
New description of the Unified Memory Model Proposal for Java

Jeremy Manson, William Pugh and Sarita Adve

April 29, 2004, 9:35pm

0.1 Actions and Executions

An action a is described by a tuple 〈t, k, v, u〉, comprising:

t - the thread performing the action

k - the kind of action: volatile read, volatile write, (normal or non-volatile) read, (normal or non-volatile)
write, lock or unlock. Volatile reads, volatile writes, locks and unlocks are synchronization actions.
There are also external actions, and catatonia actions.

v - the variable or monitor involved in the action

u - an arbitrary unique identifier for the action

An execution E is described by a tuple 〈P,A,
po→,

so→,W, V,
sw→ ,

hb→ ,
ob→ 〉, comprising:

P - a program

A - a set of actions
po→ - program order, which for each thread t, is a total order all actions performed by t in A

so→ - synchronization order, which is a total order over all synchronization actions in A

W - a write-seen function, which for each read r in A, gives W (r), the write action seen by r in E.

V - a value-written function, which for each write w in A, gives V (w), the value written by w in E.
sw→ - synchronizes-with, a partial order over synchronization actions.

hb→ - happens-before, a partial order over actions

ob→ - observable order, a total order over all actions that is consistent with the happens-before order and
synchronization order.

Note that the synchronizes-with and happens-before are uniquely determined by the other components
of an execution and the rules for well-formed executions.

Two of these kinds of actions need special descriptions.

external actions - An external action is an action that is observable outside of an execution. An external
action tuple contains an additional component, which contains the results of the external action. This
may be information as to the success or failure of the action, and any values read by the action.

Parameters to the external action (e.g., which bytes are written to which socket) are not part of the
external action tuple. These parameters are set up by other actions within the thread and can be
determined by examining the intra-thread semantics. They are not explicitly discussed in the memory
model.

The primary impact of observable actions comes from the fact that if an external action is observed,
it can inferred that other actions occur in a finite prefix of the observable order.

1

catatonia action - A catatonia action is only performed by a thread that is in an infinite loop in which no
memory or observable actions are performed. If a thread performs a catatonia action, it will be followed
by an infinite number of catatonia actions. These actions are introduced so that we can explain why
such a thread may cause all other threads to stall and fail to make progress.

0.2 Happens-Before Edges

If we have two actions x and y, we use x
hb→ y to mean that x happens before y. If x and y are actions of

the same thread and x comes before y in program order, then x
hb→ y.

Synchronization actions also induce happens-before edges. We call the resulting edges synchronized-with
edges, and they are defined as follows:

• There is a happens-before edge from an unlock action on monitor m to all subsequent lock actions on
m (where subsequent is defined according to the synchronization order).

• There is a happens-before edge from a write to a volatile variable v to all subsequent reads of v by any
thread (where subsequent is defined according to the synchronization order).

• There is a happens-before edge from an action that starts a thread to the first action in the thread it
starts.

• There is a happens-before edge between the final action in a thread T1 and an action in another thread
T2 that detects that T1 has terminated. T2 may accomplish this by calling T1.isAlive() or doing a
join action on T1.

• If thread T1 interrupts thread T2, there is a happens-before edge from the interrupt by T1 to the
point where any other thread (including T2) determines that T2 has been interrupted (by having an
InterruptedException thrown or by invoking Thread.interrupted or Thread.isInterrupted).

In addition, we have three other rules for generating happens-before edges.

• There is a happens-before edge from the write of the default value (zero, false or null) of each variable
to the first action in every thread. No actions happen-before a write to a variable of a default value.

• There is a happens-before edge from the end of a constructor of an object to the start of a finalizer for
that object.

• Happens-before is transitively closed. In other words, if x
hb→ y and y

hb→ z, then x
hb→ z.

0.3 Definitions

1. Definition of synchronizes-with If x
so→ y and x is a volatile write or an unlock, and y is a volatile

read of the same variable as x, or a lock of the same monitor as x, then x
sw→ y. Volatile writes and

unlocks are referred to as releases, and volatile reads and locks are referred to as acquires.

2. Definition of happens-before The happens-before order hb→ is the transitive closure of sw→ ∪ po→ .

3. Definition of sufficient synchronization edges. A set of synchronization edges is sufficient if it is
the minimal set such that you can take the transitive closure of those edges with program order edges,
and determine all of the happens-before edges in the execution. This set is unique.

4. Restrictions of partial orders and functions We use f |d to denote the function given by restricting
the domain of f to d: for all x ∈ d, f(x) = f |d(x) and for all x 6∈ d, f(x) = ⊥. Similarly, we use e→ |d
to represent the restriction of the partial order e→ to the elements in d: for all x, y ∈ d, x

e→ y if and
only if x

e→ |d y. If either x 6∈ d or y 6∈ d, then it is not the case that x
e→ |d y.

2

0.4 Well-formed Executions

We only consider well-formed executions. An execution E = 〈P,A,
po→,

so→,W, V,
sw→,

hb→ ob→〉 is well formed if
the following conditions are true:

1. Each read sees a write in the execution. All volatile reads see volatile writes, and all non-
volatile reads see non-volatile writes. For all reads r ∈ A, we have W (r) ∈ A and W (r).v = r.v.
If r.k is a volatile read, then W (r).k is a volatile write, otherwise r.k is a normal read, and W (r).k is
a normal write.

2. Happens-before order is acyclic. The transitive closure of synchronization order and program
order is acyclic.

3. The execution obeys intra-thread consistency. For each thread t, the actions performed by t in
A are the same as would be generated by that thread in program-order in isolation, with each write
w writing the value V (w), given that each read r sees the value V (W (r)). values seen by each read
are determined by the memory Note that intrathread semantics predict by intrathread semantics, but
take for granted the values seen by reads. The program-order must reflect the program order in which
the actions would be performed according to the intrathread semantics of P .

4. The execution obeys happens-before consistency. For all reads r ∈ A, it is not the case that
r

hb→ W (r) or that there exists a write w ∈ A such that w.v = r.v and W (r) hb→ w
hb→ r.

5. The execution obeys synchronization-order consistency. For all volatile reads r ∈ A, it is not
the case that r

so→ W (r) or that there exists a write w ∈ A such that w.v = r.v and W (r) so→ w
so→ r.

0.5 Observable External Actions

An execution may have an uncountably infinite number of actions. This models a non-terminating execution.
In an infinite execution, the only external actions that can be observed are those that occur in a finite prefix
of the observable order.

Since we can have an uncountable infinity of actions, that means an execution may contain an (unob-
servable) action x such that an infinite number of actions occur before x in the observable order.

3

0.6 Executions valid according to the Java Memory Model

A well-formed execution E = 〈P,A,
po→,

so→,W, V,
sw→,

hb→,
ob→〉 is validated by committing actions from A. If all

of the actions in A can be committed, then the execution is valid according to the Java memory model.
Starting with the empty set as C0, we perform several steps where we take actions from the set of actions

A and add them to a set of committed actions Ci to get a new set of committed actions Ci+1. To demonstrate
that this is reasonable, for each Ci we need to demonstrate an execution Ei containing Ci that meets certain
conditions.

Formally, there exists

• Sets of actions C0, C1, . . . , Cn such that

– C0 = ∅
– Ci ⊆ Ci+1

– Cn = A

• Well-formed executions E1, . . . , En, where Ei = 〈P,Ai,
poi→,

soi→,Wi, Vi,
swi→ ,

hbi→,
obi→〉.

Given these sets of actions C0...Cn and executions E1...En, every action in Ci must be one of the actions in
Ei. All actions in Ci must share the same relative happens-before order and synchronization order in both
Ei and E. Formally,

1. Ci ⊆ Ai

2. hbi→ |Ci = hb→ |Ci

3. soi→ |Ci
= so→ |Ci

The values written by the writes in Ci must be the same in both Ei and E. Only the reads in Ci−1 need to
see the same writes in Ei as in E. Formally,

4. Vi|Ci
= V |Ci

5. Wi|Ci−1 = W |Ci−1

All reads in Ei that are not in Ci−1 must see writes that happen-before them. Each read r in Ci − Ci−1

must see writes in Ci−1 in both Ei and E, but may see a different write in Ei from the one it sees in E.
Formally,

6. For any read r ∈ Ai − Ci−1, we have Wi(r)
hbi→ r

7. For any read r ∈ Ci − Ci−1, we have Wi(r) ∈ Ci−1 and W (r) ∈ Ci−1

Given a set of sufficient synchronizes-with edges for Ei, if there is a release-acquire pair that happens-
before an action you are committing, then that pair must be present in all Ej , where j ≥ i. Formally,

8. Let sswi→ be the swi→ edges that are also in the transitive reduction of hbi→ but not in
poi→. We call sswi→

the sufficient synchronizes-with edges for Ei. If x
sswi→ y

hbi→ z and z ∈ Ci, then x
swj→ y for all j ≥ i.

9. If x is an external action, x
hbi→ y and y ∈ Ci, then x ∈ Ci.

4

0.7 Finalization

Each execution has a number of reachability decision points, labeled di. Each action either comes before di

or comes after di. Other than as explicitly mentioned, comes before in this section is unrelated to all other
orderings in this document.

If r is a read that sees a write w and r comes before di, then w must come before di. If a release-acquire
pair 〈r, a〉 is contained in the set of sufficient synchronization edges for an execution and a comes before di,
then r must come before di.

At each reachability decision point, some set of objects are marked as unreachable, and some subset of
those objects are marked as finalizable.

Reachability

An object B is definitely reachable from A at di if and only if

• there is a write w1 to an element v of A that is a reference to B and there does not exist a write w2
to v s.t. ¬(w2 hb→ w1), and both w1 and w2 come before di, or

• there is an object C such that C is definitely reachable from A and B is definitely reachable from C

A use of X is active if

• it reads or writes an element of X

• it synchronizes on X

• it writes a reference to X

• it is an active use of an object Y , and X is definitely reachable from Y

• X is definitely reachable from a static field of a class loaded by a definitely reachable classloader

If an object X is marked as unreachable at di,

• X must not be definitely reachable at di,

• All active uses of X in thread t that come after di must occur as a result of thread t performing a read
that comes after di of a reference to X or in the finalizer invocation for X.

• All reads that come after di that see a reference to X must see writes to elements of objects that were
unreachable at di, or see writes that came after di.

If an object X marked as finalizable at di, then

• X must be marked as unreachable at di,

• di must be the only place where X is marked as finalizable,

• actions that happen-after the finalizer invocation must come after di

5

