FindBugs
review of Glassfish v2 b09

William Pugh
Univ. of Maryland

http://www.cs.umd.edu/~pugh/

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

FindBugs

® Open source static analysis tool for finding
defects in Java programs

® Analyzes classfiles
® Generates XML or text output
® can run in Netbeans/Swing/Eclipse/Ant/SCA

® TJotal downloads from SourceForge: 231,861+

What is FindBugs!

® Static analysis tool to find defects in Java code
® not a style checker

® Can find hundreds of defects in each of large apps such

as Bea WebLogic, IBM Websphere, Sun's |]DK

® real defects, stuff that should be fixed

® hundreds is conservative, probably thousands
® Doesn’t focus on security

® |ower tolerance for false positives

Common Wisdom
about Bugs

Programmers are smart

Smart people don’t make dumb mistakes

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs

early

50, bugs remaining in production code must be
subtle, and require sophisticated techniques to
find

Would You Write Code
Like This?

1T (Ain == null)

try {
1n.close();

® Oops
® This code is from Eclipse

® You may be surprised what is lurking in your
code

Why Do Bugs Occur!?

® Nobody is perfect

e Common types of errors:
® Misunderstood language features, APl methods

® Typos (using wrong boolean operator, forgetting
parentheses or brackets, etc.)

® Misunderstood class or method invariants

Everyone makes syntax errors, but the compiler
catches them

® What about bugs one step removed from a syntax error?

6

JDK 1.6.0-b92 results

44 classes that define equals() but inherit
hashCode() from Object

31 equals methods that don’t handle null
6 statements that always throw a NPE

46 branches that if taken guaranteed a NPE

| | comparisons of unrelated types

/ ignored return values

| infinite recursive loop

® Live code review of glassfish-v2-b09

® Available as Java Webstart from

® http://www.cs.umd.edu/~pugh/glassfish/

http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/

Bug Patterns

Hashcode/Equals

® Equal objects must have equal hash codes

® Programmers sometimes override equals() but not
hashCode()

® Or, override hashCode() but not equals()

® QObjects violating the contract won’t work in hash tables,
maps, sets

® Examples (53 bugs in 1.6.0-b29)

® javax.management.Attribute

® java.awt.geom.Area

Fixing hashCode

® What if you want to define equals, but don't think
your objects will ever get put into a HashTable!?

® Suggestion:

public int hashCode() {

assert false : "hashCode method not designed”;
return 42;

J

Null Pointer Dereference

® Dereferencing a null value results in
NullPointerException

® Warn if there is a statement or branch that if executed,
guarantees a NPE

® Example:
// Eclipse 3.0.0MS8
Control ¢ = getControl();
if (¢ == null && c.isDisposed())

return;

Bad Binary operations

if ((f.getStyle () & Font.BOLD) == 1) {
sbuf.append ("");
1sBold = true;

¥

if ((f.getStyle () & Font.ITALIC) == 1) {
sbuf.append ("<1>");
1sItalic = true;

¥

Doomed Equals

public static final ASDDVersion
getASDDVersion(BigDecimal version) {

1T (SUN_APPSERVER_7_0.toString()
.equals(version))
return SUN_APPSERVER_7_0;

Unintended regular expression

String[] valueSegments
= value.split("."); // NOI1S8N

Field Self Assignment

public TagHelpItem(String name, String file,
String startText, 1nt startOffset,
String endText, int endOffset,
String textBefore, String textAfter){

name = name;

file = file;

startlText = startlext;

startTextOffset = startTextOffset;

endText = endText;

endTextOffset = endTextOffset;

textBefore = textBefore;

textAfter = textAfter;

identical = null;

T
T
T
T
T
T
T
T
T

Confusing/bad naming

* Methods with identical names and signatures
— but different capitalization of names

— could mean you don’t override method in
superclass

— confusing in general

e Method name same as class name
— gets confused with constructor

Bad naming in Eclipse

package org.eclipse.jface.dialogs;
public abstract class Dialog extends Window {
orotected Button getOKButton() {

return getButton(IDi1alogConstants.OK_ID);

};
}

oli1c class InputDialog extends Dialog {
orotected Button getOkButton() {
return okButton;

}s

Bad naming in BCEL
(shipped in jdk|.6.0-b29)

/*%* @return a hash code value
*for the object.

h"
p2 /

public 1nt hashcode() {
return basic_type.hashCode()
A dimensions; }

Read Return Value Ignored

* InputStream.read() methods that read into a byte
array return the number of bytes read

— Can be less than the number requested

— Programmers sometimes fail to check return value
* May result in uninitialized array elements being used
* Program can get out of sync with input stream

* Example (GNU Classpath 0.08):

// java.util.SimpleTimeZone.readObject ()
int length = input.readInt();

byte[] byteArray = new byte[length];
input.read (byteArray, 0, length);

Other Return Value Ignored
Errors

e Lots of methods for which return value
always should be checked

— E.g., operations on immutable objects
* Examples:
// Eclipse 3.0.0MS8

String name= workingCopy.getName () ;
name.replace(’'/’', '.7);

lsnored Exception Creation

/ o
* javax.mahagement.ObjectInstance
* reference impl., version 1.2.1
% /

public ObjectInstance(ObjectName objectName,
String className) {

1f (objectName.isPattern()) {

new RuntimeOperationsException(

new IllegalArgumentException(
"Invalid name->"+ objectName.toString()));

¥
this.name = objectName;
this.className = className;

Inconsistent Synchronization

e Common idiom for thread safe classes is to
synchronize on the receiver object (“this”)

e We look for field accesses

— Find classes where lock on “this” is sometimes,
but not always, held

— Unsynchronized accesses, if reachable from
multiple threads, constitute a race condition

Inconsistent Synchronization
Example
 GNU Classpath 0.08, java.util.Vector

public int lastIndexOf (Object elem)
{

return lastIndexOf (elem, elementCount - 1) ;

}

public synchronized int lastIndexOf (
Object e, int index)

{

}

Unconditional Wait

* Before waiting on a monitor, the condition should
be almost always be checked

— WWaiting unconditionally almost always a bug

— |f condition checked without lock held, could miss the
notification

condition can
* Example (JBoss 4.0.0DR3): become true after it

if ('enabled) { IS checked
try {

log.debug(...); - but before the
synchronized (lock) { wait occurs
lock.wait () ;

}

Warning Density

Warning density

® Density of high and medium priority correctness
warnings (excluding HE and SE warnings)

Warnings/KNCSS Software

0.4 SleepyCat DB
0.5 Eclipse 3.2
0.9 JDK 1.5.0 03
1.0 JDK 1.6.0 b5
|.3 WebSphere

Some new-ish features

Behavior Annotations

® Allow you to provide lightweight specifications
through Java 5.0 annotations

® Examples

e @NonNull

® @CheckForNull

® (@CheckReturnValue

® @Tainted/@Untainted/@Detainted

® proposed

Computing bug history

Keeps track of when bug are introduced, when
they are resolved

Historical bug data records all bugs reported for
any build

Can see when bugs were introduced and removed

For example, can report all bugs introduced in the
past 3 months

FindBugs
Best Practices

What to look at

® First review high and medium priority correctness
® | ow priority warnings are of questionable value

® Other categories (style, performance) worth
examining in a code review, but insisting that they all
be reviewed immediately will make people unhappy

® Carefully consider and review FindBugs plugins

® Others have written plugins, some of which
generate a lot more false positives or give bad
advice

Incremental analysis
and/or marking

® For sustainable use, you need to have some way
to deal with false positives

® mark in database
® Only review new warnings

® Both of these require matching warnings from
one analysis with results from a previous analysis

Developers like incremental
analysis

® Developers don'’t like to be asked to scrub a
million line code base and review 1000 warnings

® But they don’t mind (as much) if you ask them to
review a new warning introduced by a change
they just made

® false positive rate still matters

Questions!

