
Compressing Java Class files

William Pugh, Univ. of Maryland 1

Compressing Java Class files

1999 ACM SIGPLAN Conference on
Programming Language Design and

Implementation

William Pugh
Dept. of Computer Science

Univ. of Maryland

Java Class files

• Compiled Java source programs generates
(lots of) class files

• Architecture neutral
• Standard distribution format

– Java programs can be compiled to native
executables, but I won’t talk about that

Class file contents

• class files contain lots of symbolic
information
– For javac, only 21% of uncompressed class file

is bytecode

• Information for linking
• Allows code compiled against an old library

– to be linked with a new library
– so long as dependent functionality still there

Java ARchive (jar) files

• A collection of of class files and other
resources (e.g., images)

• same format as zip archives
– individual files can be compressed with zlib

• includes manifest
– Information such as code signatures

Executing Java programs
over the net

• Download and install program
– compact archive format

• Execute as downloaded
– class files as needed, or
– compact and progressive archive format

Download individual class
files as needed

• TCP set-up costs for each class file
– unless you use persistent http connection

• No compression
• Get just the class files you need

– some class files are needed only for verification
– entire class file is needed if you need only one

method

• This approach isn’t used in practice
– for non-trivial applications

Compressing Java Class files

William Pugh, Univ. of Maryland 2

Download jar archive

• 1 TCP connection
• zlib compression of individual class files

– about a factor of 2 savings

• may download class files that are not used
• entire jar archive must be downloaded

before any class files can be accessed

A Wire format for
class files?

• Bandwidth most important
• Decompression time relatively important

– Compression time not very important

• Progressive
• Not random access
• Can translate into jar archive or class files

– or load directly into JVM

Debugging information

• Java class files often contain debugging
information
– source file
– line number
– local variables

• Will not include debugging information in
wire format
– could do so; would compress fairly well

Cleanup

• When comparing my format to jar files
– Clean up first

• Remove debugging information
• Garbage collect constant pool
• Sort constant pool

– improves compression

• Exclude non-class files from archive

Effects of Clean up
j0r jar sjar
no yes yes compressed?
no yes no debugging info?
yes no yes Cleaned up?

Hanoi 86 57 46
icebrowserbean 226 125 116
javafig_dashO 269 136 131
javafig 357 198 170
jmark20 309 189 173
_213_javac 516 274 226
ImageEditor 454 359 257
tools 1,557 950 737
visaj 2,189 1,524 1,157
swingall 3,265 2,193 1,657
rt 8,937 5,726 4,652

Easy Java class file wire
format: Collective Zip

• In standard Jar archive,
– files are compressed individually

• gzip/zlib finds repeating patterns
• lots of patterns repeat between but not as

much within class files
• Generate jar file without individual

compression
• Compress the entire resulting jar file

Compressing Java Class files

William Pugh, Univ. of Maryland 3

Effectiveness of
collective zip

Benchmark
Original

Size
Collective

Zip

Size of
Collective Zip

as % of
Original

Hanoi 46 31 67%
IBM Host on demand 98 85 87%
ICE Browser 105 88 84%
JavaFig 171 144 84%
tools 737 513 70%
visaj 1,157 703 61%
swingall 1,657 998 60%
JDK 1.2 runtime 4,652 2,820 61%

A closer look at
class file contents

swingall javac
Total size 3,265 516
excluding jar overhead 3,010 485
 Field definitions 36 7
 Method definitions 97 10
 Code 768 114
 Other 72 12
 Constant pool 2,037 342
 Utf8 entries 1,704 295
 if shared 372 56
 if shared and factored 235 26

What did we just learn?

• A substantial part of class files consists of
constant pools
– Bytecode is the only other substantial

component

• Most of the space in constant pools is taken
up by Utf8 entries

• Sharing Utf8 entries across class files is a
huge win

Beating collective zip is hard

• A lot of the things you could do
– e.g., share constant pool entries

• are already done by a collective zip

• You can work very hard
– and find that you don’t beat collective zip by

much

Drawbacks to sharing

• Increases # of constant pool entries
– How do we encode a reference?

• For most class files, less than 255 entries
– can encode in a single byte

Compressing uniform
streams

• class files are jumbles of different types
– Utf8 encodings, bytecodes, constant pool

entries

• Most compression algorithms work better if
given a more uniform stream
– separate out class files into streams for each

type of information
– compress each stream individually

Compressing Java Class files

William Pugh, Univ. of Maryland 4

Compressing bytestreams

• Zlib (and most compression algorithms) are
designed to work on bytestreams

• How do you compress a stream of shorts?
– Standard serialization mixes types
– Could use separate streams for high and low

bytes
– Use variable length encoding

• Hope that most entries can be encoded in a single
byte

Encoding references

• How do you encode a reference to an object
(e.g., a constant pool entry) you may have
seen before?
– so that most references are encoded in 1 byte

• Overload id’s based on type
– In almost all cases, know the type of the object

being referenced

Encoding references
(continued)

• Tried several schemes
• One that worked best was a move-to-front

queue
– Suggested by Ernst et al.
– Long history in compression literature

Move to front queue

• Maintain a list of all the objects seen
previously

• To encode an object seen previously
– encode its position (1 for first entry)
– move it to the front of the list

• To encode an object not seen previously
– encode 0
– put it at front of list

Implementation of
Move-to-front queues

• Use a modified skip-list
– links record distance they travel

• In decoder, a move-to-front operation on
element k requires O(log k) time
– regardless of total number of elements in list

• In encoder, requires O(log n) time

Factoring?

• The string “java.awt” occurs in the Utf8
encoding of many class names

• Method and field signatures contain
separate Utf8 encoding of class names

• String f(String s) is recorded as having type
(Ljava/lang/String;)Ljava/lang/String;
– L is to differentiate between references and

primitive types

Compressing Java Class files

William Pugh, Univ. of Maryland 5

Reorganize class file

• Factor information to avoid as much
redundancy as possible
– packageNames
– simpleClassNames
– classNames
– method type (array of classnames)
– ...

Compressing bytecodes

• Separating out opcodes from operands helps
• Use separate streams for :

– opcodes
– different register types
– branch offsets
– integer constants
– constant pool references (already separate)

Compression results

Benchmark jar size
collective

zip packed Czip/ jar
packed/

jar
Hanoi 46 31 14 67% 30%
IBM Host on demand 98 85 44 87% 45%
ICE Browser 105 88 36 84% 35%
JavaFig 171 144 64 84% 37%
Cinderella 625 - 171 27%
tools 737 513 204 70% 28%
Lotus eSuite Sheet 1,101 - 549 50%
visaj 1,157 703 238 61% 21%
Lotus eSuite Chart 1,387 - 633 46%
swingall 1,657 998 338 60% 20%
Mockingbird 2,350 - 506 22%
Reservation System 3,067 - 736 24%
JDK 1.2 runtime 4,652 2,820 1,069 61% 23%

0%

20%

40%

60%

80%

100%

1 10 100 1,000 10,000

Size of jar file (KBytes)

Si
ze

 a
s

%
 o

f j
ar

 fi
le

j0r.gz Jazz Packed

Compression ratios

Execution Times

• For swingall.jar
– Jar format: 1,657 KBytes
– compressed size: 338 Kbytes
– decompression time (Ultra 5 333Mhz)

• to memory: 3 secs

• to jar file: ~ 14 secs

– time to load classes : 5.8 secs
• time to define, resolve and verify

Download times

1.0

10.0

100.0

1000.0

1 10 100 1,000

Download speed (KBytes/sec)

D
o

w
n

lo
ad

 t
im

e
(s

ec
s)

Jar Pjar Pack

Compressing Java Class files

William Pugh, Univ. of Maryland 6

Decoder size & security

• Decoder is about 35Kbytes
– Could be downloaded

• not useful for small archives

– Could be installed as extension

• Decoder either needs permission to write to
a temporary file or permission to create a
class loader
– Can do this under 1.2 security model

Providing Jar functionality

• Jar archives contain more than class files
– images, text files, resources
– manifest (signatures, …)

• Add a stream of non-class files
– a zip archive, without individual compression

but with overall compression

Complication for signatures

• Compression and decompression changes a
class file
– by renumbering the constant pool

• Signatures from source class files won’t
work on decoded class files

• Decompress once, sign decompressed class
files, use those signatures
– decompression is deterministic

Related work - lots!

• Used few ideas that hadn’t been considered
previously

• Compression of executable code
– Ernst, Evans, Fraser, Lucco and Proebsting,

PLDI97

• Compression of Java Classfiles
– Nigel Horspool et al.

Jax from IBM

• Java Application eXtraction
– available from www.alphaworks.ibm.com

• Extracts just the classes and methods
needed by application

• Very useful if your application uses small
part of a large library
– eliminates need to ship entire library

Combining Jax and Pack

Benchmark
jar size

(Kbytes) Jax'd Packed
Jax'd &
Packed

Hanoi 46 46% 30% 15%
IBM Host on demand 98 84% 45% 37%
ICE Browser 105 87% 35% 32%
JavaFig 171 79% 37% 31%
Cinderella 625 65% 27% 17%
Lotus eSuite Sheet 1,101 35% 50% 11%
Lotus eSuite Chart 1,387 43% 46% 14%
Mockingbird 2,350 13% 22% 4%
Reservation System 3,067 58% 24% 14%

Compressing Java Class files

William Pugh, Univ. of Maryland 7

Combining Jax with Packing

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000

Jar size (KBytes)

S
iz

e
as

 %
 o

f J
ar

 s
iz

e

Jax'd Packed Jax'd & Packed

Software release

• Codec will be open source
– want to avoid forking of source

• Alpha release available momentarily
– Almost certainly has bugs
– Current format not supported in the future

• any small tweak changes the format

Getting it ready for the
mass market

• Additional work needs to be done
– Testing
– User interface
– Installation/Code signing

• I don’t have time to provide customer
support

• Looking for partners

Future work

• Compact object serialization formats
• Progressive class file loading

– Ordering class files
– Reducing class files loaded but not used

• some class files loaded only for verification

– Eagerly load class files when no other work
– Separating application into modules

• don’t download modules unless needed

Questions?

Slides, software available from:
http://www.cs.umd.edu/~pugh/java

