
Proposed Informal Semantics
for Programmers

William Pugh

Dept. Of Computer Science
Univ. of Maryland

http://www.cs.umd.edu/~pugh/java

Reality Check

3

Realities

• Not going to change Java threading model
– even if people don’t like it

• Have to keep in mind that most Java
programmers haven’t taken an OS course
– Can’t hold them to high standards

• Incorrectly synchronized programs must
have a (safe) meaning
– can’t allow a cracker to use improperly

synchronized code to attack a system.

4

Goals for new Memory Model

• Preserve existing and/or necessary safety
guarantees
– even in the presence of data races

• Have a clear specification we can reason
about

• Allow efficient immutable classes

• New MM should not break “reasonable”
existing code

5

Goals for new MM (continued)

• In code that doesn’t involve locks or
volatile variables, use as much as possible
of the standard compiler optimization
techniques

• Data-race-free programs should be
guaranteed sequentially consistent results
– Constraints not necessary to ensure SC for data-

race-free programs should be imposed with
“care and deliberation”.

6

Proposed Changes

• Make it clear

• Allow standard compiler optimizations

• Remove corner cases of synchronization
– enable additional compiler optimizations

• Strengthen volatile
– make easier to use

• Strengthen final
– Enable compiler optimizations

– Fix security concerns

VM Safety Guarantees

8

Safety Guarantees

• For reads of fields and arrays
– type safety

– not-out-of-thin-air safety

• VM safety - despite lack of synchronization
– All operations other than reading a field or

array are as usual
• can’t crash/violate VM

• No new exceptions

• array length is always correct

synchronization

10

Synchronization

• Synchronization on thread local objects
– e.g., synchronized(new Object()) {}

– is not a no-op under current semantics

– but it isn’t a memory barrier

• Proposal: make it a no-op
– and allow other compiler optimizations

• Programming model is release consistency

11

When Are Actions Visible to
Other Threads?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

12

Synchronization semantics

• Once you acquire a monitor
– you are properly synchronized with regards to

all actions previous to a previous release of the
same monitor by any thread

– must be same monitor

13

Notes

• Synchronization blocks can be expanded
– Lock operations can be moved upwards

– Unlock operations downwards

• Consider
synchronized (A.class) {

A tmp = new A();
}

A.foo = tmp;

14

Example

Lock A.class

tmp = new A

tmp.<init>()

unlock A.class

A.foo = tmp

Lock A.class

tmp = new A

A.foo = tmp

tmp.<init>()

unlock A.class

15

New Optimizations Allowed

• Turning synchronizations into no-ops
– locks on objects that aren’t ever locked by any

other threads

– reentrant locks

– enclosed locks

• Lock coarsening
– merging two calls to synchronized methods on

same object
• need to be careful about starvation issues

Volatile

17

Existing Semantics of Volatile

• No compiler optimizations
– Can’t hoist read out of loop

– reads/writes go directly to memory

• Reads/writes of volatile are sequentially
consistent
– can not be reordered

– but access to volatile and non-volatile variables
can be reordered

• Reads/writes of long/doubles are atomic

18

Existing Volatile Compliance

• Very poor
– some JVMs completely ignore volatile

• No one enforces sequential consistency

• Atomic longs/doubles isn’t enforced on
most

19

Volatile Compliance

No Compiler
Optimizations

Sequential
Consistency

Atomic
Longs/Doubles

Solaris
JDK 1.2.2 EVM

Pass Fail Pass

Solaris
JDK 1.3.0 beta
Hotspot Client

Fail Fail Fail

Windows
JDK 1.3.0

 Hotspot Client
Fail Fail Fail

Solaris
JDK 1.3.0 beta
Hotspot Server

Pass Fail Fail

Windows
JDK 1.3.0

 Hotspot Server
Pass Fail Fail

Windows IBM
JDK 1.1.8

Pass Fail Fail

20

Need for volatile

int answer = 0;

boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Can print 0

21

Need for volatile

volatile int answer = 0;

volatile boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Must not print 0

22

Proposed New
Semantics for Volatile

• Write to a volatile acts as a release

• Read of a volatile acts as an acquire

• If a thread reads a volatile
– all writes done by any other thread,

– before earlier writes to the same volatile,

– are guaranteed to be visible

23

New semantics for volatile

int answer = 0;

volatile boolean ready = false;

answer = 42;

ready = true;
if (ready)
 System.out.println(answer);

start threads

Existing semantics: can print 0
Proposed semantics: must not print 0

24

When Are Actions Visible to
Other Threads?

answer = 42

ready = 1

Thread 1

if (ready)

println(answer)

Thread 2

anything done by thread 1,
before writing ready

must be visible to any
operations in thread 2 that
occur after reading ready

25

Naïve Implementation of Volatile

• On SMP with weak memory model (Alpha)
– Membar before & after each volatile write

– Membar after each volatile read

• On SMP with TSO (e.g. Sparc)
– Membar after each volatile write

• On IA-64
– use ld.acq and st.rel for volatile fields

– also, memory barrier after each volatile write

26

Implementation Cost of Proposed
Change in Semantics

• Naïve implementation handles new
semantics
– unclear if only enforcing only existing

semantics would incur fewer memory barriers

• New semantics will prohibit some compiler
optimizations
– reading a volatile will force all values cached in

registers to be reloaded

27

Reordering of Volatiles

• Can reorder
– normal access and following volatile read

– volatile write and following normal access

• Volatiles are not quite a data-race-free-0
sync access

28

Volatile Summary

• Few programmers will use all these features
– Do we really need sequential consistency, on

top of acquire/release semantics?

• But it is simple and easy to understand
– more likely to be used correctly

Immutable Objects
and final fields

30

Immutable Objects

• Many Java classes represent immutable
objects
– e.g., String

• Creates many serious security holes if
Strings are not truly immutable
– probably other classes as well

– should do this in String implementation, rather
than in all uses of String

31

Strings aren’t immutable

String foo
 = new String(sb)

Global.s = foo

String t = Global.s

ok = t.equals(“/tmp”)

just because thread 2 sees new value for Global.s
doesn’t mean it sees all writes done by thread 1
before store to Global.s

Compiler, processor or memory
system can reorder these writes

thread 1

thread 2

Compiler, processor or
memory system can
reorder these reads

32

Why aren’t Strings immutable?

• A String object is initialized to have default
values for its fields

• then the fields are set in the constructor

• Thread 1 could create a String object

• pass it to Thread 2

• which calls a sensitive routine

• which sees the fields change from their
default values to their final values

33

Making String immutable

• Could make String methods synchronized
– most programmers don’t think methods for

immutable objects need to be synchronized

– synchronization would slow down String
methods on all platforms

• only needs to be synchronized on SMP’s with weak
memory models

• doesn’t need synchronization on SPARC, Intel or
MAJC SMP’s

34

Need for syncs in
immutable objects

• No issues arise if proper synchronization is
used when passing a reference to an
immutable object between threads
– no synchronization, final fields, or anything

else needs to be done to get true immutability

– issues only arise when references are passed via
a data race

35

Are immutable objects
like an int?

• Reads/writes of an int are atomic
– can be done without synchronization

– you get old value or new value

• Are reads/writes of references to immutable
objects atomic
– should we encourage a programming style in

which they are written without synchronization

36

Final = Immutable?

• Existing Java memory model doesn’t
mention final
– no special semantics

• Would be nice if compiler could treat final
fields as constant
– Don’t have to reload at memory barrier

– Don’t have to reload over unknown function
call

37

Existing semantics require that final
fields need to be reloaded at

synchronization points

class A extends Thread
{
 final int x;
 A() {

synchronized(this) {
 start();
 sleep(10);
 }
 x = 42;
 };

public void run() {
int i,j;
i = x;
synchronized(this) {
 j = x;
 }
System.out.println(i+j);
}

}

Must not print 0

38

Proposed Semantics for Final

• Read of a final field always sees the value
set in constructor
– If,

• a final field is read before set
– (by the constructing thread)

• or, a reference to the object becomes visible to
another thread before object is constructed

• semantics are ugly

• Can assume final fields never change

• Makes string immutable?

39

Problems

• JNI code can change final fields
– setIn, setOut, setErr

– Propose to remove this ability

– (reflection appears to be safe)

• Objects that escape their constructor before
final fields are set
– Base class “registers” object, derived class has

final fields

• Doesn’t suffice to make strings immutable

40

Doesn’t make Strings immutable

• No way for elements of an array to be final

• For Strings, have to see final values for
elements of character array

• So…
– Read of final field is treated as a weak acquire

• matching a release done when object is constructed

– weak in that it only effects things dependent on
value read

• no compiler impact

41

data
dependence

Visibility enforced by final field a

this.a = new int[5]

end constructor int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.x

Foo.b = this

Foo t = Foo.b

All actions done before
completion of constructor

must be visible to any action
that is data dependent on the read
of a final field set in that constructor

42

Contrast with volatile

this.a = new int[5]

end constructor

int[] tmp = t.a

… = tmp[0]

Foo.x++

this.a[0] = 42

… = Foo.xFoo.b = this

Foo t = Foo.b

Actions done before assignment
to volatile field

must be visible to any action
after the read

43

data
dependence

Data dependence is transitive

this.a = new int[5][5]

end constructor

int[][] tmp = t.a

int[] tmp2 = tmp[0]

Foo.x++

this.a[0][0] = 42
… = Foo.x

Foo.b = this

Foo t = Foo.b

… = tmp2[0]

Other semantic issues

45

Thread Communication

• All forms of inter-thread communication
force writes to be visible
– interrupt

– start/join

– isAlive

• Sleep and yield have no effect on visibility
– will cause problems for broken programs

– but difficult/impossible to specify semantics of
visibility for sleep

46

finalization

• Loosing the last reference to an object is an
asynchronous signal to another thread to run
the finalizer
– which writes are visible to the finalizer?

• Proposal: only writes to the object being
finalized and writes done during
construction
– need synchronization to see other writes

• Unsynchronized finalizers are dubious

47

Serialization and Beans

• Serialization constructs objects
– can’t set final fields in readObject or

readExternal

