they don’t mind (as much) if you ask them to
review a new warning introduced by a change
they just made

• false positive rate still matters

Questions?

