
Multithreaded semantics for Java

William Pugh, Univ. of Maryland 1

The Semantics of
Multithreaded Java

William Pugh

Dept. Of Computer Science
Univ. of Maryland

http://www.cs.umd.edu/~pugh/java

2

Overview

¥ Memory Models, and the JMM in particular

¥ Memory models involve the compiler
Ð an example: Coherence

¥ Need to make safety guarantees
Ð even for improperly synchronized code

¥ Integration of MM and language
Ð what does volatile mean?

3

What is a memory model?

¥ If two threads have
a data race, what
behaviors are
allowed?

¥ Sequential
consistency
Ð interleave memory

operations consistent
with original ordering
in each thread

a = 0; b = 0

x = a

b = 1

y = b

a = 1

? x = 1 & y = 1

4

MMÕs can interfere with
optimization

¥ In each thread, no ordering constraint
between actions in that thread

¥ Compiler could decide to reorder

¥ Processor architecture might perform out of
order

¥ Sequential consistency prohibits almost all
reordering of memory operations
Ð unless you can prove accessed by single thread

5

Some processors support
Sequential Consistency

¥ But most compilers violate it

¥ Interesting experiment
Ð disable all optimization that could violate

sequential consistency

Ð examine effect on performance

6

Do programmers care about the
details of MMÕs?

¥ If you are writing synchronization
primitives
Ð You care deeply about the memory model your

processor supports

¥ But if you have synchronized everything
properly
Ð do you really care?

Ð but do you have everything synchronized
properly?

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 2

7

The Java Memory Model

¥ Chapter 17 of the Java Language
Specification (and Chap 8 of the VM Spec)

¥ Describes how threads interact via locks
and read/writes to memory

¥ Done in a style foreign to other work on
memory models

¥ Very hard to understand
Ð At first I thought I was just dense

Ð Eventually I figured out that no one
understands it 8

The Java Memory Model is dead

¥ Was intended to have Coherence
Ð For each memory location in isolation, SC

Ð Unanticipated impact on compiler

¥ I found a hairball
Ð imposes constraints no one intended

Ð makes system unusable

¥ Proof by invocation of Guy Steele

¥ It will be replaced, not patched
Ð but with what?

9

Coherent memory

¥ Once you see an
update by another
thread
Ð canÕt forget that

youÕve seen the update

¥ Cannot reorder two
reads of the same
memory location

p.x =0

p.x = 1 a = p.x

b = p.x

assert(a ≤ b)

10

Reads kill reuse

¥ Must treat Òmay readsÓ
as kills
Ð a read may cause your

thread to become aware
of a write by another
thread

¥ CanÕt replace c = p.x
with c = a

p and q might
point to same object;

p.x = 0

p.x = 1 a = p.x

b = q.x

assert(p = = q implies a ≤ b ≤ c)

c = p.x

11

Most JVMÕs violate Coherence

¥ Every JVM IÕve tested that eliminates
redundant loads violates Coherence:
Ð SunÕs Classic Wintel JVM

Ð SunÕs Hotspot Wintel JVM

Ð IBMÕs 1.1.7b Wintel JVM

Ð SunÕs production Sparc Solaris JVM

Ð MicrosoftÕs JVM

¥ Bug # 4242244 in JavasoftÕs bug parade
Ð JVMÕs donÕt match spec

12

¥ Preliminary work by Dan Scales, DecWRL

¥ Made reads kill, have side effects

¥ Better is probably possible,
but will require work

¥ Reads have side effects
but can be done
speculatively
Ð change intermediate representation

Impact on Compiler
Optimizations?

compress 1.18 mpegaudio 1.44
jess 1.03 richards 0.98
cst 1.01 mtrt 1.02
db 1.04 jack 1.06
si 1.03 tsgp 1.36
javac 0.99 tmix 1.11

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 3

13

OK, what do we want

¥ Not going to change Java threading model
Ð even if people donÕt like it

¥ Have to keep in mind that most Java
programmers havenÕt taken an OS course
Ð CanÕt hold them to high standards

¥ Incorrectly synchronized programs must
have a (safe) meaning
Ð canÕt allow a cracker to use improperly

synchronized code to attack a system.
14

Rest of the talk

¥ ⇒ Goals for new memory model

¥ Weak memory models
Ð what can go wrong

¥ Safety Guarantees

¥ Changing semantics

¥ Immutable objects / Atomic object creation

¥ Future

15

Goals for new Memory Model

¥ Preserve existing and/or necessary safety
guarantees
Ð even in the presence of data races

¥ Have a clear specification we can reason
about

¥ Allow efficient immutable classes

¥ New MM should not break ÒreasonableÓ
existing code

16

Goals for new MM (continued)

¥ In code that doesnÕt involve locks or
volatile variables, use as much as possible
of the standard compiler optimization
techniques

¥ Data-race-free programs should be
guaranteed sequentially consistent results
Ð Constraints not necessary to ensure SC for data-

race-free programs should be imposed with
Òcare and deliberationÓ.

17

Rest of the talk

¥ Goals for new memory model
¥ ⇒ Weak memory models

Ð what can go wrong

¥ Safety Guarantees

¥ Changing semantics

¥ Immutable objects / Atomic object creation

¥ Future

18

Weak memory models

¥ Initially,
Mem[100] = 200
Mem[200] = 17
Mem[300] = 666

¥ On processor 1:

Mem[300] = 42
Mem[100] = 300

¥ On processor 2:

R1 := Mem[100]
R2 := Mem[R1]

R2 = ?
17, 42, 666(?)

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 4

19

Not much of a surprise

¥ Compiler could reorder write instructions

¥ Processor might reorder write instructions

¥ Put in a memory barrier...

20

Weak memory models

¥ Initially,
Mem[100] = 200
Mem[200] = 17
Mem[300] = 666

¥ On processor 1:

Mem[300] = 42
MemBarrier
Mem[100] = 300

¥ On processor 2:

R1 := Mem[100]
R2 := Mem[R1]

R2 = ?
17, 42, 666(?)

?

21

More of a surprise

¥ The data dependence does not prevents
reordering of instructions on processor 2

¥ How could this happen?

¥ Spec says it can happen (Alpha, IA-64, É)

¥ Can it happen in reality?
Ð Value prediction

Ð Cache memories

22

Processor weak memory models

Main
Memory

cache

processor

cache

processor

read/write

acquire/release acquire/release

read/write

23

300

Processor weak memory models

cache200 17 666 17 666

200 17 666
Release/MemBarrier

Mem[300] = 42

Mem[100] = 300

R2 = Mem[R1]

R1 = Mem[100]

300 42

300 42

R1
300

R2
666

Invalidate
not processed
until next
synchronization

24

What machines can it happen on?

¥ Only on shared memory multiprocessors

¥ SunÕs TSO (Total store order), PSO (Partial
store order) and RMO (Relaxed Memory
Order) all strong enough to prevent it
Ð Sun SparcÕs all run in TSO order

¥ because too much of SunÕs code breaks under any
looser model

Ð MAJC runs under RMO
¥ although some details still up in the air

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 5

25

It does go wrong on some
machines

¥ Multiprocessor Dec Alphas and Intel IA-64
machines
Ð at least according to the spec

Ð not clear if any current implementations would
allow it to happen

¥ Intel IA-32?
Ð not sure; probably allowed by spec

Ð not clear if current implements allow it

26

Same issues, but for object
initialization

¥ Thread 1
Ð initialize an object at address X,

Ð Make Foo.x reference the object at address X

¥ Thread 2
Ð reads Foo.x, gets X

Ð reads field of object at address X, sees pre-
initialization value

27

This is bad!

¥ If we see an uninitialized value, we might
see something that isnÕt typesafe
Ð seeing a random integer isnÕt so great either

¥ We could put a memory barrier after object
initialization
Ð but that isnÕt enough (as before)

Ð need a memory barrier for reading processor

28

A simple fix

¥ Allocate objects out of zeroed memory
Ð Zero memory during garbage collection

Ð All processors know that the memory was
initially zero.

¥ If we see a pre-initialized ptr, we see null
Ð zero for numerics, false for boolean

¥ Matches Java semantics
Ð Fields set to default value (null/false/zero)

before constructor is executed

29

Not sufficient

¥ This fix isnÕt sufficient
Ð for several reasons

¥ Consider reading the vtbl ptr of an object
Ð points to the virtual function table and class

data for object

¥ If we saw null, virtual method dispatch
would generate a segmentation fault for VM

¥ instanceof and checkedCast could also go
wrong

30

What else can go wrong

¥ Can see 0 for any world in object header
Ð implementation dependent as to what is stored

in header

¥ Can see 0 for array length
Ð can throw invalid IndexOutOfBoundsException

¥ Class loading...

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 6

31

Class loading

¥ class Foo {
 public static Object x;
 }

¥ On processor 1:

// First use of Bar
// loads class Bar
tmp = new Bar();
Foo.x = tmp;

¥ class Bar {
public int hashCode()

{ É };
}

¥ On processor 2:

Foo.x.hashCode();

32

Now what can go wrong

¥ Nothing in code executed by processor 2 to
indicate that it might be executing code
from a new class

¥ Any field in BarÕs vtbl or class data could
be zero
Ð while others could be valid

¥ Parts of native code for Bar could be zero

33

Global memory barriers

¥ Class loading requires global memory
barrier
Ð each processor must do a memory barrier

Ð but initiated by only one processor

¥ May need to synchronize instruction as well
as data caches

¥ Not cheap/easy to do on many systems

34

Code generation/specialization

¥ Generating native code also requires global
memory barrier

¥ In system like HotSpot
Ð new code is generated as profile data is

collected

Ð not just the first time a method is executed

35

OK, so safety is hard

¥ Hopefully, IÕve convinced you that many
safety issues, often taken for granted, are
difficult on a SMP with a weak memory
model

¥ Need to formalize the safety issues we will
guarantee

36

Rest of the talk

¥ Goals for new memory model

¥ Weak memory models
Ð what can go wrong

¥ ⇒ Safety Guarantees

¥ Changing semantics

¥ Immutable objects / Atomic object creation

¥ Future

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 7

37

Safety Guarantees

¥ For reads of fields and arrays
Ð type safety

Ð not-out-of-thin-air safety

¥ VM safety - despite lack of synchronization
Ð All operations other than reading a field or

array are as usual
¥ canÕt crash/violate VM

¥ No new exceptions

¥ array length is always correct

38

Implementing type safety

¥ Allocate objects out of memory that
everyone agrees has been zeroed
Ð since memory was zeroed, every processor

must have done a memory barrier

39

Implementing VM safety

¥ Global memory barrier after class loading
and code generation
Ð work to make this efficient

¥ Null vtbl - two solutions
Ð check if null; if so, mem barrier and reload

Ð Handle SIGSEGV and recover

¥ Zero array length
Ð check if 0; if so, mem bar and reload

¥ for bounds check, only check once out of bounds
exception is detected 40

Class loading safety

¥ Current spec says that before executing
getstatic, putstatic, invokestatic or new on a
class, you must load the class or verify that
another class has loaded it
Ð Add: if you verify that another class has loaded

it, you must do an acquire so as to see all writes
by the thread that initialized it

Ð Add invokevirtual, invokespecial, getfield,
putfield

41

Implementing
class loading safety

¥ You donÕt really want to check that a class
has been loaded before each invokevirtual

¥ Loading/initializing a class ÒpreparesÓ it

¥ Whenever you do a global memory barrier,
ÒpreparedÓ classes become ÒdistributedÓ

¥ Before doing a new on a ÒpreparedÓ class,
you must do a global memory barrier

42

Rest of the talk

¥ Goals for new memory model

¥ Weak memory models
Ð what can go wrong

¥ Safety Guarantees
¥ ⇒ Changing semantics

¥ Immutable objects / Atomic object creation

¥ Future

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 8

43

Changing semantics

¥ volatile
Ð tighten to make more uses valid

¥ final
Ð change to enable optimizations

¥ useless locks
Ð change to enable optimizations

44

Changing the semantics of
volatile

¥ C++ spec:
Ð There is no implementation independent

meaning for volatile

¥ Existing Java spec
Ð Actions on volatile variables are SC

¥ but actions on normal variables and volatile
variables can be reordered

¥ Change semantics of volatile so that
Ð read of volatile is treated as acquire

Ð write of volatile is treated as release

45

Example of new use of volatile

¥ Double-check idiom
// used (incorrectly) in many places

if (helper == null) // helper is volatile
 synchronized(this) {

if (helper == null) {
helper = new Helper();

}}

¥ Would also be fixed by atomic object
creation (see later) 46

Example of new use of volatile

¥ Advanced Double-check idiom
if (!initialized) // initialized is volatile
 synchronized(this) {

if (!initialized) {
a = new A();
b = new B();
b.update(...);
initialized = true;

}}

¥ Not handled by atomic object creation

47

Changing the semantics of final

¥ Under current semantics, a memory barrier
effects final fields
Ð forces them to be reloaded from memory

¥ Change semantics to allow them to remain
in registers
Ð also across unknown method calls

¥ Ugly if objects escapes constructor before
final fields initialized

48

Changing the semantics of
useless locks

¥ Right now, a lock/unlock is always treated
as a memory barrier

¥ Even if the lock/unlock is done on an object
not visible to other threads
Ð synchronized (new Object()) {} is a memory

barrier

¥ Even if it is a recursive lock
Ð e.g., when a synchronized method calls another

synchronized method

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 9

49

What MM semantics allow this?

¥ Lazy Release Consistency?

¥ Information only needs to flow
Ð from Thread 1 to Thread 2 if

Ð Thread 1 does a release on X

Ð Thread 2 does an acquire on the same X

¥ Useful in software DSM systems
Ð not too useful in hardware DSM systems

¥ Very useful for compilers!

50

Recursive locks are no-ops

Lock X

Unlock X

Lock X

Lock X

Unlock X

Unlock X

51

Compilers and
Lazy Release Consistency

¥ Locks/unlocks on thread local objects are
no-ops
Ð under old semantics, memory barrier required

¥ Java monitors are recursive
Ð recursive locks/unlocks become no-ops

¥ under old semantics, memory barrier required

52

Rest of the talk

¥ Goals for new memory model

¥ Weak memory models
Ð what can go wrong

¥ Safety Guarantees

¥ Changing semantics
¥ ⇒ Immutable objects / Atomic object

creation

¥ Future

53

Immutable Objects

¥ Many Java classes represent immutable
objects
Ð e.g., String

¥ Creates many serious security holes if
Strings are not truly immutable
Ð probably other classes as well

Ð should do this in String implementation

54

Why arenÕt Strings immutable?

¥ A String object is initialized to have default
values for itÕs fields

¥ Then the fields are set in the constructor

¥ Thread 1 could create a String object

¥ pass it to Thread 2

¥ which calls a sensitive routine

¥ which sees the fields change from their
default values to their final values

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 10

55

Making String immutable

¥ Could make String methods synchronized
Ð most programmers donÕt think methods for

immutable objects need to be synchronized

Ð slow down String methods on all platforms
¥ only needs to be synchronized on SMPÕs with weak

memory models

¥ doesnÕt need synchronization on SPARC or
MAJC(?) SMPÕs

56

What we need

¥ Some way of making a class truly
immutable

¥ With minimal (zero?) performance impact
on systems where nothings needs to be done

¥ Not too ugly

57

Atomic object creation

¥ Many na�ve programmers assume object
creation is atomic
Ð Subsumes truly immutable

objects

¥ They are wrong
¥ In this code, a could

get the value 1, 3 or 0

¥ No way to make a constructor synchronized
Ð wouldnÕt work anyway

p = new Point(1,2);
start two threads...

p = new Point(3,4); a = p.x

58

Should object creation
be atomic?

¥ Advocated by Sun
Ð no impact on SPARC/MAJC

¥ Simple approach would require memory
barriers in front of each getfield
Ð Factor of 3 slowdown on 2 processor Alpha

¥ Numbers by Sanjay Ghemawat, DEC SRC

¥ Simple optimization improves this
Ð Factor of 1.87 slowdown on 2 processor Alpha

59

A solution?

¥ Guarantee that reads of final fields see the
final value, not the initial default value
Ð assuming object doesnÕt escape before final

fields set

¥ Also fits well with new semantics of final

¥ Might be much cheaper than full atomic
object creation

¥ Better programming style than assuming
atomic object creation?

60

Not as simple as that

¥ No way for elements of an array to be final

¥ For Strings, have to see final values for
elements of character array

¥ SoÉ
Ð Read of final field is treated as a weak acquire

¥ matching a release done when object is constructed

Ð weak in that it only effects things dependent on
value read

¥ no compiler impact

Multithreaded semantics for Java

William Pugh, Univ. of Maryland 11

61

Implementing these semantics

¥ Start with the idea of doing a memory
barrier before each getfield of a final field
Ð 1666 of 9018 fields in rt.jar are final

Ð 2292 could be final

¥ Only do the memory barrier if object is
young
Ð Objects are no longer young once a global

memory barrier occurs after their construction

62

Checking for young objects

¥ Several ways it could be done
Ð Here is one

¥ Put young objects in addresses with sign bit
off

¥ Put old objects and stack allocated objects
in addresses with sign bit on

¥ Conditional memory barrier:
if (addr < 0) MemBar;

63

Guidelines for Compiler Writers

¥ DonÕt assume that
Ð if you drop a value cached in a register,

Ð you can reload the value and get the same value

Ð even though you donÕt see any possible writes

¥ Memory barriers induced by acquire/release
Ð moving something past a barrier isnÕt

symmetric

64

Rest of the talk

¥ Goals for new memory model

¥ Weak memory models
Ð what can go wrong

¥ Safety Guarantees

¥ Changing semantics

¥ Immutable objects / Atomic object creation
¥ ⇒ Future

65

Future

¥ The Java Memory Model will be
completely replaced

¥ Trying to get lots of feedback
Ð mailing list, web page

Ð road shows

Ð BOF at OOPSLA

¥ Unclear how endgame will be played
Ð All Java licenseeÕs get a voice

66

Where next?

¥ Java Memory model mailing list
Ð http://www.cs.umd.edu/~pugh/java/memoryModel

Ð Lots of discussion going on

¥ WonÕt get changed for next rev of JLS

¥ Some people at Sun want to avoid a JSR
Ð but if changes have a substantial impact on

some Java licencees, probably unavoidable

