Correct and Efficient
Synchronization of
Java™ Technology-
based Threads

Doug Lea and William Pugh
nttp://gee.cs.oswego.edu
nttp://www.cs.umd.edu/~pugh

Audience

« Assume you are familiar with basics of

Java™ technology-based threads
(“Java threads”)

— creating, starting and joining threads
— synchronization
— walt and notifyAll

 Will talk about things that surprised a
lot of experts

— Including us, James Gosling, Guy Steele, ...
— (others discovered many of these)

JavaOne-

L e

Overview

« Java Thread Spec

e Synchronization
— Properties

— Costs
« Some problems and solutions
— field access
— Initialization
— collections

JavaOne-

L e

Java Thread Specification

 Chapter 17 of the Java Language Spec
— Chapter 8 of the Virtual Machine Spec

* Very, very hard to understand
— not even the authors understood it
— has subtle implications
« that forbid standard compiler optimizations
— all existing JVM’s violate the specification
« some parts should be violated

JavaOne-

L e

Safety Issues In
Multithreaded Systems

 Many intuitive assumptions do not hold

« Some widely used idioms are not safe

— double-check idiom

— checking non-volatile flag for thread
termination

 Can’t use testing to check for errors

— some anomalies will occur only on some
platforms

* e.g., multiprocessors

L e

Revising the Thread Spec

 Work i1s underway to consider revising
the Java Thread Spec

— http://lwww.cs.umd.edu/~pugh/java/memoryModel
 Goals

— Clear and easy to understand

— Foster reliable multithreaded code

— Allow for high performance JVM’s

 May effect JVM’s

— and badly written existing code
e including parts of Sun’s JDK

JavaOne-

L e

What to do Today?

* Guidelines we will provide should work
under both existing and future thread
Specs

 Don’t try to read the official specs

 Avoid corner cases of the thread spec
— not needed for efficient and reliable programs

L e

Three Aspects of
Synchronization

o Atomicity
— Locking to obtain mutual exclusion
. Visibility
— Ensuring that changes to object fields made in
one thread are seen in other threads

e Ordering

— Ensuring that you aren’t surprised by the order
In which statements are executed

JavaOne-

L e

Don’t be too clever

 People worry about the cost of
synchronization

— Try to devise schemes to communicate
between threads

 without using synchronization
* Very difficult to do correctly

— Inter-thread communication without
synchronization is not intuitive

JavaOne-

L e

Quiz time

Thread 1

X

X:y:O

start th reads Thread 2

Can this result In
i=0and j=07?

JavaOne-

L R e

Answer: Yes!

X =y =20

X 1 Y

(S
<

How cani=0and =07

JavaOne-

L e

How can this happen?

« Compiler can reorder statements
— or keep values In registers

e Processor can reorder them

 On multi-processor, values not
synchronized in global memory

 Must use synchronization to enforce
visibility and ordering
— as well as mutual exclusion

JavaOne-

L e

Synchronization Actions
(approximately)

// block until obtain lock
synchronized(anObject) {
// get main memory value of field1l and field2

Int X = anObject.fieldl;
int y = anObject.field2;

anObject.field3 = x+y;
// commit value of field3 to main memory

}

// release lock
moreCode();

JavaOne-

L e

When are actions visible to
other Threads?

unlock M
lock M

What does volatile mean?

« C/C++ spec

— there Is no implementation independent
meaning of volatile

e Situation a little better with Java
technology

— volatile reads/writes guaranteed to go directly
to main memory

e can’t be cached in registers or local memory

— reads/writes of volatile longs/doubles
guaranteed to be atomic

e enforced on all JVM’'s?

JavaOne-

L e

Using Volatile

* Volatile used to guarantee visibility of
writes

— stop must be declared volatile
— otherwise, compiler could keep in register

class Animator implements Runnable {
private volatile boolean stop = false;
public void stop() { stop = true; }
public void run() {
while (!stop)
oneStep();

+
private void oneStep() { /7*...*/ }

}

L e

Using Volatile to Guard
Other Fields Doesn’t Work

e Do not use - Does not work

class Future {
private volatile boolean ready = false;
private Object data = null;
public Object get() {
IT ('ready) return null;
return data;
+
// only one thread may ever call put
public void put(Object 0) {

data = o;
ready = true;
+

}

L e

Nobody Implements Volatile
Correctly

* Existing JMM requires sequential
consistency for volatile variables

— In quiz example, if x and y are volatile
— should be impossible toseei=0and =0

« Haven’t found any JVM’s that enforce it
— Some JVM’s completely ignore volatile flag

JavaOne-

L e

Volatile Compliance

No Compiler Sequential Atomic
Optimizations Consistency Longs/Doubles
JVMSf_Iza, gSEVM Pass Fail Pass
Solaris
JVM 1.2.2 Fail Fail Pass
Hotspot 1.0.1
Windows
JVM 1.3 Fail Fail Fail
Hotspot Client
wWindows
JVM 1.3 Pass Fail Fail
Hotspot Server
W'\]n\?l\c/)lvflng Pass Fail Fail

JavaOne-

L e

Why Use Volatile?

e Since the semantics are implemented
Inconsistently

* Future-proof your code

— prohibit optimizations compilers might do
In the future

 Works well for flags
— more complicated uses are tricky

* Revising the thread spec...
— Test compliance
— Strengthen to make easier to use

JavaOne-

L e

Cost of Synchronization

 Few good public multithreaded
benchmarks

— See us If you want to help

* Volano Benchmark
— most widely used server benchmark
— multithreaded chat room server
— Client performs 4.8M synchronizations
« 8K useful
— Server 43M synchronizations
e 1.7M useful

JavaOne-

L e

Synchronization In
VolanoMark Client

90.3%

5.6%
1.8%
9% 0.9%
1.4%
0.4%
0.2%

Ojava.io.BufferedinputStream
B java.io.BufferedOutputStream
Ojava.util.Observable

W java.util.Vector
Ojava.io.FilterInputStream

B everything else

B All shared monitors

7,684 synchronizations on shared monitors

4,828,130 thread local synchronizations

L e

Cost of Synchronization in
VolanoMark

« Removed synchronization of
— java.io.BufferedinputStream
— Java.io.BufferedOutputStream

 Performance (2 processor Ultra 60)
— HotSpot
e original: 4503
o altered: 4828 (+7%)
— Exact VM
e original: 6649
o altered: 6874 (+3%)

JavaOne-

L e

Most Synchronization Is on
Thread Local Objects

e Synchronization on thread local object
— IS useless
— current spec says it isn’t quite a no-op
 but very hard to use usefully
— revised spec may make it a no-op

« Largely arises from using synchronized
classes

— In places where not required

L e

Synchronize when Needed

 Places where threads interact
— need synchronization
— need careful thought
— heed documentation

— cost of required synchronization not significant
 for most applications
* N0 need to get tricky

 Elsewhere, using a synchronized class
can be expensive

JavaOne-

L e

Synchronized classes

e Some classes are synchronized
— Vector, Hashtable, Stack
— most Input/Output Streams

e Contrast with 1.2 Collection classes
— by default, not synchronized
— can request synchronized version

e Using synchronized classes
— often doesn’t suffice for concurrent interaction

JavaOne-

L e

Synchronized Collections
Aren’t Always Enough

 Transactions (DO NOT USE)

ID getID(String name) {
ID Xx = (ID) h.get(nhame);
1T (X == null) {
X = new IDQ);
h.put(hame, X);
}

return x; }

e |terators

— can’t modify collection while another
thread is iterating through it JavaOne

B

Concurrent Interactions

e Often need entire transactions to be
atomic

— reading and updating a Map
— Writing a record to an OutputStream

e OutputStreams are synchronized

— can have multiple threads trying to write to the
same OutputStream

— output from each thread is nondeterministicly
interleaved

— essentially useless

JavaOne-

L e

Cost of Synchronization in
SpecJVM DB benchmark

 Program in the Spec Java benchmark

 Does lots of synchronization
— > 53,000,000 syncs
* 99.9% comes from use of Vector

— Benchmark is single threaded, all of it Is
useless

e Tried
— remove synchronizations
— switching to ArrayList
— Improving the algorithm

L e

Execution time of Spec JVM
209 db, Hotspot Server

40 -

30

201

10-

0 Use Change
_ Use ArrayList | Shell Sort
Original ArrayList | and other | to Merge Al
minor Sort

o Original 35.5 32.6 28.5 16.2 12.8
B Without Syncs 30.3 32.5 28.5 14.0 12.8

L e

Lessons

e Synchronization cost can be
substantial

— 10-20% for DB benchmark

— Consider replacing all uses of Vector,
Hashtable and Stack

e Use profiling
e Use better algorithms!

— Used built-in merge sort rather than hand-
coded shell sort

JavaOne-

L e

e Make

Designing Fast Code

It right before you make it fast

e Avoid synchronization
— Avoid sharing across threads

— Don't lock already-protected objects

— Use immutable fields and objects

— Use volatile

e Avold contention

— RecC

— RecC

uce lock scopes

uce lock durations _
JavaOne

L e

Isolation In Swing

e Swing relies entirely on Isolation
— AWT thread owns all Swing components

* No other thread may access them
— Eliminates need for locking
 Still need care during initialization
e Can be fragile
— Every programmer must obey rules
— Rules are usually easy to follow

— Most Swing components accessed In
handlers triggered within AWT thread

JavaOne-

L e

Accessing Isolated objects

e Need safe Iinter-thread communication
— Swing uses via runnable Event objects

 created by some other thread
e serviced by AWT thread

SwingUtilities. invokeLater(new Runnable(){
public void run() {
statusMessage.setText("'Running'');

11);

JavaOne-

L e

GetX/SetX access methods

 Not synchronizing access methods
— 1INt thermometer.getTemperature()

— (doesn’t work for references)

 Synchronizing access methods
—account.getTotalBalance()

 Omitting access methods
— gueue doesn’'t need getSize() E

JavaOne-

L e

Things That Don’t Work

 Double-Check Idiom
— also, unsynchronized reads/writes of refs

 Non-volatile flags

 Depending on sleep for visibility

JavaOne

B e R SR R ERT R

Initialization check - vl - OK

Basic version:
class Service {

Parser parser = null;
public synchronized void command() {
1T (parser == null)
parser = new Parser(...);
doCommand(parser.parse(...));

// ...
¥

JavaOne-

L e

Initialization checks - v2 - OK

Isolate check:
class ServiceV2 {
Parser parser = null;
synchronized Parser getParser() {
1T (parser == null)
parser = new Parser();
return parser;
+
public void command(...) {

g§Command(getPar3er()-parse(---));

JavaOne-

L e

Single-check - DO NOT USE

Try to do it without synchronization:
class ServiceV3 { 7/ DO NOT USE

Parser parser = null;
Parser getParser() {
1T (parser == null)
parser = new Parser();
return parser;

h3s

JavaOne-

L e

Double-check - DO NOT USE

Try to minimize likelihood of synch:
class ServiceV4 { // DO NOT USE

Parser parser = null;
Parser getParser() {

it (parser == null)
synchronized(this) {

1T (parser == null)
parser = new Parser();

¥

return parser,

h3s

JavaOne-

L e

Problems with double-check

 Can reorder
— Initialization of Parser object
— store into parser field

e ...among other reasons
— see JMM web page for gory details

e Can go wrong uniprocessors

e Using volatile doesn't help
— under current JIMM

JavaOne-

L e

e Eagerly i
— especia
— especia
o |f static,
— first use

Alternatives to
Double—Check

nitialize
ly for Singletons
ly if ref can be final

DUt In separate class
forces initialization

— later uses guaranteed to see Iinitialization
— no explicit check needed

 Double check OK for primitive values
— hashCode caching
— (still technically a data race)

JavaOne-

L e

Unsynchronized
Reads/Writes of References

« Beware of unsynchronized getX/setX
methods that return a reference

— same problems as double check
— doesn’t help to synchronize only setX

private Color color;
voild setColor(int rgb) {
color = new Color(rgb);

}
Color getColor() {

return color;

= L e

Thread Termination In
Sun’s Demo Applets

Thread blinker = null;
public void start() {
blinker = new Thread(this);

blinker.start(); \\

}
public void stop() {
blinker = null:¥

public void run() {
Thread me = Thread.gurrentThread();
while (blinker == me) {
try {Thread.currentThread() .sleep(delay);}
catch (InterruptedException e) {}
repaint();

unsynchronized access to blinker field

}

confusing but not wrong: sleep is a static method JavaOne

L e

Problems

e Don't assume another thread will see
your writes

— just because you did them

e Calling sleep doesn’t guarantee you
see changes made while you slept

— Nothing to force thread that called stop to
push change out of registers/cache

JavaOne-

L e

Wrap-up

 Cost of synchronization operations can
be significant

— but cost of needed synchronization rarely is

e Thread interaction needs careful
thought

— but not too clever

 Need for synchronization...

JavaOne-

L e

Wrapup - Synchronization

e Communication between threads

— requires both threads to synchronize
e or communicate through volatile fields

 Synchronizing everything
— IS rarely necessary
— can be expensive (5%-20% overhead)
— may lead to deadlock

— may not provide enough synchronization
 e.7g., transactions

JavaOne-

L e

JavaOne

Sun's 2000 Worldwide Java Developer Conference

