
Formal Description of the Manson/Pugh Model

February 6, 2004, 1:44pm

This document is intended to supplement the Public Review of the Java Memory Model.
It can be considered as a replacement for Sections 7 and 8 of that document. It is strongly
recommended that readers familiarize themselves with that material before reading this. In
particular, the definitions in Section 5 and the discussion of memory model issues in Section
7 are frequently referred to here.

1 Causality

Happens-Before Consistency is a necessary, but not sufficient, set of constraints. In other
words, we need the requirements imposed by Happens-Before Consistency, but they allow
for unacceptable behaviors.

In particular, one of our key requirements is that correctly synchronized programs may
exhibit only sequentially consistent behavior. Happens-Before Consistency alone will violate
this requirement. Remember that a program is correctly synchronized if, when it is executed
in a sequentially consistent manner, there are no data races among its non-volatile variables.

Consider the code in Figure 1. If this code is executed in a sequentially consistent way,
each action will occur in program order, and neither of the writes will occur. Since no writes
occur, there can be no data races: the program is correctly synchronized. We therefore only
want the program to exhibit sequentially consistent behavior.

Could we get a non-sequentially consistent behavior from this program? Consider what
would happen if both r1 and r2 saw the value 1. Can we argue that this relatively nonsensical
result is legal under Happens-Before Consistency?

The answer to this is “yes”. The read in Thread 2 is allowed to see the write in Thread 1,
because there is no happens-before relationship to prevent it. Similarly, the read in Thread
1 is allowed to see the read in Thread 2: there is no synchronization to prevent that, either.
Happens-Before Consistency is therefore inadequate for our purposes.

Even for incorrectly synchronized programs, Happens-Before Consistency is too weak: it
can allow situations in which an action causes itself to happen, when it could happen no
other way. We say that an execution that behaves this way contains a causal loop. At the
extreme, this might allow a value to appear out of thin air. An example of this is given in
Figure 2. If we decide arbitrarily that the writes in each thread will be of the value 42, the
behavior r1 == r2 == 42 can be validated as hb-consistent: each read sees a write in the
execution, without any intervening happens-before relation.

1

Initially, x == y == 0

Thread 1 Thread 2
r1 = x; r2 = y;
if (r1 != 0) if (r2 != 0)

y = 1; x = 1;
Correctly synchronized, so r1 == r2 == 0 is the only legal behavior

Figure 1: Happens-Before Consistency is not sufficient

Initially, x == y == 0

Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = r2;

Incorrectly Synchronized: But r1 == r2 == 42 Still Cannot Happen

Figure 2: Motivation for disallowing some cycles

To avoid problems such as this, we require that executions respect causality. It turns out
that formally defining causality in a multithreaded context is tricky and subtle.

1.1 Justification Orders

For any execution trace, we require the existence of a justification order, which is an ordered
list of the reads, writes and synchronization actions in that execution. The justification order
can be considered an explanation of how an execution happened. For example, first we can
show that x could happen; once we know x will happen, we can show that y can happen;
once we know that both x and y will happen, we can show that z can happen. In other
words, it is a linear sequence of causes and effects.

The justification order does not have to be consistent with the program order or the
happens-before order. Any total order over actions in an execution trace is potentially a
valid justification order. The justification order could, for example, reflect the order in
which the actions might occur after compiler transformations have taken place.

The intuition behind justification orders is that for each prefix of that justification order,
the next action in the order is justified by the actions in the prefix. Actions that do not
involve potential causal loops do not need to be explicitly justified.

How do we determine which actions need to be justified? In every causal loop, there must
be some action that appears to occur before some action that happens before it. In the case
of Figure 2, for example, the write to x appears to occur before the read of y, even though
the read happens before the write in program order. We refer to such actions as prescient;
it is these that we have to justify.

Formally, an action x in a trace 〈S, so,
hb→ , jo〉 is prescient if and only if there exists an

action y that occurs after x in the justification order such that y
hb→ x.

2

All prescient actions must be justified. To justify a prescient action x in trace E, let
α be the actions that occur before x in the justification order. We need to show that x is
allowed to occur in all executions with a justification order that starts with α and contains
no prescient actions after α. Section 1.4 describes an alternative weak causality model, in
which we would only require that there exist some execution in which x would be allowed
to occur.

It should be fairly clear that there are no justification orders for which Figure 2 will
produce 42: there is no sequence of actions that will guarantee that 42 will be written to x
or y.

In addition, the reads in Figure 1 will not be able to see the value 1. The first action in
the justification order would have to be a write of 1 or a read of 1. Since neither of those
are allowed in any non-prescient execution, they cannot be the first action in a justification
order.

Formally defining causality is somewhat involved. To do so, it is necessary to define what
it means for one action to be in more than one execution. This definition will be omitted
here; the full definition can be found, along with the formal model, in Appendix 2.

1.2 When are Actions Justified to Occur in the Justification Or-
der?

1.2.1 Reads

We need to state more formally what it means for a read r to be justified in occurring in an
execution E whose justification order is αrβ. If r is involved in a data race, then execution
can non-deterministically choose which of the multiple writes visible to r is seen by r, which
makes it difficult to guarantee that r will see a particular value.

Because we cannot guarantee that a particular value is seen, we make a weaker guarantee
about when a read is justified. The read r is justified if, in all executions whose justification
order consists of α followed by non-prescient actions, there is a corresponding read r′ that
is allowed to observe the same value that r observed.

Intuitively, we are only able to justify a read if it is always allowed to occur based on the
actions we have already justified.

Once we have demonstrated that a read can occur, we need to establish what values that
read can see. To guarantee causality, we require that a read only see writes that occurred
earlier in the justification order.

Finally, it should be noted that reads of volatile variables are only allowed to see the last
write to that variable in the synchronization order.

1.2.2 Writes

We need to explore the consequences of allowing writes to be performed presciently more
fully. Consider a program that is correctly synchronized, in which a particular write always
happens when the program is executed non-presciently. That write can now be performed
presciently (let’s call the resulting execution E ′). What happens if performing the write
presciently allows some non-sequentially consistent behavior?

3

Before compiler transformation After compiler transformation

Initially, a = 0, b = 1

Thread 1 Thread 2
1: r1 = a; 5: r3 = b;
2: r2 = a; 6: a = r3;
3: if (r1 == r2)
4: b = 2;

Initially, a = 0, b = 1

Thread 1 Thread 2
4: b = 2; 5: r3 = b;
1: r1 = a; 6: a = r3;
2: j = r1;
3: if (true) ;

Is r1 == r2 == r3 == 2 possible? r1 == r2 == r3 == 2 is sequentially consistent

Figure 3: Motivation for allowing forbidden reads

In such a case, there is a read that happened before the write in all the non-prescient
executions that does not happen before the write in E ′. To prevent this, we make a simple
rule: all such reads must also happen before the write in E ′.

1.3 Forbidden Sets

In order to perform an action presciently, we must be guaranteed that the action will occur.
In most programs, there are many actions that do not have this guarantee; given the full
freedom of the JMM, some actions will not always occur. However, compiler transformations
may modify the program so that those actions are guaranteed to happen. After such a
compiler transformation, we should be able to perform such actions presciently.

In Figure 3, we see an example of such a transformation. The compiler can

• eliminate the redundant read of a, replacing 2 with r2 = r1, then

• determine that the expression r1 == r2 is always true, eliminating the conditional
branch 3, and finally

• move the write 4: b = 2 early.

Here, the assignment 4: b = 2 is always guaranteed to happen, because the reads of
a always return the same value. Without this information, the assignment seems to cause
itself to happen. Thus, simple compiler optimizations can lead to an apparent causal loop
without a workable justification order. We must allow these cases, but also prevent cases
where, if r1 6= r2, r3 is assigned a value other than 1.

To validate such an execution we would need a justification order that makes r1 ==
r2 == r3 == 2 a causally consistent execution of Figure 3. To see this behavior, we need a
justification order over valid executions that would justify this behavior in an execution.

Under the model as it stands, how would we go about trying to construct a justification
order to validate this behavior? In this case, we are trying to capture a potential behavior of
the transformed program: the case where 4 happens first, then all of Thread 2, and finally
1 - 3. This would suggest { 4, 5, 6, 1, 2, 3 } as a potential justification order.

4

However, we cannot use this justification order assuming only Causality and Happens-
Before Consistency. The prefix of 4 (b = 2) is empty, so all of the validated executions
for which the empty set is a prefix (i.e., all validated executions) must allow the write 4 to
occur. The problem is that 4 is not guaranteed to occur in all non-prescient executions; it
only occurs when r1 and r2 see the same value. If we were able to exclude all executions in
which r1 and r2 see different values, then we could use the justification order { 4, 5, 6,

1, 2, 3 }
In short, compiler transformations can make certain executions (such as the ones in

which 1 and 2 do not see the same value) impossible. This prohibition, in turn, can lead to
additional executions that seem cyclic.

For the purposes of showing that a prescient action x is justified, a set of behaviors that
are not possible on a particular implementation of a JVM may be specified. This, in turn,
allows other actions to be guaranteed and performed presciently, allowing for new behaviors.

However, this behavior must be tempered. If we allowed arbitrary executions to be
forbidden, we could conceivably, for example, forbid all executions. We could then vacuously
justify any action we liked, because it would occur in every execution. This sort of behavior
is nonsensical; we therefore cannot allow arbitrary executions to be forbidden.

Instead of allowing arbitrary executions to be forbidden, we forbid a set F of justification
order prefixes. If an execution’s justification order begins with an element of this set, it is
forbidden.

We further require that each forbidden execution have a legal alternate execution. We
describe prefixes αx, where α is a sequence of actions, and x is the last element in the prefix.
For each αx ∈ F there exists some alternate, non-forbidden execution E with a justification
order αβ such that β contains no prescient actions.

Finally, we wish to say that if a particular execution is not forbidden, then executions
that are identical to it cannot be forbidden. We construct identical executions by performing
a prescient relaxation of an execution E = αxyβ. If

• x and y are not both synchronization actions,

• x is prescient, y is not, and

• x is not a write seen by y.

then the prescient relaxation of x in E gives an execution E ′ that is identical to E, except
that the justification order of E ′ is αyxβ. An execution E is forbidden if any prescient
relaxation of E starts with a forbidden prefix.

Using forbidden executions, we can show that the execution in Figure 3 respects causality.
This can be done by forbidding all executions where h1 and h2 do not return the same
value. Execution traces where they do return the same value can be provided as alternate
executions.

1.4 Causality Model Summary

Figure 4 summarizes, using the informal notation used in this section, the causality model
proposed for the Java Memory Model. A more formal treatment can be found in Appendix 2.

5

For every execution, there is a total order over actions, consistent with the synchroniza-
tion order, called the justification order.
Any read action must see a write that occurs earlier in the justification order. A volatile
read always sees the result of the last volatile write in the justification order.
An action x is prescient if there exists an action y that occurs after x in the justification
order such that y

hb→ x. Each prescient action x in an execution E must be justified. Let
α be the sequence of actions that precedes x in the justification order of E. Let J be the
set of all non-forbidden hb-consistent executions whose justification order consists of α
followed by non-prescient actions. To prove x is justified, we need to show that for each
E′ in J it must have an action x′ such that:

• x′ is congruent to x; specifically, either x′ and x are the same action, or they are
both reads of the same variable and it would be hb-consistent for x′ to see the
write seen by x, and

• (Prescient Write Rule) if x is a write, then for each thread t, let c be the number
of reads in E′ performed by t that conflict with x′ and happen-before x′. At least
c reads that conflict with x and happen-before x must be performed by t in E.

Justification may involve the use of forbidden executions. See Figure 5 for details.
Given these definitions, an hb-consistent execution E is legal if and only if there exists
a set of forbidden prefixes F such that E is not forbidden by F and using F as the
forbidden prefixes, all of the prescient actions in E are justified.

Figure 4: Strong Causality Model for the Java Memory Model

6

The prescient relaxation of x in E, where E = αxyβ, gives an execution E ′ that
is identical to E, except that the justification order of E ′ is αyxβ. To perform a
prescient relaxation of αxyβ, it is necessary that

• x and y not be both synchronization actions,

• x be prescient and y not be prescient, and

• x not be a write seen by y.

Forbidden executions are defined by a set of forbidden justification order prefixes
F . For each forbidden prefix αx, the action x must be non-prescient and either be a
read or a synchronization action. Given F , an execution E is forbidden by F if any
application of zero or more applications of prescient relaxation to E generates an
execution trace whose justification order starts with a forbidden prefix (typically,
F is empty and no executions are forbidden).
A set of forbidden prefixes must be valid. To show that a set of forbidden prefixes is
valid, we must show that for each prefix αx ∈ F , we have the following constraints:

• If x is a read, either:

– There exists some non-forbidden execution E with a justification order
αx′β such that β contains no prescient actions, and x′ is a read corre-
sponding to x (a read by the same thread of the same variable, but a
different write in α of a different value), or

– Without considering αx as a forbidden prefix, there exists a non-
forbidden execution E with a justification order α′w′x′β′ such that β
contains no prescient actions and x′ sees w′.

• If x is a synchronization action, there exists some non-forbidden execution
E with a justification order αx′β such that β contains no prescient actions,
and x′ must be a different synchronization action (by another thread).

Figure 5: Forbidden Execution Definition

7

2 Formal Model of Strong Causality

This section describes, in more detail, the formal model for Strong Causality of Java pro-
grams. It includes formal definitions for what it means for an action to be present in multiple
executions. In addition, the full semantics for strong causality of a program P are detailed
in Figure 6.

2.1 Definitions

To use justification orders, we must first define what it means for two actions to correspond
to each other in two different executions.

Congruence First, we define a property called congruence. Two justification orders are
congruent to each other if

• The justification orders are the same length, and

• All of the elements in each of the justification orders are the same, and

• If the ith element of the justification order that justifies one happens before the action,
then the ith element of the justification order that justifies the other happens before
the action.

For two justification orders α and α′, this is written α ∼= α′.

Equivalence We also define what it means for two executions to be equivalent. The
justification order α′ of an execution is equivalent to a justification order α (written α ≡ α′)
if α ∼= α′ and all of the information with which αi is annotated (including the monitor
accessed, the variable read or written and the value read or written) is the same as that for
α′

i.

Correspondence Finally, we can say what it means for one action to be in two different
executions, given prefixes α and α′ for those actions. We say that αx 7→ α′x′ (read αx
corresponds to α′x′ if:

• α ≡ α′

• αx ∼= α′x′

• If x is a read, x′ is allowed to read the same value,

• If x′ is a write, it writes the same value as x, and

• x and x′ act on the same variable.

The formal statement of these definitions can be found in Figure 7.

8

E = 〈S, so,
hb→ , jo〉 ∈ valid ⇐⇒ E ∈ hb-consistent∧

∃F : F is legal ∧ E 6∈ forbidden(F)∧
∀x ∈ jo, jo = αxβ∧

x is a read of write w ⇒ w ∈ α∧
x ∈ prescientE ⇒

let J = {〈S ′, so′,
hb′
→ , α′β′〉 |

〈S ′, so′,
hb′
→ 〉 ∈ hb-consistent

∧ α ≡ α′

∧ β′ does not contain prescient actions }
in ∀E ′ = 〈S ′, so′,

hb′
→ , α′β′〉 ∈ J − forbidden(F)

∃x′ ∈ β′ : αx 7→ α′x′

∧ x is a write of v ⇒
∀ threads t ∈ E, threads t′ ∈ E ′ :

| {r | r ∈ t′ ∧ r
hb′
→ x′} |≤

| {r | r ∈ t ∧ r
hb→ x} |

A set of forbidden prefixes F is a set of prefixes of justification orders.
A set of forbidden prefixes F is legal if and only if for each hb-consistent

execution E = 〈S, so,
hb→ , αxβ〉 such that αx ∈ F , either its justifi-

cation order is infinite, or

∃E ′ = 〈S ′, so′,
hb′
→ , α′x′β′〉 ∈ hb-consistent∧

α ≡ α′∧
x′β′ does not contain prescient actions ∧
α′x′ 6∈ F∧
x is a read ⇒ αx 7→ α′x′∧
x is a synchronization action ⇒

x′ is a synchronization action

Given F , we define forbidden(F) to be the set of executions forbidden
by F :

forbidden(F) = {E ′ | E = 〈S, so,
hb→ , αxβ〉∧αx ∈ F ∧E ′ ∈ pr∗(E)}

Figure 6: Full Semantics

9

Given E = 〈S, so,
hb→ , αxβ〉, E ′ = 〈S ′, so′,

hb′
→ , α′β′x′γ′〉,

• α ∼= α′ ⇐⇒

– length(α) = length(α′)

– ∀i, j, 0 ≤ i, j < length(α) : αi
hb→ αj ⇐⇒ α′

i
hb′
→ α′

j

• x = y ⇐⇒ all of the information with which x is annotated (including the
thread performed by, the monitor accessed, the variable read or written and
the value read or written) is the same as that for y.

• α ≡ α′ ⇐⇒

– α ∼= α′

– ∀i, 0 ≤ i < length(α) : αi = α′
i

• αx 7→ α′x′ ⇐⇒

– α ≡ α′

– αx ∼= α′x′

– x = x′, except that if x is a read, then x′ doesn’t seen to see the same
write as x, but only be able to observe the same write as x

• x ∈ prescientE ⇐⇒

– ∃y ∈ β : y
hb→ x

Given E = 〈S, so,
hb→ , αxyβ〉, E ′ = 〈S ′, so′,

hb→ ′, α′y′x′β′〉

E ′ ∈ pr(E) ⇐⇒
αxyβ ≡ α′x′y′β′∧
x and y are not both synchronization actions ∧
x ∈ prescientE ∧ y 6∈ prescientE∧
x is not a write seen by y.

Figure 7: Definitions

10

