
JSR-133: JavaTM Memory Model and Thread
Specification

February 2, 2004, 10:00am

This document is the public review draft of the JSR-133 specification, the Java Memory
Model (JMM) and Thread Specification. This specification is intended to be part of the JSR-
176 umbrella for the Tiger (1.5) release of Java, and is intended to replace Chapter 17 of the
Java Language Specification and Chapter 8 of the Java Virtual Machine Specification. The
current draft has been written generically to apply to both, the final version will include two
different versions, essentially identical in semantics but using the appropriate terminology
for each.

The discussion and development of this specification has been unusually detailed and
technical, involving insights and advances in a number of academic topics. This discussion
is archived (and continues) at the JMM web site. The web site provides additional informa-
tion that may help in understanding how this specification was arrived at; it is located at
http://www.cs.umd.edu/~pugh/java/memoryModel.

The core semantics (Sections 4 – 7) is intended to describe semantics allowed by JVMs.
The existing chapters of the JLS and JVMS specify semantics that are at odds with opti-
mizations performed by many existing JVMs. The proposed core semantics should not cause
issues for existing JVM implementations, although they could conceivably limit potential fu-
ture optimizations and implementations.

Since the community review period, several changes have been implemented. Issues
involving the interaction of wait, notify and interrupt have been resolved. In addition,
implementations are now permitted to reject classfiles based on some of the behaviors of
final fields.

Readers are urged to examine closely the semantics on final fields (Sections 3.5 and 9).
This is the one place most likely to require JVM implementors to change their implementation
to be compliant with JSR-133. In particular, memory barriers or other techniques may be
required to ensure that other threads see the correct values for final fields of immutable
objects, even in the presence of data races.

1

Contents

1 Introduction 5
1.1 Locks . 5
1.2 Notation in examples . 6

2 Incorrectly synchronized programs can exhibit surprising behaviors 6

3 Informal Semantics 8
3.1 Visibility . 10
3.2 Ordering . 10
3.3 Atomicity . 11
3.4 Sequential Consistency . 13
3.5 Final Fields . 13

4 The Java Memory Model 15

5 Definitions 16

6 Requirements and Goals for the Java Memory Model 18
6.1 Intra-thread Semantics . 18
6.2 Correctly Synchronized Programs have Sequentially Consistent Behavior . . 18
6.3 Standard intra-thread compiler transformations are legal 18
6.4 Reordering of memory accesses and synchronization actions 18
6.5 Standard processor memory models and legal 19
6.6 Useless Synchronization can be Ignored . 19
6.7 Safety Guarantees for Incorrectly Synchronized Programs 19

7 An Incomplete Specification of the Java Memory Model 21
7.1 Happens-Before Consistency . 21
7.2 Causality . 22

8 Illustrative Test Cases and Behaviors 24
8.1 Surprising Behaviors Allowed by the Memory Model 24
8.2 Behaviors Prohibited by the Memory Model 27

9 Final Field Semantics 27
9.1 Overview of Formal Semantics of Final Fields 31
9.2 Write Protected Fields . 32

10 Word Tearing 33

11 Treatment of Double and Long Variables 34

12 Fairness 34

2

13 Wait Sets and Notification 35
13.1 Wait . 35
13.2 Notification . 36
13.3 Interruptions . 37
13.4 Interactions of Waits, Notification and Interruption 37
13.5 Sleep . 38

A Formal Definition of Final Field Semantics 38
A.1 Freezes Associated with Writes . 39
A.2 The Effect of Reads . 39

A.2.1 Freezes Seen as a Result of Reads . 39
A.2.2 Writes Visible at a Given Read . 39

A.3 Single Threaded Guarantees for Final Fields 40

B Finalization 41
B.1 Implementing Finalization . 43

3

List of Figures

1 Surprising results caused by statement reordering 6
2 Surprising results caused by forward substitution 7
3 Ordering by a happens-before ordering . 9
4 Visibility Example . 10
5 Ordering example . 11
6 Atomicity Example . 12
7 Example illustrating final fields semantics . 14
8 Without final fields or synchronization, it is possible for this code to print /usr 15
9 Useless synchronization may be removed; May observe r3 = 1 and r4 = 0 . 19
10 Behavior allowed by happens-before consistency, but not sequential consistency 22
11 Happens-Before Consistency is not sufficient 23
12 An Unacceptable Violation of Causality . 23
13 An Unexpected Reordering . 24
14 Effects of Redundant Read Elimination . 25
15 Prescient Writes Can Be Performed Early 25
16 Compilers Can Think Hard About When Actions Are Guaranteed to Occur . 26
17 A Complicated Inferrence . 26
18 Can Threads 1 and 2 See 42, if Thread 4 didn’t write 42? 27
19 Can Threads 1 and 2 See 42, if Thread 4 didn’t write to x? 27
20 When is Thread 3 guaranteed to see the correct value for final field b.f? . . 29
21 Reference links in an execution of Figure 20 29
22 Final field example where Reference to object is read twice 30
23 Sets used in the formalization of final fields 31
24 Bytes must not be overwritten by writes to adjacent bytes 33
25 Fairness . 34

4

1 Introduction

Java virtual machines support multiple threads of execution. Threads are represented in
Java by the Thread class. The only way for a user to create a thread is to create an object
of this class; each Java thread is associated with such an object. A thread will start when
the start() method is invoked on the corresponding Thread object.

The behavior of threads, particularly when not correctly synchronized, can be confus-
ing and counterintuitive. This specification describes the semantics of multithreaded Java
programs, including rules for which values may be seen by a read of shared memory that
is updated by multiple threads. As the specification is similar to the memory models for
different hardware architectures, these semantics are referred to as the Java memory model.

These semantics do not describe how a multithreaded program should be executed.
Rather, they describe only the behaviors that are allowed by multithreaded programs. Any
execution strategy that generates only allowed behaviors is an acceptable execution strategy.

1.1 Locks

Java provides multiple mechanisms for communicating between threads. The most basic
of these methods is synchronization, which is implemented using monitors. Each object in
Java is associated with a monitor, which a thread can lock or unlock. Only one thread at a
time may hold a lock on a monitor. Any other threads attempting to lock that monitor are
blocked until they can obtain a lock on that monitor.

A thread t may lock a particular monitor multiple times; each unlock reverses the effect
of one lock operation.

The Java programming language does not provide a way to perform separate lock and
unlock actions; instead, they are implicitly performed by high-level constructs that always
arrange to pair such actions correctly.

Note, however, that the Java virtual machine provides separate monitorenter and moni-
torexit instructions that implement the lock and unlock actions.

The synchronized statement computes a reference to an object; it then attempts to
perform a lock action on that object’s monitor and does not proceed further until the lock
action has successfully completed. After the lock action has been performed, the body of
the synchronized statement is executed. If execution of the body is ever completed, either
normally or abruptly, an unlock action is automatically performed on that same monitor.

A synchronized method automatically performs a lock action when it is invoked; its
body is not executed until the lock action has successfully completed. If the method is
an instance method, it locks the monitor associated with the instance for which it was
invoked (that is, the object that will be known as this during execution of the body of the
method). If the method is static, it locks the monitor associated with the Class object that
represents the class in which the method is defined. If execution of the method’s body is
ever completed, either normally or abruptly, an unlock action is automatically performed on
that same monitor.

5

Original code Valid compiler transformation
Initially, A == B == 0

Thread 1 Thread 2

1: r2 = A; 3: r1 = B

2: B = 1; 4: A = 2
May observe r2 == 2, r1 == 1

Initially, A == B == 0
Thread 1 Thread 2

B = 1; A = 2

r2 = A; r1 = B
May observe r2 == 2, r1 == 1

Figure 1: Surprising results caused by statement reordering

The Java programming language neither prevents nor requires detection of deadlock con-
ditions. Programs where threads hold (directly or indirectly) locks on multiple objects should
use conventional techniques for deadlock avoidance, creating higher-level locking primitives
that don’t deadlock, if necessary.

There is a total order over all lock and unlock actions performed by an execution of a
program.

1.2 Notation in examples

The Java memory model is not fundamentally based in the Object-Oriented nature of the
Java programming language. For concision and simplicity in our examples, we often exhibit
code fragments that could as easily be C or Pascal code fragments, without class or method
definitions, or explicit dereferencing. Most examples consist of two or more threads contain-
ing statements with access to local variables, shared global variables or instance fields of an
object.

2 Incorrectly synchronized programs can exhibit sur-

prising behaviors

The semantics of the Java programming language allow compilers and microprocessors to
perform optimizations that can interact with incorrectly synchronized code in ways that can
produce behaviors that seem paradoxical.

Consider, for example, Figure 1. This program contains local variables r1 and r2; it
also contains shared variables A and B, which are fields of an object. It may appear that
the result r2 == 2, r1 == 1 is impossible. Intuitively, either instruction 1 or instruction 3
must come first in an execution. If instruction 1 comes first, it should not be able to see the
write at instruction 4. If instruction 3 comes first, it should not be able to see the write at
instruction 2.

If some execution exhibited this behavior, then we would know that instruction 4 came
before instruction 1, which came before instruction 2, which came before instruction 3, which
came before instruction 4. This is, on the face of it, absurd.

However, compilers are allowed to reorder the instructions in each thread. If instruction 3
is made to execute after instruction 4, and instruction 1 is made to execute after instruction

6

Original code Valid compiler transformation
Initially: p == q, p.x == 0

Thread 1 Thread 2

m = p.x; p.x = 3

n = q.x;

o = p.x;
May observe m == o == 0, n == 3

Initially: p == q, p.x == 0

Thread 1 Thread 2

m = p.x; p.x = 3

n = q.x;

o = m;
May observe m == o == 0, n == 3

Figure 2: Surprising results caused by forward substitution

2, then the result r2 == 2 and r1 == 1 is perfectly reasonable.
To some programmers, this behavior may make it seem as if their code is being “broken”

by Java. However, it should be noted that this code is improperly synchronized:

• there is a write in one thread,

• a read of the same variable by another thread,

• and the write and read are not ordered by synchronization.

When this occurs, it is called a data race. When code contains a data race, counterintuitive
results are often possible.

Several mechanisms can produce this reordering: the just-in-time compiler and the pro-
cessor may rearrange code. In addition, the memory hierarchy of the architecture on which
a virtual machine is run may make it appear as if code is being reordered. For the purposes
of simplicity, we shall simply refer to anything that can reorder code as being a compiler.
Source code to bytecode transformation, which is traditionally thought of as compilation, is
outside the scope of this document.

Another example of surprising results can be seen in Figure 2. This program is incor-
rectly synchronized; it accesses shared memory without enforcing any ordering between those
accesses. One common compiler optimization involves having the value read for m reused for
o: they are both reads of p.x with no intervening write.

Now consider the case where the assignment to p.x in Thread 2 happens between the
first read of p.x and the read of q.x in Thread 1. If the compiler decides to reuse the value
of p.x for the second read, then m and o will have the value 0, and n will have the value 3.
This may seem counterintuitive as well: from the perspective of the programmer, the value
stored at p.x has changed from 0 to 3 and then changed back.

Although this behavior is surprising, it is allowed by most JVMs. However, it is forbidden
by the original Java memory model in the JLS and JVMS: this was one of the first indications
that the original JMM needed to be replaced.

7

3 Informal Semantics

A program must be correctly synchronized to avoid the kinds of counterintuitive behaviors
that can be observed when code is reordered. The use of correct synchronization does
not ensure that the overall behavior of a program is correct. However, its use does allow
a programmer to reason about the possible behaviors of a program in a simple way; the
behavior of a correctly synchronized program is much less dependent on possible reorderings.
Without correct synchronization, very strange, confusing and counterintuitive behaviors are
possible.

There are two key ideas to understanding whether a program is correctly synchronized:

Conflicting Accesses Two accesses (reads of or writes to) the same shared field or array
element are said to be conflicting if at least one of the accesses is a write.

Happens-Before Relationship Two actions can be ordered by a happens-before relation-
ship. If one action happens before another, then the first is visible to and ordered before the
second. There are a number of ways to induce a happens-before ordering in a Java program,
including:

• Each action in a thread happens before every subsequent action in that thread.

• An unlock on a monitor happens before every subsequent lock on that monitor.

• A write to a volatile field happens before every subsequent read of that volatile.

• A call to start() on a thread happens before any actions in the started thread.

• All actions in a thread happen before any other thread successfully returns from a
join() on that thread.

• If an action a happens before an action b, and b happens before an action c, then a
happens before c.

When a program contains two conflicting accesses that are not ordered by a happens-
before relationship, it is said to contain a data race. A correctly synchronized program is
one that has no data races among non-volatile variables (Section 3.4 contains a subtle but
important clarification).

An example of incorrectly synchronized code can be seen in Figure 3, which shows two
different executions of the same program, both of which contain conflicting accesses to shared
variables X and Y. In Figure 3a, the two threads lock and unlock a monitor M1 so that, in this
execution, there is a happens-before relationship between all pairs of conflicting accesses.
However, a different execution, shown in Figure 3b, shows why this program is incorrectly
synchronized; there is no happens-before ordering between the conflicting accesses to X.

If a program is not correctly synchronized, then three types of problems can appear:
visibility, ordering and atomicity.

8

Lock M1

Y = 1

Unlock M1

Lock M1

r1 = Y

Unlock M1

X = 1

r2 = X

Thread 1

Thread 2

Lock M1

Y = 1

Unlock M1

Lock M1

r1 = Y

Unlock M1

X = 1

r2 = X

Thread 1

Thread 2

(a) Correctly ordered (b) Accesses to X not correctly ordered

Figure 3: Ordering by a happens-before ordering

9

class LoopMayNeverEnd {

boolean done = false;

void work() {

while (!done) {

// do work

}

}

void stopWork() {

done = true;

}

}

Figure 4: Visibility Example

3.1 Visibility

If an action in one thread is visible to another thread, then the result of that action can
be observed by the second thread. In order to guarantee that the results of one action are
observable to a second action, then the first must happen before the second.

Consider the code in Figure 4. Now imagine that two threads are created, and that one
thread calls work(), and at some point, the other thread calls stopWork(). Because there is
no happens-before relationship between the two threads, the thread in the loop may never
see the update to done performed by the other thread. In practice, this may happen if the
compiler detects that no writes are performed to done in the first thread; the compiler may
hoist the read of done out of the loop, transforming it into an infinite loop.

To ensure that this does not happen, there must be a happens-before relationship be-
tween the two threads. In LoopMayNeverEnd, this can be achieved by declaring done to be
volatile. Conceptually, all actions on volatiles happen in a single order, and each write to
a volatile field happens before any read of that volatile that occurs later in that order.

3.2 Ordering

Ordering constraints govern the order in which multiple actions are seen to have happened.
The ability to perceive ordering constraints among actions is only guaranteed to actions that
share a happens-before relationship with them.

The code in Figure 5 shows an example of where the lack of ordering constraints can
produce surprising results. Consider what happens if threadOne() gets executed in one
thread and threadTwo() gets executed in another. Would it be possible for threadTwo()

to return the value true?
The Java memory model allows this result, illustrating a violation of the ordering that a

10

class BadlyOrdered {

boolean a = false;

boolean b = false;

void threadOne() {

a = true;

b = true;

}

boolean threadTwo() {

boolean r1 = b; // sees true

boolean r2 = a; // sees false

return r1 && !r2; // returns true

}

}

Figure 5: Ordering example

user might have expected. This code fragment is not correctly synchronized (the conflicting
accesses are not ordered by a happens-before ordering).

If ordering is not guaranteed, then the assignments to a and b in threadOne() can be
performed out of order. Compilers have substantial freedom to reorder code in the absence
of synchronization. This might result in threadTwo() being executed after the assignment
to b, but before the assignment to a.

To avoid this behavior, programmers must ensure that their code is correctly synchro-
nized.

3.3 Atomicity

If an action is (or a set of actions are) atomic, its result must be seen to happen “all at
once”, or indivisibly. Section 11 discusses some atomicity issues for Java; other than the
exceptions mentioned there, all individual read and write actions take place atomically.

Atomicity can also be enforced on a sequence of actions. A program can be free from
data races without having this form of atomicity. However, enforcing this kind of atomicity
is frequently as important to program correctness as enforcing freedom from data races.
Consider the code in Figure 6. Since all access to the shared variable balance is guarded by
synchronization, the code is free of data races.

Now assume that one thread calls deposit(5), while another calls withdraw(5); there is
an initial balance of 10. Ideally, at the end of these two calls, there would still be a balance
of 10. However, consider what would happen if:

• The deposit() method sees a value of 10 for the balance, then

11

class BrokenBankAccount {

private int balance;

synchronized int getBalance() {

return balance;

}

synchronized void setBalance(int x) throws IllegalStateException {

balance = x;

if (balance < 0) {

throw new IllegalStateException("Negative Balance");

}

}

void deposit(int x) {

int b = getBalance();

setBalance(b + x);

}

void withdraw(int x) {

int b = getBalance();

setBalance(b - x);

}

}

Figure 6: Atomicity Example

12

• The withdraw() method sees a value of 10 for the balance and withdraws 5, leaving
a balance of 5, and finally

• The deposit() method uses the balance it originally saw to calculate the new balance.

As a result of this lack of atomicity, the balance is 15 instead of 10. This effect is
often referred to as a lost update because the withdrawal is lost. A programmer writing
multi-threaded code must use synchronization carefully to avoid this sort of error. For this
example, making the deposit() and withdraw() methods synchronized will ensure that
the actions of those methods take place atomically.

3.4 Sequential Consistency

If a program has no data races, then executions of the program are sequentially consistent:
very strong guarantees are made about visibility and ordering. Within a sequentially con-
sistent execution, there is a total order over all individual actions (such as a read or a write)
which is consistent with program order. Each individual action is atomic and is immedi-
ately visible to every thread. As noted before, sequential consistency and/or freedom from
data races still allows errors arising from groups of operations that need to be perceived
atomically, as shown in Figure 6.

Having discussed sequential consistency, we can use it to provide an important clarifica-
tion regarding data races and correctly synchronized programs. A data race occurs in an
execution of a program if there are conflicting actions in that execution that are not ordered
by synchronization. A program is correctly synchronized if and only if all sequentially con-
sistent executions are free of data races. Programmers therefore only need to reason about
sequentially consistent executions to determine if their programs are correctly synchronized.

A more full and formal treatment of memory model issues for normal fields is given in
Sections 4–7.

3.5 Final Fields

Fields declared final can be initialized once, but never changed. The detailed semantics
of final fields are somewhat different from those of normal fields. In particular, compilers
have a great deal of freedom to move reads of final fields across synchronization barriers and
calls to arbitrary or unknown methods. Correspondingly, compilers are allowed to keep the
value of a final field cached in a register and not reload it from memory in situations where
a non-final field would have to be reloaded.

Final fields also allow programmers to implement thread-safe immutable objects without
synchronization. A thread-safe immutable object is seen as immutable by all threads, even
if a data race is used to pass references to the immutable object between threads. This can
provide safety guarantees against misuse of the immutable class by incorrect or malicious
code.

Final fields must be used correctly to provide a guarantee of immutability. An object is
considered to be completely initialized when its constructor finishes. A thread that can only

13

class FinalFieldExample {

final int x;

int y;

static FinalFieldExample f;

public FinalFieldExample() {

x = 3;

y = 4;

}

static void writer() {

f = new FinalFieldExample();

}

static void reader() {

if (f != null) {

int i = f.x;

int j = f.y;

}

}

}

Figure 7: Example illustrating final fields semantics

see a reference to an object after that object has been completely initialized is guaranteed
to see the correctly initialized values for that object’s final fields.

The usage model for final fields is a simple one. Set the final fields for an object in that
object’s constructor. Do not write a reference to the object being constructed in a place
where another thread can see it before the object’s constructor is finished. If this is followed,
then when the object is seen by another thread, that thread will always see the correctly
constructed version of that object’s final fields. It will also see versions of any object or array
referenced by those final fields that are at least as up-to-date as the final fields are.

Figure 7 gives an example that demonstrates how final fields compare to normal fields.
The class FinalFieldExample has a final int field x and a non-final int field y. One thread
might execute the method writer(), and another might execute the method reader().
Because writer() writes f after the object’s constructor finishes, the reader() will be
guaranteed to see the properly initialized value for f.x: it will read the value 3. However,
f.y is not final; the reader() method is therefore not guaranteed to see the value 4 for it.

Final fields are designed to allow for necessary security guarantees. Consider the code
in Figure 8. String objects are intended to be immutable and string operations do not
perform synchronization. While the String implementation does not have any data races,
other code could have data races involving the use of Strings, and the JLS makes weak

14

Thread 1 Thread 2

Global.s = "/tmp/usr".substring(4);

String myS = Global.s;

if (myS.equals("/tmp"))

System.out.println(myS);

Figure 8: Without final fields or synchronization, it is possible for this code to print /usr

guarantees for programs that have data races. In particular, if the fields of the String class
were not final, then it would be possible (although unlikely in the extreme) that thread 2
could initially see the default value of 0 for the offset of the string object, allowing it to
compare as equal to "/tmp". A later operation on the String object might see the correct
offset of 4, so that the String object is perceived as being "/usr". Many security features of
the Java programming language depend upon Strings being perceived as truly immutable,
even if malicious code is using data races to pass String references between threads.

This is only an overview of the semantics of final fields. For a more detailed discussion,
which includes several cases not mentioned here, consult Section 9.

4 The Java Memory Model

A memory model describes, given a program and an execution trace of that program, whether
the execution trace is a legal execution of the program. Java’s memory model works by
examining each read in an execution trace and checking that the write observed by that read
is valid.

A high level, informal overview of the memory model shows it to be a set of rules for
when writes by one thread are visible to another thread. Informally, a read r can see the
value of any write w such that w does not occur after r and w is not seen to be overwritten
by another write w′ (from r’s perspective).

When we use the term “read” in this memory model, we are only referring to values
returned from fields or array elements. There are other actions performed by a virtual
machine, including reads of array lengths, executions of checked casts, and invocations of
virtual methods, that are not affected directly by the memory model or data races. Although
these may be implemented with reads at the machine level, these actions cannot throw an
exception or otherwise cause the VM to misbehave (e.g., crash the VM, allow access outside
an array or report the wrong array length).

The memory semantics determine what values can be read at every point in the program.
The actions of each thread in isolation must behave as governed by the semantics of that
thread, with the exception that the values seen by each read are determined by the mem-
ory model. When we refer to this, we say that the program obeys intra-thread semantics.
However, when threads interact, reads can return values written by writes from different
threads.

15

5 Definitions

Shared variables/Heap memory Memory that can be shared between threads is called
shared or heap memory. All instance fields, static fields and array elements are stored in
heap memory. We use the term variable to refer to both fields and array elements. Variables
local to a method are never shared between threads.

Inter-thread Actions An inter-thread action is an action performed by a thread that
could be detected by or be directly influenced by another thread. Inter-thread actions
include reads and writes of shared variables and synchronization actions, such as locking
or unlocking a monitor, reading or writing a shared variable, or starting a thread.

We do not need to concern ourselves with intra-thread actions (e.g., adding two local
variables and storing the result in a third local variable). As previously mentioned, all
threads need to obey the correct intra-thread semantics for Java programs

Every inter-thread action is associated with information about the execution of that
action; we refer to that information as annotation. All actions are annotated with the
thread in which they occur and the program order in which they occur within that thread.
Some additional annotations include:

write The variable written to and the value written.
read The variable read and the write seen (from this, we can

determine the value seen).
lock The monitor which is locked.

unlock The monitor which is unlocked.

For brevity’s sake, we usually refer to inter-thread actions as simply actions.

Program Order Among all the inter-thread actions performed by each thread t, the
program order of t is a total order that reflects the order in which these actions would be
performed according to the intra-thread semantics of t.

Intra-thread semantics Intra-thread semantics are the standard semantics for single
threaded programs, and allow the complete prediction of the behavior of a thread based
on the values seen by read actions within the thread. To determine if the actions of thread t
in an execution are legal, we simply evaluate the implementation of thread t as it would be
performed in a single threaded context, as defined in the remainder of the Java Language
Specification.

Each time the evaluation of thread t generates an inter-thread action, it must match the
inter-thread action a of t that comes next in program order. If a is a read, then further
evaluation of t uses the value seen by a.

Simply put, intra-thread semantics are what result from the execution of a thread in
isolation; when values are read from the heap, they are determined by the memory model.

16

Synchronization Actions All inter-thread actions other than reads and writes of normal
and final variables are synchronization actions. These include locks, unlocks, reads of and
writes to volatile variables, actions that start a thread, and actions that detect that a thread
is done.

Synchronization Order In any execution, there is a synchronization order which is a
total order over all of the synchronization actions of that execution. For each thread t, the
synchronization order of the synchronization actions in t is consistent with the program order
of t.

Happens-Before Edges If we have two actions x and y, we use x
hb→ y to mean that x

happens before y. If x and y are actions of the same thread and x comes before y in program

order, then x
hb→ y.

Synchronization actions also induce happens-before edges:

• There is a happens-before edge from an unlock action on monitor m to all subsequent
lock actions on m (where subsequent is defined according to the synchronization order).

• There is a happens-before edge from a write to a volatile variable v to all subsequent
reads of v by any thread (where subsequent is defined according to the synchronization
order).

• There is a happens-before edge from an action that starts a thread to the first action
in the thread it starts.

• There is a happens-before edge between the final action in a thread T1 and an action
in another thread T2 that detects that T1 has terminated. T2 may accomplish this by
calling T1.isAlive() or doing a join action on T1.

In addition, we have two other rules for generating happens-before edges.

• There is a happens-before edge from the write of the default value (zero, false or null)
of each variable to the first action in every thread.

• Happens-before is transitively closed. In other words, if x
hb→ y and y

hb→ z, then

x
hb→ z.

It should be noted that the presence of a happens-before relationship between two actions
does not necessarily imply that they have to take place in that order in an implementation.
However, the fact that they took place out of order should not be detectable. If it cannot be
caught, it is not illegal. For example, the write of a default value to every field of an object
constructed by a thread need not occur before the beginning of that thread, as long as no
read ever observes that fact.

The wait methods of class Object have lock and unlock actions associated with them;
their happens-before relationships are defined by these associated actions. These methods
are described further in Section 13.

17

6 Requirements and Goals for the Java Memory Model

Before going into details about the properties of the Java Memory Model, it is first useful to
detail the requirements and goals for the Java memory model. It is important to understand
that this is not the specification of the Java Memory Model, but merely properties that the
Java Memory Model will have.

6.1 Intra-thread Semantics

These are the standard semantics for a single thread’s execution. They are defined more
fully in Section 5.

6.2 Correctly Synchronized Programs have Sequentially Consis-
tent Behavior

It is important for most programs in Java to have relatively straightforward semantics. As
discussed in Section 3.4, if code is written so that it has no data races, it will behave as if
it is sequentially consistent; most of the unusual and counterintuitive behaviors discussed in
this document will not appear if programmers adhere to this model. This behavior when
programs are correctly synchronized is a property that has long been advocated and accepted
for memory models.

6.3 Standard intra-thread compiler transformations are legal

Many compiler transformations have been developed over the years; these include the re-
ordering of non-conflicting memory accesses and the storage of values in registers. It is a goal
of the Java memory model for all such transformations to be legal. Of course, this blanket
proclamation is true only for transformations that do not interact with thread semantics. For
example, the reordering of a normal memory access and a volatile memory access is not legal
in general, although it is legal in a number of more specific cases. Similarly, transformations
may not be universally allowable if they depend upon analyzing what values can be seen by
reads of variables shared with other threads.

6.4 Reordering of memory accesses and synchronization actions

Some operations (e.g., writing a volatile variable, unlocking a monitor, starting a thread)
have release semantics: they allow the actions that happen before the release to be visible
to and ordered before following actions. Other operations (e.g., reading a volatile variable,
locking a monitor) have acquire semantics: they allow actions in a different thread to see
and be ordered after earlier actions.

It is generally legal to reorder a normal memory access and a following acquire action, or
a release action and a following normal memory access. This has been referred to as “roach

18

Initially, A == B == 0
Thread 1 Thread 2

r1 = new Object(); r2 = new Object();

synchronized (r1) { synchronized (r2) {
A = 1; r3 = B;

} }
synchronized (r1) { synchronized (r2) {

B = 1; r4 = A;

} }

Figure 9: Useless synchronization may be removed; May observe r3 = 1 and r4 = 0

motel” semantics: variable accesses can be moved into a synchronized block, but cannot, in
general, move out.

6.5 Standard processor memory models and legal

Different processor architectures (e.g., PowerPC, IA64, IA32, and SPARC) have formally
defined memory models (some, such as SPARC, have more than one). Although the proces-
sors vary in terms of how actions such as volatile accesses and synchronization need to be
implemented, the standard processor architectures can all directly implement non-volatile,
non-synchronization actions without any additional memory barriers. Note, however, that
some processor architectures (specifically, Alpha and DSM architectures) may have more
implementation issues for correct handling of accesses to final fields.

6.6 Useless Synchronization can be Ignored

A synchronization action is useless in a number of situations, including lock acquisition on
thread-local objects or the reacquisition of a lock on an object on which a thread already has
a lock. A number of papers have been published showing compiler analyses that can detect
and remove useless synchronization. The old JMM did not allow useless synchronization to
be completely removed; the new JMM does.

For example, in Figure 9, the objects referenced by r1 and r2 are thread local and can
be removed. After the synchronization is removed, simple reordering transformations could
result in the behavior r3 == 1 and r4 = 0.

6.7 Safety Guarantees for Incorrectly Synchronized Programs

As mentioned, a number of academic papers on memory models have noted that a memory
model should guarantee sequentially consistent semantics for correctly synchronized pro-
grams. However, those papers did not provide any semantics or guarantees for incorrectly

19

synchronized programs. The Java memory model needs to provide such guarantees for two
reasons:

• Errors in general, and synchronization errors in particular, occur all too often in real
programs. While it is preferable to avoid errors altogether, if one occurs, its effects
should be as limited and localized as possible.

• Languages such as C and C++ do not define what happens in badly written code;
for example, the behavior of a program when it writes outside the bounds of an array
is undefined. As a result, programs written in those languages are subject to attacks
that can violate important security guarantees. Since some attacks of this kind use
synchronization errors to penetrate security, it is important that we provide some
semantics and safety guarantees when there are synchronization errors.

Although there is no complete list of the safety guarantees needed by incorrectly syn-
chronized programs, we can still provide those that we discuss here:

No out-of-thin-air reads Each read of a variable must see a value written by a write to
that variable.

Type Safety Incorrectly synchronized programs are still bound by Java’s type safety guar-
antees. This is guaranteed by the fact that the programs must obey intra-thread semantics
(as described in Section 5) and that there cannot be any out-of-thin-air reads.

Non-intrusive reads If you are given a correctly synchronized program, and then add
additional incorrectly synchronized reads to program in a way that does not affect the be-
havior of the program, the program is no longer correctly synchronized. This can happen,
for example, if the reads are for the purposes of debugging. Regardless of this, the program
should still have sequentially consistent semantics, other than for the values seen by the
added reads. While this case is a special case of limited applicability, it captures an impor-
tant property that pushes the Java memory model in a desirable direction. Note that the
semantics of final fields do not have the non-intrusive reads property.

Causality This is, without a doubt, the hardest concept to understand and formalize. We
need to forbid behaviors such as that shown in Figure 12, in which the value 42 appears
out of thin air, which each thread justifying its write of 42 on having seen the other thread
wrote 42. While we prohibit this example, there are a number of other examples that seem
to be violations of causality, but can, in fact, arise through combinations of standard and
desirable compiler optimizations.

20

7 An Incomplete Specification of the Java Memory

Model

We previously described sequential consistency (Section 3.4), and showed that it is too
strict for use as the Java memory model since it forbids standard compiler and processor
optimizations. We will now present a description of the Java memory model. This de-
scription captures many of the important features of the Java memory model. One part
of the description is incomplete and informal (Section 7.2, having to do with causality).
The expert group continues to work on the best way to describe and present this mate-
rial formally, and this additional work is described on the Java Memory Model web page
(http://www.cs.umd.edu/~pugh/java/memoryModel) and mailing list (accessible from that
web page).

The expert group felt that it was unreasonable to expect most people examining the
Java memory model for the first time during the JSR-133 public review to invest the time
to understand fully the formal specifications of causality. Instead, in this document, the
issues related to causality are explained informally, and through requirements and test cases.
Those familiar with formal specifications of memory models are encouraged to also examine
additional information on the Java memory model web page and mailing list. A formal
specification will be part of the final specification.

In sequential consistency, all actions occur in a total order (the execution order) that is
consistent with program order, and each read r of a variable v sees the value written by the
write w to v such that:

• w comes before r in the execution order, and

• there is no other write w′ such that w comes before w′ and w′ comes before r in the
execution order.

7.1 Happens-Before Consistency

We now relax the rules by which writes can be seen by a read. We retain the idea that there
is a total order over all actions that is consistent with the program order. Based on this
order, we compute a partial order called the happens-before order, as described in Section 3.

We say that a read r of a variable v is allowed to observe a write w to v if, in the
happens-before partial order of the execution trace:

• r is not ordered before w (i.e., it is not the case that r
hb→ w), and

• there is no intervening write w′ to v (i.e., no write w′ to v such that w
hb→ w′ hb→ r).

Informally, a read r is allowed to see the result of a write w if there is no happens-before
ordering to prevent that read. An execution trace is happens-before consistent if all of the
reads in the execution trace are allowed.

21

Initially, A == B == 0
Thread 1 Thread 2

1: B = 1; 3: A = 2

2: r2 = A; 4: r1 = B
May observe r2 == 0, r1 == 0

Figure 10: Behavior allowed by happens-before consistency, but not sequential consistency

An execution is happens-before consistent if each read sees a write that it is allowed
to see by the happens-before ordering. For example, the behavior shown in Figure 10 is
happens-before consistent, since there is an execution order that allows each read to see the
appropriate write. In this case, since there is no synchronization, each read can see either
the write of the initial value or the write by the other thread. One such execution order is

1: B = 1

3: A = 2

2: r2 = A; // sees initial write of 0

4: r1 = B // sees initial write of 0

Similarly, the behavior shown in Figure 1 is happens-before consistent, since there is an
execution order that allows each read to see the appropriate write. One such execution order
is

1: r2 = A; // sees write of A = 2

3: r1 = B // sees write of B = 1

2: B = 1

4: A = 2

In this execution, the reads see writes that occur later in the execution order. This
may seem counterintuitive, but is allowed by happens-before consistency. It turns out that
allowing reads to see later writes can sometimes produce unacceptable behaviors.

7.2 Causality

Happens-Before Consistency is a necessary, but not sufficient, set of constraints. Merely
enforcing Happens-Before Consistency would allow for unacceptable behaviors – those that
violate common, established properties of Java programs, for example, that values never
appear “out of thin air”.

For example, the code shown in Figure 11 is correctly synchronized. This may seem
surprising, since it doesn’t perform any synchronization actions. Remember, however, that
a program is correctly synchronized if, when it is executed in a sequentially consistent man-
ner, there are no data races among its non-volatile variables. If this code is executed in
a sequentially consistent way, each action will occur in program order, and neither of the
writes will occur. Since no writes occur, there can be no data races: the program is correctly
synchronized.

22

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

if (r1 != 0) if (r2 != 0)

y = 1; x = 1;
Correctly synchronized, so r1 == r2 == 0 is the only legal behavior

Figure 11: Happens-Before Consistency is not sufficient

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

y = r1; x = r2;
Incorrectly Synchronized: But r1 == r2 == 42 Still Cannot Happen

Figure 12: An Unacceptable Violation of Causality

Since this program is correctly synchronized, the only behaviors we can allow are se-
quentially consistent behaviors. However, there is an execution of this program that is
happens-before consistent, but not sequentially consistent:

r1 = x; // sees write of x = 1

y = 1;

r2 = y; // sees write of y = 1

x = 1;

This result is happens-before consistent: there is no happens-before relationship that
prevents it from occurring. However, it is clearly not acceptable: there is no sequentially
consistent execution that would result in this behavior. The fact that we allow a read to see
a write that comes later in the execution order can sometimes thus result in unacceptable
behaviors.

Although allowing reads to see writes that come later in the execution order is sometimes
undesirable in this model, it is also sometimes necessary. Consider Figure 1. Since the reads
come first in each thread, the very first action in the execution order must be a read. If that
read can’t see a write that occurs later, then it can’t see any value other than the initial
value for the variable it reads. This is clearly not reflective of all behaviors.

We refer to the issue of when reads can see future writes is referred to as causality.
Read operations do not actually use crystal balls or time machines to foretell the future to
determine which value they can see. This issue actually arises because programs are often not
actually executed in the order they are written. Compilers and architectures often reorder
operations or perform them in parallel. For purposes of this document, however, we will talk
about the problem in terms of reads seeing writes that occur later in the execution order.

Even when a program is incorrectly synchronized, there are certain behaviors that violate
causality in a way that is considered unacceptable. An example of this is given in Figure 12;

23

Initially, x = 0
Thread 1 Thread 2

r1 = x; r2 = x;

x = 1; x = 2;
r1 == 2 and r2 == 1 is a legal behavior

Figure 13: An Unexpected Reordering

the behavior r1 == r2 == 42 is happens-before consistent, but unacceptable for a Java
program.

Examples such as these reveal that the specification must sometimes allow and sometimes
prohibit a read to see a write that occurs later (perhaps representing the fact that the write is
actually performed early). However, the details are complicated and can be controversial, in
part because they rely on judgments about acceptability that are not covered by traditional
program semantics. There are, however, two uncontroversial properties that are easy to
specify:

• If a write is absolutely certain to be performed in all executions, it may be seen early
(thus, the behavior in Figure 1 is legal).

• If a write cannot occur unless it is seen by an earlier read, it cannot be seen by an
earlier read (thus, the behavior in Figures 11 and 12 are impossible).

This leaves a number of situations unspecified. Rather than giving a formal description
of the Java memory model, we describe it through our general requirements (Section 6) and
through a number of examples (Section 8).

8 Illustrative Test Cases and Behaviors

In this section, we give a number of examples of behaviors that are either allowed or pro-
hibited by the Java memory model. Most of these are either examples that show violations
of our informal notion of causality, and thus are prohibited, or examples that seem to be a
violation of causality but can result from standard compiler optimizations, and are in fact
allowed.

The example in Figure 12 provides an example of a result that is clearly unacceptable.
If, for example, the value that was being produced “out of thin air” was a reference to an
object which the thread was not supposed to have, then such a transformation could be a
serious security violation. There are no reasonable compiler transformations that produce
this result.

8.1 Surprising Behaviors Allowed by the Memory Model

Figure 13 shows a small but interesting example. The behavior r1 == 2 and r2 == 1 is a
legal behavior, although it may be difficult to see how it could occur. A compiler would not

24

Before compiler transformation After compiler transformation

Initially, a = 0, b = 1

Thread 1 Thread 2

1: r1 = a; 5: r3 = b;

2: r2 = a; 6: a = r3;

3: if (r1 == r2)

4: b = 2;

Is r1 == r2 == r3 == 2 possible?

Initially, a = 0, b = 1

Thread 1 Thread 2

4: b = 2; 5: r3 = b;

1: r1 = a; 6: a = r3;

2: j = r1;

3: if (true) ;

r1 == r2 == r3 == 2

is sequentially consistent

Figure 14: Effects of Redundant Read Elimination

Initially, a = b = 0
Thread 1 Thread 2

r1 = a; r2 = b;

if (r1 == 1) if (r2 == 1)

b = 1; a = 1;

else

a = 1;
r1 == r2 == 1 is legal behavior

Figure 15: Prescient Writes Can Be Performed Early

reorder the statements in each thread; this code must never result in r1 == 1 or r2 == 2.
However, the behavior r1 == 2 and r2 == 1 might be allowed by a processor architecture
that performs the writes early, but in a way that they were not visible to local reads that came
before them in program order. This behavior, while surprising, is a common optimization
that is allowed by the Java memory model.

The behavior shown in Figure 14 is allowed. The compiler should be allowed to

• eliminate the redundant read of a, replacing r2 = a with r2 = r1, then

• determine that the expression r1 == r2 is always true, eliminating the conditional
branch 3, and finally

• move the write 4: b = 2 early.

Here, the assignment 4: b = 2 is always guaranteed to happen, because the reads of
a always return the same value. Without this information, the assignment seems to cause
itself to happen. Thus, simple compiler optimizations can lead to an apparent causal loop.
Note that intra-thread semantics and out-of-thin-air safety guarantee that if r1 6= r2, then
Thread 1 will not write to b, r3 == 1 and either r1 == r2 == 0 or r1 == r2 == 1.

Another unusual example can be seen in Figure 15. This behavior would seem impossible,
because thread 2 should not be able to decide which assignment statement it will execute

25

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r3 = y;

r2 = 1 + r1*r1 - r2; x = r3;

y = r2;
r1 == r2 == r3 == 1 is legal behavior

Figure 16: Compilers Can Think Hard About When Actions Are Guaranteed to Occur

Initially, x == y == z == 0

Thread 1 Thread 2

r3 = x; r2 = y;

if (r3 == 0) x = r2;

x = 42;

r1 = x;

y = r1;
r1 == r2 == r3 == 42 is a legal behavior

Figure 17: A Complicated Inferrence

until after it has read b. But if r2 == 1, then that suggests that the write a = 1 was
performed before the read r1 = a.

This behavior can result from a compiler detecting that in every execution some statement
will perform a = 1. Thus, the action may be performed early, even though we don’t know
in advance which statement would have caused the action to occur. This may cause r1 to
see 1, b to be written to by Thread 1, Thread 2 to see b == 1, and a to be written to in a
different place from the one it was originally.

Figure 16 shows another seemingly impossible behavior. In order for r1 == r2 == 1,
Thread 1 would seemingly need to write 1 to y before reading x. However, it appears as if
Thread 1 can’t know what value r2 will be until after x is read.

In fact, it is easy for the compiler to perform an analysis that shows that x is guaranteed
to be either 0 or 1. The write to y is therefore not dependent on the value seen for x.
Knowing that, the compiler can determine that the quadratic equation always returns 1,
resulting in Thread 1’s always writing 1 to y. Thread 1 may, therefore, write 1 to y before
reading x.

Now consider the code in Figure 17. A compiler could determine that the only values
ever assigned to x are 0 and 42. From that, the compiler could deduce that, at the point
where we execute r1 = x, either we had just performed a write of 42 to x, or we had just
read x and seen the value 42. In either case, it would be legal for a read of x to see the value
42. It could then change r1 = x to r1 = 42; this would allow y = r1 to be transformed to
y = 42 and performed earlier, resulting in the behavior in question.

26

Initially, x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x; r2 = y; z = 42; r0 = z;

y = r1; x = r2; x = r0;
Is r0 == 0, r1 == r2 == 42 legal behavior?

Figure 18: Can Threads 1 and 2 See 42, if Thread 4 didn’t write 42?

Initially, x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x; r2 = y; z = 1; r0 = z;

if (r1 != 0) if (r2 != 0) if (r0 == 1)

y = r1; x = r2; x = 42;
Is r0 == 0, r1 == r2 == 42 legal behavior?

Figure 19: Can Threads 1 and 2 See 42, if Thread 4 didn’t write to x?

8.2 Behaviors Prohibited by the Memory Model

The examples in Figures 18 and 19 are similar to the example in Figure 12, with one major
distinction. In Figure 12, the value 42 could never be written to x in any sequentially
consistent execution. In the examples in Figures 18 and Figures 19, 42 is only sometimes
written to x. Could it be legal for the reads in Threads 1 and 2 to see the value 42 even if
Thread 4 does not write that value?

This is a potential security issue; if 42 represents a reference to an object that Thread 4
controls, but does not want Threads 1 and 2 to see without Thread 4’s first seeing 1 for z,
then Threads 1 and 2 can be said to manufacture the reference out of thin air.

This sort of behavior is not known to result from any combination of known reasonable
and desirable optimizations. However, there is also some question as to whether this reflects
a real and serious security requirement. In Java, the semantics usually side with the prin-
ciple of having safe, simple and unsurprising semantics when possible, and thus the public
review draft of the Java Memory Model prohibits the behaviors shown in Figures 18 and 19.
However, additional feedback on this kind of behavior, and whether it should be allowed or
prohibited, is solicited as part of the JSR-133 public review.

9 Final Field Semantics

Final fields were discussed briefly in Section 3.5. Such fields are initialized once and not
changed. This annotation can be used to pass immutable objects between threads without
synchronization.

Final field semantics are based around several competing goals:

• The value of a final field is not intended to change. The compiler should not have
to reload a final field because a lock was obtained, a volatile variable was read, or an

27

unknown method was invoked. In fact, the compiler is allowed to hoist reads within
thread t of a final field f of an object X to immediately after the very first read of a
reference to X by t; the thread need never reload that field.

• Objects that have only final fields and are not made visible to other threads during
construction should be perceived as immutable even if references to those objects are
passed between threads via data races.

– Storing a reference to an object X into the heap during construction of X does
not necessarily violate this requirement. For example, synchronization could en-
sure that no other thread could load the reference to X during construction.
Alternatively, during construction of X a reference to X could be stored into an-
other object Y ; if no references to Y are made visible to other threads until after
construction of X is complete, then final field guarantees still hold.

• Making a field f final should impose minimal compiler/architectural cost when reading
f .

The use of final fields adds constraints on which writes are considered ordered before
which reads, for the purposes of determining if an execution is consistent.

Informally, the semantics for final fields are as follows. Assume a freeze action on a final
field f of an object X takes place when the constructor for X in which f is written exits.

Let F refer to the freeze action on final field f of object X by thread t1, and let R refer
to a read of X.f in another thread t2. When is R guaranteed to see the correctly initialized
value of X.f?

For the moment, assume each thread only reads a single reference to each object. For
any object X, thread t2 must have obtained its address via a chain of the following reference
links:

a. Thread ti wrote a reference to an object Y which was read by another thread tj

b. Thread ti read a reference to an object Y , and then read a field of Y to see a reference
to another object Z

c. Thread ti read a reference to an object Y , and later wrote a reference to Y .

If there is an action a in this chain such that F
hb→ a, then R is correctly ordered with

respect to F , and the thread will observe the correctly constructed value of the final field.
If there is no such action, then R does not get that guarantee.

Consider the example shown in Figure 20. An execution of this code is shown in Figure
21, with the reference links shown and labeled. Two reference link chains are shown. In order
for the read of b.f to be correctly ordered with respect to the construction of the object
referenced by b, there must exist some action on either chain that is forced by synchronization
to occur after construction of that object.

28

Thread 1 Thread 2 Thread 3

Foo f = new Foo(); Foo f = G.x; Bar b = G.y;

Bar b = new Bar() Bar b = f.b; int i = b.f;

f.b = b; G.y = b;

G.x = f;

Figure 20: When is Thread 3 guaranteed to see the correct value for final field b.f?

f.b = b

G.x = f

Foo f = G.x

Bar b = f.b

Bar b = G.y

int i = b.f

G.y = b

a b

a

c

a

Thread 1 Thread 2 Thread 3

Figure 21: Reference links in an execution of Figure 20

29

f is a final field; its default value is 0

Thread 1 Thread 2 Thread 3

o.f = 42; r = p; s = q;

p = o; i = r.f; j = s.f;

freeze o.f; t = q;

q = o; if (t == r)

k = t.f;

We assume r and s do not see the value null. i and k can be 0 or 42, and j must be 42.

Figure 22: Final field example where Reference to object is read twice

In the more general case, thread ti may read multiple references to an object Y from
different locations. To make the guarantees associated with final fields, it must be possible

to find an action a in the chain such that F
hb→ a no matter which read of Y is selected.

An example of this situation can be seen in Figure 22. An object o is constructed in
Thread 1 and read by Threads 2 and 3. The reference chain for the read of t.f in Thread 2
must be traceable through all reads by Thread 2 of a reference to o. On the chain that goes
through the global variable b, there is no action that is ordered after the freeze operation,
so the read of t.f is not correctly ordered with regards to the freeze operation. Therefore,
k is not guaranteed to see the correctly constructed value for the final field.

The fact that k does not receive this guarantee reflects legal transformations by the
compiler. A compiler can analyze this code and determine that r.f and t.f are reads of the
same final field of the same object. Since final fields are not supposed to change, it could
replace k = t.f with k = i in Thread 2.

All possible reference chains for the read of s.f in Thread 3 include the write to q in
Thread 1. The read is therefore correctly ordered with respect to the freeze operation, and
guaranteed to see the correct value.

If a read R of a final field f in thread t2 is correctly ordered with respect to a freeze
F in thread t1, then the read is guaranteed to see the value of f set before the freeze F .
Furthermore, in thread 2, when reading elements of any object reached in thread 2 only by
following a reference loaded from f , those reads are guaranteed to occur after all writes w

such that w
hb→ F .

A final field may only be written by bytecode once. A classfile may be rejected in any
one of the following situations:

• it contains a blank final class variable that is not definitely assigned by a static initial-
izer of the class in which it is declared, or

• it contains a blank final instance variable which is not definitely assigned by some
constructor of the class in which it is declared, or

30

Notation Description
G The set of freezes associated with a write of an address
freezeBeforeRead(r) The freezes seen at a read r; if r sees address a, it is used

to calculate the set freezesBeforeDereference(t, a)
freezesBeforeDereference(t, a) The freezes seen before any dereference of a in t. It con-

sists of only the freezes seen at every read in the thread
in isolation.

writesBeforeRead(r) The writes seen at a read r; if r sees address a, it is used
to calculate the set writesBeforeDereference(t, o)

writesBeforeDereference(t, o) The writes seen before every dereference of o in t. It
consists of only the writes seen at every read in the thread
in isolation.

Figure 23: Sets used in the formalization of final fields

• it contains a final variable that is assigned to even if it is not definitely unassigned
immediately prior to the assignment

Other techniques, such as deserialization, may cause a final field to be modified after
the end of the enclosing object’s constructor. There must be a freeze of the final field after
each such write. If a reference to an object is shared with other threads between the initial
construction of an object and when deserialization changes the final fields of the object,
most of the guarantees for final fields of that object can go kerflooey. For details, consult
the formal semantics.

9.1 Overview of Formal Semantics of Final Fields

The following is a discussion of the formal semantics of final fields. The semantics themselves
can be found in Appendix A. Figure 23 contains a table of all of the sets mentioned below,
and their definition.

Each field o.x has an enclosing object o, and a set of objects that are reachable by
following a chain of dereferences from it. A final field may be written to multiple times:
once by bytecode in a constructor, and otherwise by VM actions. After the constructor for
the enclosing object, a final field is explicitly frozen. After the other writes, the VM may
optionally choose to freeze the final field.

For the purposes of this discussion, freeze can be considered a noun: a freeze can be
copied from thread to thread, and the set of freezes visible to a given thread for a field are
the ones that provide the guarantees for that field. A set of freezes G are written at every
write of an enclosing object, and a set of freezes freezesBeforeDereference(t, a) are observed
at every read of an enclosing object at address a in thread t.

The set G of freezes that are written at every write w of an enclosing object at address
a include:

• All the freezes that happen before w, and

31

• The set freezesBeforeDereference(t, a) consisting of all the freezes that were observed
by that thread’s read of a.

Each reference a to an object may be stored in fields of several different objects. Each
read r in thread t of one of these fields has a set freezeBeforeRead(r) associated with it. This
set contains:

• All the freezes that happen before r

• The set G (defined above) that was associated with the write of a, and

• The set of freezes freezesBeforeDereference(t, b) associated with a’s enclosing object b
(the last object on the dereference chain before a).

The set freezeBeforeRead(r) that is associated with a single read is, however, not the
set that determines what freezes are seen when the field is accessed. This set is called
freezesBeforeDereference(t, a), and is the intersection of all of the sets freezeBeforeRead(r)
whose read saw the address a. The set freezesBeforeDereference(t, a) therefore only contains
those freezes that are associated with all of the reads of a given field.

Once we have the set freezesBeforeDereference(t, a) for a given address, we must deter-
mine what writes we are guaranteed to see; this is the set writesBeforeDereference(t, a).

To calculate writesBeforeDereference(t, a), we look at all of the places a thread can read
a reference to an object. Each of these reads r has a set writesBeforeRead(r) associated with
it.

• If the reference to the object was a non-final field, then the writesBeforeRead(r) set is
the same as the writesBeforeDereference(t, o) set for the enclosing object.

• If the reference to the object was a final field, then the writesBeforeRead(r) set contains:

– The writesBeforeDereference(t, o) set for the enclosing object.

– The set of writes that happen before each freeze of the enclosing object that is
present in the set freezesBeforeDereference(t, o) for the object.

The set writesBeforeDereference(t, a) is the intersection of all of the writesBeforeRead(r)
sets whose reads saw a ; this gives us only those writes that are associated with all of the
reads of a given field.

9.2 Write Protected Fields

Normally, final static fields may not be modified. However System.in, System.out, and
System.err are final static fields that, for legacy reasons, must be allowed to be changed by
the methods System.setIn(), System.setOut() and System.setErr(). We refer to these
fields as being write-protected to distinguish them from ordinary final fields.

32

public class WordTearing extends Thread {

static final int LENGTH = 8;

static final int ITERS = 10000;

static byte[] counts = new byte[LENGTH];

static Thread[] threads = new Thread[LENGTH];

final int id;

WordTearing(int i) { id = i; }

public void run() {

for (; counts[id] < ITERS; counts[id]++);

if (counts[id] != ITERS) {

System.err.println("Word-Tearing found: " +

"counts["+id+"] = " +

counts[id]);

System.exit(1);

}

}

public static void main(String[] args) {

for (int i = 0; i < LENGTH; ++i)

(threads[i] = new WordTearing(i)).start();

}

}

Figure 24: Bytes must not be overwritten by writes to adjacent bytes

The compiler needs to treat these fields differently from other final fields. For example,
a read of an ordinary final field is “immune” to synchronization: the barrier involved in a
lock or volatile read does not have to affect what value is read from a final field. Since the
value of write-protected fields may be seen to change, synchronization events should have an
effect on them.

Therefore, the semantics dictate that these fields be treated as normal fields that cannot
be changed by user code, unless that user code is in the System class.

10 Word Tearing

One implementation consideration for Java virtual machines is that every field and array
element is considered distinct; updates to one field or element do not interact with reads
or updates of any other field or element. In particular, two threads that update adjacent
elements of a byte array must not interfere or interact and do not need synchronization to

33

Thread 1 Thread 2

while (true) synchronized (o) {
synchronized (o) { // does nothing.

// does not call }
// Thread.yield(),

// Thread.sleep()

}

Figure 25: Fairness

ensure sequential consistency.
Some processors (notably early Alphas) do not provide the ability to write to a single

byte. It would be illegal to implement byte array updates on such a processor by simply
reading an entire word, updating the appropriate byte, and then writing the entire word
back to memory. This problem is sometimes known as word tearing, and on processors
that cannot easily update a single byte in isolation some other approach will be required.
Figure 24 shows a test case to detect word tearing.

11 Treatment of Double and Long Variables

Some Java implementations may find it convenient to divide a single write action on a 64-bit
long or double value into two write actions on adjacent 32 bit values. For efficiency’s sake,
this behavior is implementation specific; Java virtual machines are free to perform writes to
long and double values atomically or in two parts.

For the purposes of this memory model, a single write to a non-volatile long or double
value is treated as two separate writes: one to each 32-bit half. This can result in a situation
where a thread sees the first 32 bits of a 64 bit value from one write, and the second 32
bits from another write. Write and reads of volatile long and double values are always
atomic. Writes to and reads of references are always atomic, regardless of whether they are
implemented as 32 or 64 bit values.

VM implementors are encouraged to avoid splitting their 64-bit values where possible.
Programmers are encouraged to declare shared 64-bit values as volatile or synchronize their
programs correctly to avoid this.

12 Fairness

Without a fairness guarantee for virtual machines, it is possible for a thread that is capable
of making progress never to do so. One example of a such a guarantee would state that if
a thread is infinitely often allowed to make progress, it will eventually do so. Java has no
official fairness guarantee, although, in practice, most JVMs do provide it to some extent.

34

An example of how this issue can impact a program can be seen in Figure 25. Without
a fairness guarantee, it is perfectly legal for a compiler to move the synchronized block
outside the while loop; Thread 2 will be blocked forever.

Any potential fairness guarantee would be inextricably linked to the threading model for a
given virtual machine. A threading model that only switches threads when Thread.yield()

is called will, in fact, never allow Thread 2 to execute. A fairness guarantee makes this sort
of implementation illegal; it would force Thread 2 to be scheduled. Because this kind of
implementation is often desirable, this specification does not include a fairness guarantee. In
particular, for any execution shown to be legal by the semantics for consistency and causality,
it would also be legal to execute just the instructions in any prefix of the causal order of that
execution.

13 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associated wait set. A wait set
is a set of threads. When an object is first created, its wait set is empty. Elementary actions
that add threads to and remove threads from wait sets are atomic. Wait sets are manipulated
in Java solely through the methods Object.wait, Object.notify , and Object.notifyAll.

Wait set manipulations can also be affected by the interruption status of a thread, and by
the Thread class methods dealing with interruption. Additionally, Thread class methods for
sleeping and joining other threads have properties derived from those of wait and notification
actions.

13.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms wait(long millisecs)

and wait(long millisecs, int nanosecs). A call of wait(long millisecs) with a pa-
rameter of zero, or a call of wait(long millisecs, int nanosecs) with two zero param-
eters, is equivalent to an invocation of wait().

Let thread t be the thread executing the wait method on Object m, and let n be the
number of lock actions by t on m that have not been matched by unlock actions. One of the
following actions occurs.

• If n is zero (i.e., thread t does not already possess the lock for target m) an Illegal-
MonitorStateException is thrown.

• If this is a timed wait and the nanosecs argument is not in the range of 0-999999 or
the millisecs argument is negative, an IllegalArgumentException is thrown.

• If thread t is interrupted, an InterruptedException is thrown and t’s interruption status
is set to false.

• Otherwise, the following sequence occurs:

35

1. Thread T is added to the wait set of object m, and performs n unlock actions on
m.

2. Thread t does not execute any further Java instructions until it has been removed
from m’s wait set. The thread may be removed from the wait set due to any one
of the following actions, and will resume sometime afterward.

– A notify action being performed on m in which t is selected for removal from
the wait set.

– A notifyAll action being performed on m.

– An interrupt action being performed on t.

– If this is a timed wait, an internal action removing t from m’s wait set that oc-
curs after at least millisecs milliseconds plus nanosecs nanoseconds elapse
since the beginning of this wait action.

– An internal action by the Java VM implementation. Implementations are
permitted, although not encouraged, to perform “spurious wake-ups” – to
remove threads from wait sets and thus enable resumption without explicit
Java instructions to do so. Notice that this provision necessitates the Java
coding practice of using wait() only within loops that terminate only when
some logical condition that the thread is waiting for holds.

3. Thread t performs n lock actions on m.

4. If thread t was removed from m’s wait set in step 2 due to an interrupt, t’s inter-
ruption status is set to false and the wait method throws InterruptedException.
If t was not removed due to an interrupt, but t is interrupted before it completes
step 3, then the system is allowed either to set t’s interruption status to false and
have the wait method throw InterruptedException, or return normally from the
method.

13.2 Notification

Notification actions occur upon invocation of methods notify and notifyAll(). Let thread
t be the thread executing either of these methods on Object m, and let n be the number of
lock actions by t on m that have not been matched by unlock actions. One of the following
actions occurs.

• If n is zero an IllegalMonitorStateException is thrown. This is the case where
thread t does not already possess the lock for target m.

• If n is greater than zero and this is a notify action, then, if m’s wait set is not empty,
a thread u that is a member of m’s current wait set is selected and removed from the
wait set. (There is no guarantee about which thread in the wait set is selected.) This
removal from the wait set enables u’s resumption in a wait action. Notice however,
that u’s lock actions upon resumption cannot succeed until some time after t fully
unlocks the monitor for m.

36

Also notice that the behavior of wait implies that notify causes some thread (if one
exists) to return normally after re-locking m’s monitor, rather than throwing an In-
terruptedException. If a thread receives an interruption action and a notification, it
must decide the order in which they were received; this order does not need to reflect
the order seen for these actions by other threads.

• If n is greater than zero and this is a notifyAll action, then all threads are removed
from m’s wait set, and thus resume. Notice however, that only one of them at a time
will lock the monitor required during the resumption of wait.

13.3 Interruptions

Interruption actions occur upon invocation of method Thread.interrupt(), as well as meth-
ods defined to in turn invoke it, such as ThreadGroup.interrupt(). Let t be the thread
invoking U.interrupt(), for some thread u, where t and u may be the same. This action
causes u’s interruption status to be set to true.

Additionally, if there exists some object m whose wait set contains u, u is removed from
m’s wait set. This enables u to resume in a wait action, in which case this wait will, after
re-locking m’s monitor, throw InterruptedException.

Invocations of Thread.isInterrupted() can determine a thread’s interruption status.
Any thread may observe and clear its own interruption status by invoking (static) method
Thread.interrupted().

13.4 Interactions of Waits, Notification and Interruption

If a thread is both notified and interrupted while waiting, it may either:

• return normally from wait(), while still having a pending interrupt (in other works,
a call to Thread.interrupted() would return true)

• return from wait() by throwing an InterruptedException

The thread may not reset its interrupt status and return normally from the call to wait().
Similarly, notifications cannot be lost due to interrupts. Assume that a set S of threads is

in the wait set of a monitor M, and another thread performs a notify() on M. Then either

• at least one thread in S must return normally from wait(). By “return normally”, we
mean it must return without throwing InterruptedException, or

• all of the threads in S must exit wait() by throwing InterruptedException

Note that if a thread is both interrupted and woken via notify(), and that thread
returns from wait() by throwing an InterruptedException, then some other thread in the
wait set must be notified.

37

13.5 Sleep

An invocation of method Thread.sleep(long millisecs) is not guaranteed to be behav-
iorally distinguishable from the action:

if (millisecs != 0) {

Object s = new Object();

synchronized (s) {

long startTime = System.currentTimeMillis();

long waitTime = millisecs;

for (;;) {

s.wait(waitTime);

long now = System.currentTimeMillis();

waitTime = millisecs - (now - startTime);

if (waitTime <= 0)

break;

}

}

}

In this code, s is an object that is not otherwise used in any way: it is not accessed by
another thread. The method Thread.sleep(long millisecs, int nanosecs) operates
identically to Thread.sleep(long millisecs), except that it accommodates nanosecond
timing arguments.

It is important to note that neither Thread.sleep nor Thread.yield have any syn-
chronization semantics. In particular, the compiler does not have to flush writes cached in
registers out to shared memory before a call to sleep or yield, nor does the compiler have to
reload values cached in registers after a call to sleep or yield. For example, in the following
(broken) code fragment, assume that this.done is a non-volatile boolean field:

while (!this.done)

Thread.sleep(1000);

The compiler is free to read the field this.done just once, and reuse the cached value in
each execution of the loop. This would mean that the loop would never terminate, even if
another thread changed the value of this.done.

A Formal Definition of Final Field Semantics

The formal semantics of final fields are different from those of normal fields. For final fields,
they supersede the ordinary rules for happens-before edges (as described in Section 5); for
non-final fields, they may be considered a supplement.

38

A.1 Freezes Associated with Writes

When an address a is stored in the heap by thread t at write w, it is stored as a pair 〈a, G〉,
where G is a set of freeze actions defined as:

G = {f | f
hb→ w} ∪ freezesBeforeDereference(t, a)

The set freezesBeforeDereference(t, a) is the set of freezes associated with the address a
in thread t, as defined below.

A.2 The Effect of Reads

A read r in thread t of field x of the object at address c returns a tuple 〈a, G〉, where a is the
value returned and G is a set of freeze actions as defined in Section A.1. Each such read has
two corresponding sets. The first, the set freezeBeforeRead(r), is a set of freezes associated
with the read. The second, the set writesBeforeRead(r), is a set of writes associated with
the read. These sets are used to compute the values that are legal for final fields.

A.2.1 Freezes Seen as a Result of Reads

Consider a read r in thread t of field x of the object at address c that returns a tuple 〈a, G〉.
The set of freezes freezeBeforeRead(r) associated with a read r of address a is:

freezeBeforeRead(r) = G ∪ {f | f
hb→ r} ∪ freezesBeforeDereference(t, c)

The set freezesBeforeDereference(t, a) is the intersection of the sets of freezes that the
thread saw every time it read a reference to o: this is the set freezeBeforeRead(r). Let
sawAddress(t, a) be the set of reads in thread t that returned the address a.

freezesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

freezeBeforeRead(r)

If a thread t allocated a (including all situations where sawAddress(t, a) is empty), then
the set freezesBeforeDereference(t, a) is empty.

The actual freezesBeforeDereference sets are defined by the least fixed point solution to
these equations (i.e., the smallest sets that satisfy these equations). This is because the
definition of freezesBeforeDereference(t, a) uses freezeBeforeRead(t, c), .

A.2.2 Writes Visible at a Given Read

For any read instruction r, there is a set of writes, writesBeforeRead(r), that is known to
be ordered before r due to the special semantics of final fields. These ordering constraints
are taken into account in determining which writes are visible to the read r. However, these
ordering constraints do not otherwise compose with the standard happens-before ordering
constraints.

39

We define the set writesBeforeRead(r) in terms of the writes that are known to occur
before any dereference of an address c by thread t. These writes are given by the set
writesBeforeDereference(t, c). Like the equations for freezes, these equations are recursive;
the solution is defined to be the least fixed point solution.

Result set for non-final fields or array elements Consider a read r in thread t of
non-final field or element x of the object at address c. The set of writes writesBeforeRead(r)
is defined as:

writesBeforeRead(r) = writesBeforeDereference(t, c)

Result set for final fields Consider a read r in thread t of final field x of the object at
address c. The set of writes writesBeforeRead(r) is defined as:

writesBeforeRead(r) =
writesBeforeDereference(t, c) ∪

{w | ∃f s.t. f ∈ freezesBeforeDereference(t, c)
∧ f is a freeze of c.x

∧ w
hb→ f}

Result set for static fields The set writesBeforeRead(r) associated with a read r of a
static field is the empty set.

Visible Write Set The set writesBeforeDereference(t, a) is defined to be the intersection
of the writesBeforeRead sets for all reads that see the value a.

writesBeforeDereference(t, a) =
⋂

r∈sawAddress(t,a)

writesBeforeRead(r)

If a thread t allocated a then writesBeforeDereference(t, a) is empty. This includes any
situations where sawAddress(t, a) is empty. As with freezesBeforeDereference, these equa-
tions are recursive and the solution is defined to be the least fixed point solution to the
equations (i.e., the smallest sets that satisfy these equations).

When a read r examines the contents of any field a.x in thread t, all of the writes in
writesBeforeRead(r) are considered to be ordered before r. If a.x is a final field, these are
the only writes considered to be ordered before r. In addition, if a.x is a final static field,
then r will always return a.x’s correctly constructed value, unless r happens in the thread
that performed the class initialization, before the field was written.

A.3 Single Threaded Guarantees for Final Fields

We have discussed in detail what guarantees are made for final fields seen in multiple threads.
However, compiler transformations can cause a read of a final field to return a default value

40

even if it is only accessed in a single thread. In this section, we discuss what guarantees are
made if a final field is seen to change in a single thread.

For cases where a final field is set once in the constructor, the rules are simple: the reads
and writes of the final field in the constructing thread are ordered according to program
order.

We must treat cases such as deserialization, where a final field can be modified after the
constructor is completed, a little differently. Consider the situation where a program:

• Reads a final field, then

• calls a method that rewrites that final field, and finally

• re-reads the final field.

Because reads of final fields can be reordered around method boundaries, the compiler
may reuse the value of the first read for the second read. The limitation we place on this
is that if the method returns a “new” reference to the final field’s enclosing object, and the
final field is read via that reference, then the program will see the rewritten value of the final
field. If it uses the “old” reference to the final field’s enclosing object, then the program may
see either the original value or the new one.

Conceptually, before a program modifies a frozen final field, the system must call a
realloc() function, passing in a reference to the object, and getting out a reference to the
object through which the final fields can be reassigned. The only appropriate way to use
this realloc() function is to pass the only live reference to the object to the realloc()

function, and only to use that value realloc() returns to refer to the object after that call.
After getting back a “fresh” copy from realloc(), the final fields can be modified and

refrozen. The realloc() function need not actually be implemented at all; the details are
hidden inside the implementation. However, it can be thought of as a function that might
decide to perform a shallow copy.

In more detail, each reference within a thread essentially has a version number. Passing
a reference through realloc() increments that version number. A read of a final field is
ordered according to program order with all writes to that field using the same or smaller
version number.

Two references to the same object but with different version numbers should not be
compared for equality. If one reference is ever compared to a reference with a lower version
number, then that read and all reads of final fields from that reference are treated as if they
have the lower version number.

B Finalization

This appendix details changes to Section 12.6 of the Java language specification, which deals
with finalization. The relevant portions are reproduced here.

41

The class Object has a protected method called finalize; this method can be overridden
by other classes. The particular definition of finalize that can be invoked for an object
is called the finalizer of that object. Before the storage for an object is reclaimed by the
garbage collector, the Java virtual machine will invoke the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically by
an automatic storage manager. In such situations, simply reclaiming the memory used by
an object would not guarantee that the resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer will be invoked,
except to say that it will happen before the storage for the object is reused. Also, the
language does not specify which thread will invoke the finalizer for any given object. It
is guaranteed, however, that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked. If an uncaught exception
is thrown during the finalization, the exception is ignored and finalization of that object
terminates.

It is important to note that many finalizer threads may be active (this is sometimes
needed on large SMPs), and that if a large connected data structure becomes garbage, all
of the finalize methods for every object in that data structure could be invoked at the same
time, each finalizer invocation running in a different thread.

The finalize method declared in class Object takes no action.
The fact that class Object declares a finalize method means that the finalize method

for any class can always invoke the finalize method for its superclass. This should always
be done, unless it is the programmer’s intent to nullify the actions of the finalizer in the
superclass. Unlike constructors, finalizers do not automatically invoke the finalizer for the
superclass; such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not override the
finalize method of class Object, or override it in a trivial way, such as:

protected void finalize() throws Throwable {

super.finalize();

}

We encourage implementations to treat such objects as having a finalizer that is not
overridden, and to finalize them more efficiently, as described in Section B.1.

A finalizer may be invoked explicitly, just like any other method.
The package java.lang.ref describes weak references, which interact with garbage collec-

tion and finalization. As with any API that has special interactions with the language,
implementors must be cognizant of any requirements imposed by the java.lang.ref API. This
specification does not discuss weak references in any way. Readers are referred to the API
documentation for details.

42

B.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-reachable,
or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continuing com-
putation from any live thread. Any object that may be referenced from a field or array
element of a reachable object is reachable. Finally, if a reference to an object is passed to a
JNI method, then the object must be considered reachable until that method completes.

A class loader is considered reachable if any instance of a class loaded by that loader is
reachable. A class object is considered reachable if the class loader that loaded it is reachable.

Optimizing transformations of a program can be designed that reduce the number of
objects that are reachable to be less than those which would näıvely be considered reachable.
For example, a compiler or code generator may choose to set a variable or parameter that will
no longer be used to null to cause the storage for such an object to be potentially reclaimable
sooner.

Another example of this occurs if the values in an object’s fields are stored in registers.
The program then may access the registers instead of the object, and never access the object
again. This would imply that the object is garbage.

Note that this sort of optimization is only allowed if references are on the stack, not
stored in the heap. For example, consider the Finalizer Guardian pattern:

class Foo {

private final Object finalizerGuardian = new Object() {

protected void finalize() throws Throwable {

/* finalize outer Foo object */

}

}

}

The finalizer guardian forces a super.finalize() to be called if a subclass overrides finalize
and does not explicitly call super.finalize().

If these optimizations are allowed for references that are stored on the heap, then the
compiler can detect that the finalizerGuardian field is never read, null it out, collect the
object immediately, and call the finalizer early. This runs counter to the intent: the program-
mer probably wanted to call the Foo finalizer when the Foo instance became unreachable.
This sort of transformation is therefore not legal: the inner class object should be reachable
for as long as the outer class object is reachable.

Transformations of this sort may result in invocations of the finalize method occurring
earlier than might be otherwise expected. In order to allow the user to prevent this, we
enforce the notion that synchronization may keep the object alive. If an object’s finalizer
can result in synchronization on that object, then that object must be alive and considered
reachable whenever a lock is held on it.

43

Note that this does not prevent synchronization elimination: synchronization only keeps
an object alive if a finalizer might synchronize on it. Since the finalizer occurs in another
thread, in many cases the synchronization could not be removed anyway.

A finalizer-reachable object can be reached from some finalizable object through some
chain of references, but not from any live thread. An unreachable object cannot be reached
by either means.

An unfinalized object has never had its finalizer automatically invoked; a finalized object
has had its finalizer automatically invoked. A finalizable object has never had its finalizer
automatically invoked, but the Java virtual machine may eventually automatically invoke
its finalizer. An object cannot be considered finalizable until its constructor has finished.
Every pre-finalization write to a field of an object must be visible to the finalization of that
object. Furthermore, none of the pre-finalization reads of fields of that object may see writes
that occur after finalization of that object is initiated.

44

