
July 24, 2003, 3:27pm

Justification-based description of semantics

An execution trace consists of a set of actions, a happens-before ordering over those actions
that is the partial order derived from those actions, and a causal order, which is a total order
over all of the actions in the trace.

We use 〈S,
hb→ , co〉 to represent an execution trace E, where

• S is a set of actions,

• hb→ is a partial order over the actions in S, and

• co is the causal order: an ordered list of all the actions in S.

An execution trace is consistent if the actions performed are consistent with the intra-
thread semantics of the program and each read observes the value of a write that it is allowed
to observe by the happens before ordering.

A consistent execution trace E = 〈S,
hb→ , co〉 is also causal, and therefore valid, if and

only if there exists a set of prohibited executions such that each prescient action x in S is
justified. (Feel free to ignore prohibited executions on first reading; they only come into play
on certain corner cases).

An action x in a trace 〈S,
hb→ , co〉 is prescient if and only if there exists an action y that

occurs after x in the causal order co such that either y
hb→ x, or x is a read, y is a write, and

x observe y.
All prescient actions must be justified. To justify a prescient action x in trace E, we need

to show that the actions before x in the causal order guarantee that x will be allowed:

• Let α be the prefix of x in the causal order for E

• Define, J , the justification for x, as

J = {E ′ = 〈S ′,
hb′
→ , α′β′〉 | E ′ is consistent and not prohibited

∧ length(α) = length(α′)

∧ β′ does not contain prescient actions

∧ α � α′β′}

• For x to be justified, J must be non-empty and for each E ′ = 〈S ′,
hb′
→ , α′β′〉 in J , there

must exist an action x′ in β′ such that x′ 7→ x.

1



Prohibited Alternative Executions

For the purposes of showing that a prescient action x is justified, a set of behaviors that are
not possible on a particular implementation of a JVM may be specified. This, in turn, allows
other actions to be guaranteed and performed presciently, allowing for new behaviors.

This is handled by specifying a list of alternative executions [AE1, AE2, . . . AEn], each
alternative execution AEI consisting of a prohibited execution E and a preferred alternative
execution E ′:

AEi = 〈Ei = 〈Si,
hbi→ , αiriβi〉, E ′

i = 〈S ′
i,

hb′
i→ , α′

ir
′
iβ

′
i〉〉

The intuition here is that execution AEi would not occur, because behavior AE ′
i would occur

instead. Define valid0 be the set of executions that are causal and consistent without any
use of alternative executions. Define validk to be the set of executions shown to be causal
by prohibiting the executions {E1, E2, . . . , Ek}.

For a list of alternative executions to be usable, for all k,

• E ′
k must be in validk−1,

• αk � α′
k,

• rk 7→ r′k, and

• rk must observe a different write than r′k.

2


