
Almost One Page Informal Description of Manson/Pugh model

Note: the issue of what it means for an action to occur in more than one execution is elided.

There is a happens-before relation
hb→ defined on actions i

hb→ j if i is before j in
program order, if i is an unlock or volatile write and j is a matching lock or volatile read

that comes after it in the total order over synchronization actions, or if i
hb→ k

hb→ j for some
k.

A read r is allowed to see a write w to the same variable v if r does not happen-before

w and if there is no other write w′ to v such that w
hb→ w′ hb→ r.

An execution that has only allowed reads and respects intra-thread semantics (see Ap-
pendix B) is a happens-before consistent execution, or hb-consistent for short.

For every execution, there is a total order over actions, consistent with the synchronization
order, called the causal order.

An action x is prescient if there exists an action y that occurs after x in the causal order

such that y
hb→ x.

Any read action must see a write that occurs earlier in the causal order. A volatile read
always sees the result of the last volatile write in the causal order.

Each prescient action x in an execution E must be justified. Let α be the sequence
of actions that precedes x in the causal order of E. Let J be the set of all non-forbidden
hb-consistent executions whose causal order consists of α followed by non-prescient actions
(see Appendix C for an algorithm to generate J). To prove x is justified, we need to show
that for each E ′ in J :

• an action x′, congruent to x, occurs in E ′ (either x′ and x are the same action, or they
are both reads of the same variable and it would be hb-consistent for x′ to see the write
seen by x), and

• if x is a write, then for each read action y ∈ E ′ such that y reads the same variable as

x′ and y
hb′
→ x′, we need to show y ∈ α.

Justification may involve the use of forbidden executions. Forbidden executions are de-
fined by a set of forbidden causal order prefixes F . Given F , an execution E is forbidden if
the causal order for E starts with a prefix in F (typically, F is empty and no executions are
forbidden).

A set of forbidden prefixes must be valid. To show that a set of forbidden prefixes is
valid, we must show that:

• For each prefix αx ∈ F , there exists some non-forbidden execution E with a causal
order αβ such that β contains no prescient actions.

• Consider any execution E with causal order αxyβ where:

– x and y are not both synchronization actions, and

– x is prescient, y is not.

1



– x is not a write seen by y.

Given this, the prescient relaxation of x in E gives an execution E ′ that is identical to
E, except that the causal order of E ′ is αyxβ.

If an execution E is not forbidden, then a prescient relaxation of E may not be forbid-
den.

When we say that αx is a forbidden prefix, we mean that whenever an execution’s causal
order starts with the prefix α, the action x cannot be the next action in the causal order.

Given these definitions, an hb-consistent execution E is legal if and only if there exists a
set of forbidden prefixes F such that E is not forbidden by F and using F as the forbidden
prefixes, all of the prescient actions in E are justified.

2



Appendix

These appendices include clarifications that have been requested.

A Differences with Old Model

Here is a brief rundown on the differences between the new model and the model in the
community review draft.

• Consistency is now called hb-consistency.

• Previously, we allowed a prescient read action to see a write that occurs later in the
causal order.

Now all reads must see writes that occur earlier in the causal order.

• A write w cannot occur presciently if in the justifying execution there is a conflicting

read r such that r
hb→ w.

• Forbidden sets are defined in a slightly different way. In particular, they are global, so
that in order to justify an action x in an execution E, you may not forbid E.

B Intra-thread Semantics

Given an execution where each read sees a write that it is allowed to see by the happens-
before constraint, we verify that the execution respects intra-thread semantics as follows.
For each thread t, we go through the actions of that thread in program order. For each
non-read action x, we verify that the behavior of that action is what would follow from the
previous actions in that thread according to the JLS/JVMS. For a read action, we only verify
that the variable read is the one that is determined by the previous actions in the thread
according to the JLS; the value seen by the read is determined by the memory model.

C Generating Non-prescient Extensions

Say we have a program P , and a partial causal order α. We can compute the set of all
non-prescient extensions to α as follows.

• Let S be a set of partial and complete causal orders, initialized to be the singleton set
containing α.

• Let W be a worklist of causal orders to be explored, initialized to S.

• While W is non-empty, choose and remove a causal order β from W

3



– For each thread t in P , select the first statement in program order whose execution
is not in β.

∗ If that statement is not a read, then evaluate that statement in the thread-
local context of β, generating action x, and add βx to both S and W .

∗ If that statement is a read, determine, in the thread-local context of β, which
variable v will be read. For each write w ∈ β of v that could be seen by the
read, generate the action r corresponding to that read seeing w, and add βr
to both S and W .

• When W is empty, the complete causal orders in S corresponding to hb-consistent
executions are the non-prescient extensions to α.

4


