
JVM Issues

William Pugh

Dept. Of Computer Science
Univ. of Maryland

http://www.cs.umd.edu/~pugh/java



Coherence



3

Coherence

• Can’t reorder reads of the same variable

• A seemingly reasonable requirement

• Forbids standard compiler optimizations



4

Coherent memory

• Once you see an
update by another
thread
– can’t forget that

you’ve seen the update

• Cannot reorder two
reads of the same
memory location

p.x =0

p.x = 1 a  = p.x

b = p.x

assert( a ≤ b)



5

Reads kill reuse

• Must treat “may reads”
as kills
– a read may cause your

thread to become aware
of a write by another
thread

• Can’t replace c = p.x
with c = a

p and q might
point to same object;

p.x = 0

p.x = 1 a  = p.x

b = q.x

assert( p = = q implies a ≤ b ≤ c)

c = p.x



6

Most JVM’s violate Coherence

• Every JVM I’ve tested that eliminates
redundant loads violates Coherence:
– Sun’s Classic Wintel JVM

– Sun’s Hotspot Wintel JVM

– IBM’s 1.1.7b Wintel JVM

– Sun’s production Sparc Solaris JVM

– Microsoft’s JVM

• Bug # 4242244 in Javasoft’s bug parade
– JVM’s don’t match spec



7

• Preliminary work by Dan Scales, DecWRL

• Made reads kill, have side effects

• Better is probably possible,
but will require work

• Reads have side effects
but can be done
speculatively
– change intermediate representation

Impact on Compiler
Optimizations?

compress 1.18 mpegaudio 1.44
jess 1.03 richards 0.98
cst 1.01 mtrt 1.02
db 1.04 jack 1.06
si 1.03 tsgp 1.36
javac 0.99 tmix 1.11



8

Coherence is useful

• Consider

int cachedHashCode;
int hashCode() {

if (cachedHashCode == 0)
cachedHashCode = computeHC();

return cachedHashCode;
}



Weak processor memory models



10

Weak memory models

• Initially,
Mem[100] = 200
Mem[200] = 17
Mem[300] = 666

• On processor 1:

Mem[300] = 42
Mem[100] = 300

• On processor 2:

R1 := Mem[100]
R2 := Mem[R1]

R2 = ?
17, 42, 666(?)



11

Not much of a surprise

• Compiler could reorder write instructions

• Processor might reorder write instructions

• Put in a memory barrier...



12

Weak memory models

• Initially,
Mem[100] = 200
Mem[200] = 17
Mem[300] = 666

• On processor 1:

Mem[300] = 42
MemBarrier
Mem[100] = 300

• On processor 2:

R1 := Mem[100]
R2 := Mem[R1]

R2 = ?
17, 42, 666(?)

?



13

More of a surprise

• The data dependence does not prevents
reordering of instructions on processor 2

• How could this happen?

• Spec says it can happen on Alpha

• Can it happen in reality?
– Value prediction

– Cache memories



14

Processor weak memory models

Main
Memory

cache

processor

cache

processor

read/write

acquire/release acquire/release

read/write



15

300

Processor weak memory models

cache200 17 666 17 666

200 17 666
Release/MemBarrier

Mem[300] = 42

Mem[100] = 300

R2 = Mem[R1]

R1 = Mem[100]

300 42

300 42

R1
300

R2
666

Invalidate
not processed
until next
synchronization



16

What machines can it happen on?

• Only on shared memory multiprocessors

• Sun’s TSO (Total store order), PSO (Partial
store order) and RMO (Relaxed Memory
Order) all strong enough to prevent it
– Sun Sparc’s all run in TSO order

• because too much of Sun’s code breaks under any
looser model

– MAJC runs under RMO
• although some details still up in the air



17

Intel machines

• Intel IA32 architecture …
– see later slides

• Intel IA64 doesn’t allow it if second store is
st.rel
– probably not if memory barrier separating two

writes
• need clarification



18

Alpha processors

• Multiprocessor Alphas 21264 systems can
exhibit this behavior
– although very unlikely to occur

• Future Alpha processors may exhibit more
it more frequently
– new optimizations:

• value prediction

• Alpha architects feel very strongly that chip
should not support anything strong than RC



How it can happen on an Alpha
Thread 1 Thread 2

  y = 1
  memoryBarrier

  p = & y
i = *p

Can result in: i = 0

Initially: p = & x, x = 1, y = 0
• Assume T1 runs on P1 and T2 on P2.

• P2 has to be caching location y with value 0.

• P1 does y=1 which causes an “invalidate y”
to be sent to P2.

• This invalidate goes into the incoming
“probe queue” of P2; as you will see, the
problem arises because this invalidate could theoretically sit in the probe queue without
doing an MB on P2.

• The invalidate is acknowledged right away at this point (i.e., you don't wait for it to
actually invalidate the copy in P2's cache before sending the acknowledgment).

• Therefore, P1 can go through its MB.

• And it proceeds to do the write to p.

• Now P2 proceeds to read p.

• The reply for read p is allowed to bypass the probe queue on P2 on its incoming path (this
allows replies/data to get back to the 21264 quickly without needing to wait for previous
incoming probes to be serviced).

• Now, P2 can dereference p to read the old value of y that is sitting in its cache (the inval y
in P2's probe queue is still sitting there).



20

How it can happen on an Alpha

• The short form
– writes send immediate invalidate messages

• which are processed lazily

– memory barrier is a local operation
• forces processing of invalidate messages



Intel IA-32
Memory Model



22

Intel IA-32 memory model

• Intel Architecture Software Developer’s
Manual
– Volume 3: System Programming

• Chapter 7

• x386: sequentially consistent

• x486 and Pentium: TSO

• P6: “write ordered with store buffer
forwarding”



23

write ordered with
store buffer forwarding

• Reads can be performed in any order

• writes are always performed in program
order

• Writes and following reads can be reordered
• In other words, relaxes R→R and W→R



24

Note from spec:

• [Software] should insure that accesses to
shared variables that are intended to control
concurrent execution among processors are
explicitly required to obey program
ordering through the use of appropriate
locking or serializing operations (refer to
Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).



25

Lock prefix

• used for atomic read/modify/write

• In x386 - x586, locks bus
– very expensive

• In x686, if location cached, handled
internally
– can it be reordered?



Virtual Machine Safety Issues



27

Same issues, but for object
initialization

• Thread 1
– initialize an object at address X,

– Make Foo.x reference the object at address X

• Thread 2
– reads Foo.x, gets X

– reads field of object at address X, sees pre-
initialization value



28

This is bad!

• If we see an uninitialized value, we might
see something that isn’t typesafe
– seeing a random integer isn’t so great either

• We could put a memory barrier after object
initialization
– but that isn’t enough (as before)

– need a memory barrier for reading processor



29

A simple fix

• Allocate objects out of zeroed memory
– Zero memory during garbage collection

– All processors know that the memory was
initially zero.

• If we see a pre-initialized ptr, we see null
– zero for numerics, false for boolean

• Matches Java semantics
– Fields set to default value (null/false/zero)

before constructor is executed



30

Not sufficient

• This fix isn’t sufficient
– for several reasons

• Consider reading the vtbl ptr of an object
– points to the virtual function table and class

data for object

• If we saw null, virtual method dispatch
would generate a segmentation fault for VM

• instanceof and checkedCast could also go
wrong



31

What else can go wrong

• Can see 0 for any word in object header
– implementation dependent as to what is stored

in header

• Can see 0 for array length
– can throw invalid IndexOutOfBoundsException

• Class loading...



32

Class loading

• class Foo {
 public static Object x;
 }

• On processor 1:

// First use of Bar
// loads class Bar
tmp = new Bar();
Foo.x = tmp;

• class Bar {
public int hashCode()

{ … };
}

• On processor 2:

Foo.x.hashCode();



33

Now what can go wrong

• Nothing in code executed by processor 2 to
indicate that it might be executing code
from a new class

• Any field in Bar’s vtbl or class data could
be zero
– while others could be valid

• Parts of native code for Bar could be zero



34

Global memory barriers

• Class loading requires global memory
barrier
– each processor must do a memory barrier

– but initiated by only one processor

• May need to synchronize instruction as well
as data caches

• Not cheap/easy to do on some systems



35

Code generation/specialization

• Generating native code also requires global
memory barrier

• In system like HotSpot
– new code is generated as profile data is

collected

– not just the first time a method is executed



36

OK, so safety is hard

• Hopefully, I’ve convinced you that many
safety issues, often taken for granted, are
difficult on a SMP with a weak memory
model

• Need to formalize the safety issues we will
guarantee



37

Weak Processor MM

• I believe that the reordering allowed by the
Alpha is a mistake

• It will be very painful to handle in the JVM
– Will we every know if it has been handled

correctly?

• I strongly urge architects to avoid this
– Weak ordering is not sufficient

• But Java must run on an Alpha SMP



38

Safety Guarantees

• For reads of fields and arrays
– type safety

– not-out-of-thin-air safety

• VM safety - despite lack of synchronization
– All operations other than reading a field or

array are as usual
• can’t crash/violate VM

• No new exceptions

• array length is always correct



39

Implementing type safety

• Allocate objects out of memory that
everyone agrees has been zeroed
– since memory was zeroed, every processor

must have done a memory barrier



40

Implementing VM safety

• Null vtbl - two solutions
– check if null; if so, mem barrier and reload

– Handle SIGSEGV and recover

• Zero array length
– check if 0; if so, mem bar and reload

• for bounds check, only check once out of bounds
exception is detected



Which Compiler Optimizations
are Legal?



42

Legal Compiler Optimizations

• Would like to prove that in code without
synchronization or volatile fields
– we can do all optimizations we would do for

single threaded programs

• Not possible
– Counter example, see next slide

• Would like to prove it for as many
optimizations as possible



43

Guidelines for Compiler Writers

• Don’t assume that
– if you drop a value cached in a register,

– you can reload the value and get the same value

– even though you don’t see any possible writes

• Memory barriers induced by acquire/release
– moving something past a barrier isn’t

symmetric



Performance Issues



45

Cost of useless synchronization

• In Volano
– syncs on thread local Buffered I/O streams

– about 3% improvement from removal

• In DB benchmark
– lots of syncs on Vector

– about 20% improvement from removal

– but can double speed by replacing hand-coded
shell sort with built-in merge sort



46

Benefit of Double Check

• Application Isolation paper by Grzegorz
Czajkowski
– needed synchronization for every access of

static field

– using double-check to eliminate
synchronization gave about 10% performance
improvement


