
TS-754, Correct and Efficient Synchronization of Java Threads1

Correct and Efficient
Synchronization of
Java™ Technology-
based Threads
Doug Lea and William Pugh
http://gee.cs.oswego.edu
http://www.cs.umd.edu/~pugh

TS-754, Correct and Efficient Synchronization of Java Threads2

Audience

• Assume you are familiar with basics of
Java™ technology-based threads
(“Java threads”)
– creating, starting and joining threads

– synchronization

– wait and notifyAll

• Will talk about things that surprised a
lot of experts
– including us, James Gosling, Guy Steele, …

– (others discovered many of these)

TS-754, Correct and Efficient Synchronization of Java Threads3

Overview

• Java Thread Spec
• Synchronization

– Properties

– Costs

• Some problems and solutions
– field access

– initialization

– collections

TS-754, Correct and Efficient Synchronization of Java Threads4

Java Thread Specification

• Chapter 17 of the Java Language Spec
– Chapter 8 of the Virtual Machine Spec

• Very, very hard to understand
– not even the authors understood it

– has subtle implications
• that forbid standard compiler optimizations

– all existing JVM’s violate the specification
• some parts should be violated

TS-754, Correct and Efficient Synchronization of Java Threads5

Safety Issues in
Multithreaded Systems

• Many intuitive assumptions do not hold
• Some widely used idioms are not safe

– double-check idiom

– checking non-volatile flag for thread
termination

• Can’t use testing to check for errors
– some anomalies will occur only on some

platforms
• e.g., multiprocessors

TS-754, Correct and Efficient Synchronization of Java Threads6

Revising the Thread Spec

• Work is underway to consider revising
the Java Thread Spec
– http://www.cs.umd.edu/~pugh/java/memoryModel

• Goals
– Clear and easy to understand

– Foster reliable multithreaded code

– Allow for high performance JVM’s

• May effect JVM’s
– and badly written existing code

• including parts of Sun’s JDK

TS-754, Correct and Efficient Synchronization of Java Threads7

What to do Today?

• Guidelines we will provide should work
under both existing and future thread
specs

• Don’t try to read the official specs

• Avoid corner cases of the thread spec
– not needed for efficient and reliable programs

TS-754, Correct and Efficient Synchronization of Java Threads8

Three Aspects of
Synchronization

• Atomicity
– Locking to obtain mutual exclusion

• Visibility
– Ensuring that changes to object fields made in

one thread are seen in other threads

• Ordering

– Ensuring that you aren’t surprised by the order
in which statements are executed

TS-754, Correct and Efficient Synchronization of Java Threads9

Don’t be too clever

• People worry about the cost of
synchronization

– Try to devise schemes to communicate
between threads

• without using synchronization

• Very difficult to do correctly

– Inter-thread communication without
synchronization is not intuitive

TS-754, Correct and Efficient Synchronization of Java Threads10

Quiz time

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in
i=0 and j=0 ?

start threads

TS-754, Correct and Efficient Synchronization of Java Threads11

Answer: Yes!

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

TS-754, Correct and Efficient Synchronization of Java Threads12

How can this happen?

• Compiler can reorder statements
– or keep values in registers

• Processor can reorder them
• On multi-processor, values not

synchronized in global memory

• Must use synchronization to enforce
visibility and ordering
– as well as mutual exclusion

TS-754, Correct and Efficient Synchronization of Java Threads13

Synchronization Actions
(approximately)

// block until obtain lock
synchronized(anObject) {
 // get main memory value of field1 and field2
 int x = anObject.field1;
int y = anObject.field2;

 anObject.field3 = x+y;
// commit value of field3 to main memory

}
// release lock
moreCode();

TS-754, Correct and Efficient Synchronization of Java Threads14

When are actions visible to
other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

TS-754, Correct and Efficient Synchronization of Java Threads15

What does volatile mean?

• C/C++ spec
– there is no implementation independent

meaning of volatile

• Situation a little better with Java
technology
– volatile reads/writes guaranteed to go directly

to main memory
• can’t be cached in registers or local memory

– reads/writes of volatile longs/doubles
guaranteed to be atomic

• enforced on all JVM’s?

TS-754, Correct and Efficient Synchronization of Java Threads16

class Animator implements Runnable {
 private volatile boolean stop = false;
 public void stop() { stop = true; }
 public void run() {
 while (!stop)
 oneStep();
 }
 private void oneStep() { /*...*/ }
}

Using Volatile

• Volatile used to guarantee visibility of
writes
– stop must be declared volatile

– otherwise, compiler could keep in register

TS-754, Correct and Efficient Synchronization of Java Threads17

class Future {
private volatile boolean ready = false;
private Object data = null;
public Object get() {

if (!ready) return null;
return data;
}

// only one thread may ever call put
public void put(Object o) {

data = o;
ready = true;
}

}

Using Volatile to Guard
Other Fields Doesn’t Work

• Do not use - Does not work

TS-754, Correct and Efficient Synchronization of Java Threads18

Nobody Implements Volatile
Correctly

• Existing JMM requires sequential
consistency for volatile variables
– In quiz example, if x and y are volatile

– should be impossible to see i = 0 and j = 0

• Haven’t found any JVM’s that enforce it
– Some JVM’s completely ignore volatile flag

TS-754, Correct and Efficient Synchronization of Java Threads19

Volatile Compliance

No Compiler
Optimizations

Sequential
Consistency

Atomic
Longs/Doubles

Solaris
JVM 1.2.2 EVM

Pass Fail Pass

Solaris
JVM 1.2.2

Hotspot 1.0.1
Fail Fail Pass

Windows
JVM 1.3

 Hotspot Client
Fail Fail Fail

Windows
JVM 1.3

 Hotspot Server
Pass Fail Fail

Windows IBM
JVM 1.1.8

Pass Fail Fail

TS-754, Correct and Efficient Synchronization of Java Threads20

Why Use Volatile?

• Since the semantics are implemented
inconsistently

• Future-proof your code
– prohibit optimizations compilers might do

in the future

• Works well for flags
– more complicated uses are tricky

• Revising the thread spec...
– Test compliance

– Strengthen to make easier to use

TS-754, Correct and Efficient Synchronization of Java Threads21

Cost of Synchronization

• Few good public multithreaded
benchmarks
– See us if you want to help

• Volano Benchmark
– most widely used server benchmark

– multithreaded chat room server

– Client performs 4.8M synchronizations
• 8K useful

– Server 43M synchronizations
• 1.7M useful

TS-754, Correct and Efficient Synchronization of Java Threads22

Synchronization in
VolanoMark Client

90.3%

5.6%

1.8%

0.9% 0.9%

0.4%

0.2%

1.4%

java.io.BufferedInputStream

java.io.BufferedOutputStream

java.util.Observable

java.util.Vector

java.io.FilterInputStream

everything else

All shared monitors

7,684 synchronizations on shared monitors
4,828,130 thread local synchronizations

TS-754, Correct and Efficient Synchronization of Java Threads23

Cost of Synchronization in
VolanoMark

• Removed synchronization of
– java.io.BufferedInputStream

– java.io.BufferedOutputStream

• Performance (2 processor Ultra 60)
– HotSpot

• original: 4503
• altered: 4828 (+7%)

– Exact VM
• original: 6649
• altered: 6874 (+3%)

TS-754, Correct and Efficient Synchronization of Java Threads24

Most Synchronization is on
Thread Local Objects

• Synchronization on thread local object
– is useless

– current spec says it isn’t quite a no-op
• but very hard to use usefully

– revised spec may make it a no-op

• Largely arises from using synchronized
classes
– in places where not required

TS-754, Correct and Efficient Synchronization of Java Threads25

Synchronize when Needed

• Places where threads interact
– need synchronization

– need careful thought

– need documentation

– cost of required synchronization not significant
• for most applications

• no need to get tricky

• Elsewhere, using a synchronized class
can be expensive

TS-754, Correct and Efficient Synchronization of Java Threads26

Synchronized classes

• Some classes are synchronized
– Vector, Hashtable, Stack

– most Input/Output Streams

• Contrast with 1.2 Collection classes
– by default, not synchronized

– can request synchronized version

• Using synchronized classes
– often doesn’t suffice for concurrent interaction

TS-754, Correct and Efficient Synchronization of Java Threads27

Synchronized Collections
Aren’t Always Enough

• Transactions (DO NOT USE)

ID getID(String name) {
ID x = (ID) h.get(name);
if (x == null) {

x = new ID();
h.put(name, x);
}

return x; }

• Iterators
– can’t modify collection while another

thread is iterating through it

TS-754, Correct and Efficient Synchronization of Java Threads28

Concurrent Interactions

• Often need entire transactions to be
atomic
– reading and updating a Map

– Writing a record to an OutputStream

• OutputStreams are synchronized
– can have multiple threads trying to write to the

same OutputStream

– output from each thread is nondeterministicly
interleaved

– essentially useless

TS-754, Correct and Efficient Synchronization of Java Threads29

Cost of Synchronization in
SpecJVM DB benchmark

• Program in the Spec Java benchmark
• Does lots of synchronization

– > 53,000,000 syncs
• 99.9% comes from use of Vector

– Benchmark is single threaded, all of it is
useless

• Tried
– remove synchronizations

– switching to ArrayList

– improving the algorithm

TS-754, Correct and Efficient Synchronization of Java Threads30

Execution time of Spec JVM
_209_db, Hotspot Server

0

10

20

30

40

Original 35.5 32.6 28.5 16.2 12.8

Without Syncs 30.3 32.5 28.5 14.0 12.8

Original
Use

ArrayList

Use
ArrayList
and other

minor

Change
Shell Sort
to Merge

Sort

All

TS-754, Correct and Efficient Synchronization of Java Threads31

Lessons

• Synchronization cost can be
substantial
– 10-20% for DB benchmark

– Consider replacing all uses of Vector,
Hashtable and Stack

• Use profiling
• Use better algorithms!

– Used built-in merge sort rather than hand-
coded shell sort

TS-754, Correct and Efficient Synchronization of Java Threads32

Designing Fast Code

• Make it right before you make it fast

• Avoid synchronization
– Avoid sharing across threads

– Don't lock already-protected objects

– Use immutable fields and objects

– Use volatile

• Avoid contention
– Reduce lock scopes

– Reduce lock durations

TS-754, Correct and Efficient Synchronization of Java Threads33

Isolation in Swing

• Swing relies entirely on Isolation
– AWT thread owns all Swing components

• No other thread may access them

– Eliminates need for locking

• Still need care during initialization

• Can be fragile

– Every programmer must obey rules

– Rules are usually easy to follow

– Most Swing components accessed in
handlers triggered within AWT thread

TS-754, Correct and Efficient Synchronization of Java Threads34

Accessing isolated objects

• Need safe inter-thread communication
– Swing uses via runnable Event objects

• created by some other thread

• serviced by AWT thread

SwingUtilities.invokeLater(new Runnable(){
 public void run() {
 statusMessage.setText("Running");
 }});

TS-754, Correct and Efficient Synchronization of Java Threads35

GetX/SetX access methods

• Not synchronizing access methods
– int thermometer.getTemperature()

– (doesn’t work for references)

• Synchronizing access methods
– account.getTotalBalance()

• Omitting access methods
– queue doesn’t need getSize()

TS-754, Correct and Efficient Synchronization of Java Threads36

Things That Don’t Work

• Double-Check Idiom
– also, unsynchronized reads/writes of refs

• Non-volatile flags

• Depending on sleep for visibility

TS-754, Correct and Efficient Synchronization of Java Threads37

Initialization check - v1 - OK

Basic version:
class Service {
 Parser parser = null;
 public synchronized void command() {
 if (parser == null)
 parser = new Parser(...);
 doCommand(parser.parse(...));
 }

 // ...
}

TS-754, Correct and Efficient Synchronization of Java Threads38

Initialization checks - v2 - OK

Isolate check:
class ServiceV2 {
 Parser parser = null;
 synchronized Parser getParser() {
 if (parser == null)
 parser = new Parser();
 return parser;
 }
 public void command(...) {
 doCommand(getParser().parse(...));
 }}

TS-754, Correct and Efficient Synchronization of Java Threads39

Single-check - DO NOT USE

Try to do it without synchronization:
class ServiceV3 { // DO NOT USE
 Parser parser = null;
 Parser getParser() {
 if (parser == null)
 parser = new Parser();
 return parser;
 }}

TS-754, Correct and Efficient Synchronization of Java Threads40

Double-check - DO NOT USE

Try to minimize likelihood of synch:
class ServiceV4 { // DO NOT USE
 Parser parser = null;
 Parser getParser() {
 if (parser == null)
 synchronized(this) {

 if (parser == null)
 parser = new Parser();
 }
 return parser;
 }}

TS-754, Correct and Efficient Synchronization of Java Threads41

Problems with double-check

• Can reorder
– initialization of Parser object

– store into parser field

• …among other reasons
– see JMM web page for gory details

• Can go wrong uniprocessors
• Using volatile doesn't help

– under current JMM

TS-754, Correct and Efficient Synchronization of Java Threads42

Alternatives to
Double–Check

• Eagerly initialize
– especially for Singletons

– especially if ref can be final

• If static, put in separate class
– first use forces initialization

– later uses guaranteed to see initialization

– no explicit check needed

• Double check OK for primitive values
– hashCode caching

– (still technically a data race)

TS-754, Correct and Efficient Synchronization of Java Threads43

Unsynchronized
Reads/Writes of References

• Beware of unsynchronized getX/setX
methods that return a reference
– same problems as double check

– doesn’t help to synchronize only setX

private Color color;
void setColor(int rgb) {

color = new Color(rgb);
}

Color getColor() {
return color;
}

TS-754, Correct and Efficient Synchronization of Java Threads44

 Thread blinker = null;
 public void start() {
 blinker = new Thread(this);
 blinker.start();
 }

 public void stop() {
 blinker = null;}

 public void run() {
 Thread me = Thread.currentThread();
 while (blinker == me) {
 try {Thread.currentThread().sleep(delay);}
 catch (InterruptedException e) {}
 repaint();
 }
 }

Thread Termination in
Sun’s Demo Applets

unsynchronized access to blinker field

confusing but not wrong: sleep is a static method

TS-754, Correct and Efficient Synchronization of Java Threads45

Problems

• Don’t assume another thread will see
your writes
– just because you did them

• Calling sleep doesn’t guarantee you
see changes made while you slept
– Nothing to force thread that called stop to

push change out of registers/cache

TS-754, Correct and Efficient Synchronization of Java Threads46

Wrap-up

• Cost of synchronization operations can
be significant
– but cost of needed synchronization rarely is

• Thread interaction needs careful
thought
– but not too clever

• Need for synchronization...

TS-754, Correct and Efficient Synchronization of Java Threads47

Wrapup - Synchronization

• Communication between threads
– requires both threads to synchronize

• or communicate through volatile fields

• Synchronizing everything
– is rarely necessary

– can be expensive (5%-20% overhead)

– may lead to deadlock

– may not provide enough synchronization
• e.g., transactions

TS-754, Correct and Efficient Synchronization of Java Threads48

