
July 24, 2003, 3:27pm

1 Definitions

Programs A program is a set of threads, each of which is a sequence of atomic statements.
For the purposes of this model, a statement contains at most one thread or heap operation.
For example, a statement may read one heap variable or write one heap variable; it may
not increment a heap variable, as this is both a write and a read. Compound statements are
those which perform multiple operations: they may be broken down into multiple individual
statements.

Shared/Heap memory Shared or heap memory can be shared between threads. All
instance fields, static fields and array elements are stored in heap memory. Variables local
to a method are never shared between threads.

Actions An action is the dynamic counterpart of a program statement. Example actions
include reads of and writes to heap locations and locks and unlocks of monitors. Actions
may be purely thread local actions (e.g., updating a local variable). Compound actions (e.g.,
incrementing a heap location) must be broken down into actions consisting of a single atomic
operation on the heap.

An action is annotated with information about the execution of that action: the monitor
accessed, the value read or written, and so on. Each action is further annotated with a
globally unique identifier, or GUID, so that it may be uniquely named and referred to.

Variables Read and write actions are annotated with the variable read or written; this
variable is a memory location into which data may be stored, and from which data may be
retrieved. The variable associated with a given action is determined at run time.

Execution Trace An execution trace (which we sometimes simply call an execution) E of
a program P consists of three parts:

• A set of actions.

• A partial order over the actions derived from the statements in P ; the partial order is
determined by the happens-before relationship defined below.

• A prefix of a causal order; the causal order is defined below.

This triple is written as 〈S,
hb→ , co〉 The behavior of instructions other than reads are

determined strictly by other actions within the thread. Reads of shared variables are more
complicated, because the values observed by such a read can be affected by writes to that
variable by other threads. Therefore, except for read actions of t in E, all of the actions

1



of t in E must be consistent with a standard, intra-thread execution of t, with each action
occurring in the original program order. If a read action in t observes the value of a write
by thread t, that write must be the most recent write by t to that memory location. A read
action may observe a value written by another thread; in that case, the values that can be
observed are determined by the memory model, as described in Section 2.

An execution trace E is a valid execution trace if the actions of each thread obey intra-
thread semantics and the values observed by the reads in E are valid according to the memory
model (as defined in Section 2, with exceptions as noted). A program’s behavior is only legal
if it is the result of some execution trace following this rule.

At the beginning of each execution trace, there is an initial write of the default value
(i.e., zero or null) to each variable. This is ordered before the first action of each thread.

When we say that the same action occurs in two different execution traces, we mean that
there is an action with the same annotations in each execution (e.g., GUID, variable read
and value observed).

Happens-before edge If we have two actions x and y, x
hb→ y means that x happens-

before y. Within an execution trace, there is a happens-before edge from each action in a
thread t to each following action in t.

There is a total order between all lock and unlock actions on the same monitor. There
is a happens-before edge from an unlock action on monitor m to all subsequent lock actions
on m (where subsequent is defined according to the total order over the actions on m).

Similarly, there is a total order between writes to and reads from the same volatile
variable. There is a happens-before edge from each write to a volatile variable v to all
subsequent reads of v (where subsequent is defined according to the total order over the
actions on v).

Happens-before path There is a happens-before path x
hb→ y from an action x to a later

action y if there is a path of happens-before edges from x to y.

2 Memory Model

2.1 Consistency

We first introduce a simple memory model called consistency.
The happens-before relationship defines a partial order over the actions in an execution

trace; one action is ordered before another in the partial order if one action happens-before
the other. We say that a read r of a variable v is allowed to observe a write w to v if, in the
happens-before partial order of the execution trace:

• r is not ordered before w (i.e., it is not the case that r
hb→ w), and

• there is no intervening write w′ to v (i.e., no write w′ to v such that w
hb→ w′ hb→ r).

2



Informally, a read r is allowed to observe the result of a write w if there is no happens-
before ordering to prevent that read. An execution trace is consistent if all of the reads in
the execution trace are allowed.

Because consistent execution traces do not have causal orders, they are represented by a

tuple 〈S,
hb→ 〉.

2.2 Causal Consistency

Consistency is a necessary, but not sufficient, set of constraints. In other words, we need the
requirements imposed by Consistency, but they allow for unacceptable behaviors.

For any execution trace, we assume the existence of a causal order, which is a total order
over some of the actions in that execution. The causal order does not have to be consistent
with the program order or the happens-before order. Any total order over actions in an
execution trace is potentially a valid causal order. The causal order could, for example,
reflect the order in which the code would occur after compiler transformations have taken
place.

The intuition behind causal orders is that for each prefix of that causal order, the next
action in the order is justified by the actions in the prefix.

2.2.1 Action Correspondence

To use causal orders, we must first define the notion of what it means for two actions to
correspond to each other in two different executions. Two actions correspond to each other
in separate executions if

• they are generated by the same statement in both,

• The causal orders that justify each are the same length, and

• The ith elements of their causal orders are the same, and

• If the ith element of the causal order that justifies one happens before the action, then
the ith element of the causal order that justifies the other happens before the action.

For two actions a and b, this is written a ∼= b. Additionally, if a ∼= b, a and b are reads,
and b is allowed to read the same value that a read, we say a 7→ b.

2.2.2 Causal Consistency

Consider an execution trace E of a program P , and an action a in E. Let α be the set of
actions in E that occur strictly before a in the causal order of E (note that a is not contained
in α). Remember that the actions in α do not have to happen before a in an execution. We
simply want to say that the set of actions α cause a to occur. Again, the causal order does
not have be consistent with the program order, but its results should be determined by the
rules for consistent executions.

3



We build a recursive definition. To build the set valid0, we consider each consistent

execution E. For each E, there is an execution 〈S,
hb→ , co〉 in valid0 that contains

• A set S containing all of the actions in E,

• The happens-before relationship reflected in E, and

• The empty causal order.

We create a set validk+1 by adding actions to the causal orders of executions in validk.

An execution 〈S,
hb→ , co〉 is legal if it is in some set validn; however, the only observable

actions of E will be those in the causal order, not those in the set S.

An action x in a trace 〈S,
hb→ , co〉 is prescient iff either:

• there exists an action y that occurs after x in the causal order such that y
hb→ x, or

• x observes a write that occurs after it in the causal order.

All prescient actions must be justified. To justify a prescient action x in trace E, we need
to show that the actions before x in the causal order guarantee that x will be allowed.

If an execution E = 〈S,
hb→ , co〉 is in validk, A prescient action a ∈ S can be appended

to co, resulting in a new trace in validk+1 if, in each execution that contains co in validk, co
allows (in the sense of Section 2.1) some a′ to occur, where a′ ∼= a and a′ 7→ a.

This begs the question of what it means for one execution to contain the causal order of

another. The causal order co′ of an execution E = 〈S ′,
hb′
→ , co′〉 in validk contains a causal

order co (written co � co′) if, for the ith action coi of co , coi
∼= co′

i and all of the information
with which coi is annotated (including the monitor accessed, the variable read or written
and the value read or written) is the same as that for co′

i.
The results of the actions in an execution’s causal order are the legal results of the

execution.

2.3 Prohibited Sets

The full semantics can prohibit certain executions based on whether they contain a given
read. In order to justify an execution by prohibiting a certain read, an alternate execution
containing the read must be demonstrated. Each application of the semantics is therefore
associated with a set of alternate executions. This set, labeled alternativeExecutions, con-
tains tuples 〈E, r, E ′〉, where E is the execution it is desired to prohibit, r is the read that
defines this prohibited execution, and E ′ is an alternate execution trace that contains r’s
causal execution trace in E and contains r; however, in E ′, r returns a different value. If
an execution E is prohibited in alternativeExecutions with an alternate E ′ listed, E ′ cannot
also be prohibited in alternativeExecutions.

4



valid0

def
≡ {〈S,

hb→ , co〉 | 〈S,
hb→ 〉 ∈ consistent ∧ co = ∅}

validk+1

def
≡ validk − prohibitedk∪

{E = 〈S,
hb→ , co : a〉 | 〈S,

hb→ , co〉 ∈ validk − prohibitedk∧
(a ∈ prescientE) ⇒

let (justifiers = {E ′ = 〈S ′,
hb→ ′, co′〉 |

(E ′ ∈ validk − prohibitedk)∧
co � co′}) in

justifiers 6= ∅∧
∀〈S ′,

hb′
→ , co′〉 ∈ justifiers : (∃a′ ∈ co′ : a′ 7→ a)}

prohibitedk

def
≡ {〈S,

hb→ , co : r : β〉 |
〈〈S,

hb→ , co : r : β〉, r, 〈S ′,
hb′
→ , co′ : r′ : β′〉〉 ∈ alternativeExecutions∧

〈S ′,
hb′
→ , co′ : r′ : β′〉 ∈ validk ∧ co � co′ ∧ r 7→ r′∧

r observes a different write from r′}

E is a valid execution trace for the memory model if and only if there
∃i, k, alternativeExecutions · ∀j ≥ k · E ∈ validi

j. The results of the actions in an execu-
tion trace’s causal order are the legal results of the execution.

Figure 1: Full Semantics

2.4 Full Model

The set of executions allowed under the memory model are the set of valid executions allowed
by causal consistency, with every possible set of prohibited executions applied separately.
The formal semantics for a program P are detailed in Figure 1.

5



Given E = 〈S,
hb→ , α : x : β〉, E ′ = 〈S ′,

hb′
→ , α′ : x′ : β′〉,

• α � α′ ⇐⇒

– ∀i, 0 ≤ i < length(α) : αi
∼= α′

i

– ∀i, 0 ≤ i < length(α) : all of the information with which αi is annotated (including
the monitor accessed, the variable read or written and the value read or written)
is the same as that for α′

i.

• x ∈ prescientE ⇐⇒

– ∃y ∈ β :

∗ y
hb→ x∨

∗ (x is a read) ∧ (y is a write) ∧ (x observes the write performed by y)

• x 7→ x′ ⇐⇒

– x ∼= x′

– if x′ is a read, it is allowed to observe the same value that a observes

• x ∼= x′ ⇐⇒

– it is generated by the same statement of P in both

– length(α) = length(α′)

– ∀i, 0 ≤ i < length(α) : αi
∼= α′

i∧
αi

hb→ x ⇐⇒ α′
i

hb→ x′∧
x

hb→ αi ⇐⇒ x′ hb→ α′
i

Figure 2: Definitions

6


