Actions and Executions

An action \(a \) is described by a tuple \(\langle t, k, v, u \rangle \), comprising:

- \(t \) - the thread performing the action
- \(k \) - the kind of action: volatile read, volatile write, (normal or non-volatile) read, (normal or non-volatile) write, lock or unlock. Volatile reads, volatile writes, locks and unlocks are synchronization actions.
- \(v \) - the variable or monitor involved in the action
- \(u \) - an arbitrary unique identifier for the action

An execution \(E \) is described by a tuple \(\langle P, A, p^\rightarrow, s^\rightarrow, W, V, s_{sw}^\rightarrow, hb^\rightarrow \rangle \), comprising:

- \(P \) - a program
- \(A \) - a set of actions
- \(p^\rightarrow \) - program order, which for each thread \(t \), is a total order all actions performed by \(t \) in \(A \)
- \(s^\rightarrow \) - synchronization order, which is a total order over all synchronization actions in \(A \)
- \(W \) - a write-seen function, which for each read \(r \) in \(A \), gives \(W(r) \), the write action seen by \(r \) in \(E \).
- \(V \) - a value-written function, which for each write \(w \) in \(A \), gives \(V(w) \), the value written by \(w \) in \(E \).
- \(s_{sw}^\rightarrow \) - synchronizes-with, a partial order over synchronization actions.
- \(hb^\rightarrow \) - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before are uniquely determined by the other components of an execution and the rules for well-formed executions.
Definitions

1. **Definition of synchronizes-with** If \(x \xrightarrow{so} y \) and \(x \) is a volatile write or an unlock, and \(y \) is a volatile read of the same variable as \(x \), or a lock of the same monitor as \(x \), then \(x \xrightarrow{sw} y \). Volatile writes and unlocks are referred to as *releases*, and volatile reads and locks are referred to as *acquires*.

2. **Definition of happens-before** The happens-before order \(\xrightarrow{hb} \) is the transitive closure of \(\xrightarrow{sw} \cup \xrightarrow{po} \).

3. **Restrictions of partial orders and functions** We use \(f|_d \) to denote the function given by restricting the domain of \(f \) to \(d \): for all \(x \in d \), \(f(x) = f|_d(x) \) and for all \(x \not\in d \), \(f(x) = \bot \). Similarly, we use \(\xrightarrow{e} |_d \) to represent the restriction of the partial order \(\xrightarrow{e} \) to the elements in \(d \): for all \(x, y \in d \), \(x \xrightarrow{e} \quad y \) if and only if \(x \xrightarrow{e} |_d y \). If either \(x \not\in d \) or \(y \not\in d \), then it is not the case that \(x \xrightarrow{e} |_d y \).

Well-formed Executions

We only consider well-formed executions. An execution \(E = \langle P, A, \xrightarrow{po}, \xrightarrow{so}, W, \xrightarrow{sw}, \xrightarrow{hb} \rangle \) is well formed if the following conditions are true:

1. **Each read sees a write in the execution. All volatile reads see volatile writes, and all non-volatile reads see non-volatile writes.** For all reads \(r \in A \), we have \(W(r) \in A \) and \(W(r).v = r.v \). If \(r.k \) is a volatile read, then \(W(r).k \) is a volatile write, otherwise \(r.k \) is a normal read, and \(W(r).k \) is a normal write.

2. **Synchronization order is consistent with program order** There do not exist \(x, y \in A \), such that \(x \xrightarrow{so} y \land y \xrightarrow{po} x \). The transitive closure of synchronization order and program order is acyclic.

3. **The execution obeys intra-thread consistency** For each thread \(t \in A \), the actions performed by \(t \) in \(A \) are the same as would be generated by that thread in program-order in isolation, with each write \(w \) writing the value \(V(w) \) and each read \(r \) seeing the value \(V(W(r)) \). The program-order must reflect the program order of \(P \).

4. **The execution obeys happens-before consistency** For all reads \(r \in A \), it is not the case that \(r \xrightarrow{hb} W(r) \) or that there exists a write \(w \in A \) such that \(w.v = r.v \) and \(W(r) \xrightarrow{hb} w \xrightarrow{hb} r \).

5. **The execution obeys synchronization-order consistency** For all volatile reads \(r \in A \), it is not the case that \(r \xrightarrow{so} W(r) \) or that there exists a write \(w \in A \) such that \(w.v = r.v \) and \(W(r) \xrightarrow{so} w \xrightarrow{so} r \).
Executions valid according to the Java Memory Model

A well-formed execution $E = \langle P, A, poop, sso, W, Vi, swi, hb \rangle$ is validated by committing actions from A. If all of the actions in A can be committed, then the execution is valid according to the Java memory model.

Starting with the empty set as C_0, we perform several steps where we take actions from the set of actions A and add them to a set of committed actions C_i to get a new set of committed actions C_{i+1}. To demonstrate that this is reasonable, for each C_i we need to demonstrate an execution E_i containing C_i that meets certain conditions.

Formally, there exists

- Sets of actions C_0, C_1, \ldots, C_n such that
 - $C_0 = \emptyset$
 - $C_i \subseteq C_{i+1}$
 - $C_n = A$

- Well-formed executions E_1, \ldots, E_n, where $E_i = \langle P, A_i, poop, sso, W_i, Vi, swi, hb \rangle$.

Given these sets of actions $C_0 \ldots C_n$ and executions $E_1 \ldots E_n$, every action in C_i must be one of the actions in E_i. All actions in C_i must share the same relative happens-before order and synchronization order in both E_i and E. Formally,

1. $C_i \subseteq A_i$
2. $hb_i | C_i = hb | C_i$
3. $sso_i | C_i = sso | C_i$

The values written by the writes in C_i must be the same in both E_i and E. Only the reads in C_{i-1} need to see the same writes in E_i as in E. Formally,

4. $V_i | C_i = V | C_i$
5. $W_i | C_{i-1} = W | C_{i-1}$

All reads in E_i that are not in C_{i-1} must see writes that happen-before them. All reads in $C_i - C_{i-1}$ must see writes in C_{i-1} in both E_i and E. Formally,

6. For any read $r \in A_i - C_{i-1}$, we have $W_i(r) \overset{hb_i}{\rightarrow} r$
7. For any read $r \in C_i - C_{i-1}$, we have $W_i(r) \in C_{i-1}$ and $W(r) \in C_{i-1}$

A set of synchronization edges is *sufficient* if it is the minimal set such that you can take the transitive closure of those edges with program order edges, and determine all of the happens-before edges in the program. This set is unique.

Given a set of sufficient synchronize-with edges for E_i, if there is a release-acquire pair that happens-before an action you are committing, then that pair must be present in all E_j, where $j \geq i$. Formally,

8. Let $sswi_i$ be the swi edges that are also in the transitive reduction of hb. We call $sswi_i$ the sufficient synchronize-with edges for E_i. If $x \overset{sswi_i}{\rightarrow} y \overset{hb_i}{\rightarrow} z$ and $z \in C_i$, then $x \overset{swj}{\rightarrow} y$ for all $j \geq i$.
