
Compressing Java Class Files

William Pugh
Dept. of Computer Science

Univ. of Maryland, College Park
pugh@cs.umd.edu

Abstract

Java class files are often distributed as jar files, which
are collections of individually compressed class files
(and possibility other files). Jar files are typically about
1/2 the size of the original class files due to compression.
I have developed a wire-code format for collections of
Java class files. This format is typically 1/2 to 1/5 of
the size of the corresponding compressed jar file (1/4 to
1/10 the size of the original class files).

1 Introduction

This paper examines techniques for compressing (collec-
tions of) Java class files. Java class files are generated by
Java compilers, are the standard distribution medium
for Java programs and are the usual way of providing
programs to a Java virtual machine. Java class files con-
tain a substantial amount of symbolic information. In
the javac benchmark from SPEC JVM98, only 21% of
the uncompressed class file size is actually taken up by
the method bytecodes. One purpose of this is to avoid
the need to recompile all Java classes that use a class
X whenever X is changed. So long as the functionality
depended on doesn’t change, previously compiled Java
classes will work with the new version of X.

Few interesting Java applications are comprised of a
single class. Many applications are composed of hun-
dreds or even thousands of classes. Java class files can
be collected in jar files, which are collections of com-
pressed Java class files (and possibly other files, such as
images). Jar files are used both on disk and for network
transmission.

In many applications, Java programs are transmitted
across the network. While ample bandwidth is available
in some situations, there are many applications in which
Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is per-

mitted. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

c© 1999 ACM
To appear at the ACM SIGPLAN Conference on Programming
Language Design and Implementation, May 2–4, 1999, pages 247-
258

there are slow modem or mobile communication links
in the network. The jar format normally uses the gzip
compression mechanism to compress the files in a jar
file. This typically provides a factor of 2 compression
over standard Java class files. However, the compressed
jar files for substantial applications can still be quite
large (50-200K is not unusual), and take several minutes
to transmit over a slow communication link.

I use a number of approaches to creating smaller files
that contain the same information as a jar file:

• Developing a more efficient and compact organiza-
tion of classfile information.

• Taking steps to allow gzip to do a better job of
compressing the information we use.

• Sharing information across class files, to reduce
transmission of redundant information.

Although this paper focuses solely on the problem
on compressing Java class files, many of the techniques
described would be generally useful for developing com-
pact object serialization protocols.

2 Methodologies and Baselines

In this paper, I explore wire-formats for collections of
Java class files. I assume that bandwidth is the most
precious resource. Time required to compress a Java
archive is relatively unimportant, while the time re-
quired to decompress must be reasonable (not signifi-
cantly longer than using gzip). The wire-format is a
sequential format: all of the class files must be decom-
pressed in sequence. As they are decompressed, they
can be written to disk as a conventional jar file or sepa-
rate classfiles. These would be completely conventional
classfiles that could be used by a standard JVM. Alter-
natively, each class can be directly loaded into a JVM
as it is decompressed, saving the expense of construct-
ing the classfile. For this, a custom classloader would
be required, but no other changes to the JVM would be

247

http://www.cs.umd.edu/~pugh
mailto:pugh@cs.umd.edu
http://www.cs.rutgers.edu/pldi99


Size in Kbytes sjar/ sjar/ sj0r.gz/
Benchmark sj0r jar sjar sj0r.gz sj0r jar sjar Description
rt 8,937 5,726 4,652 2,820 52% 81% 61% Java 1.2 runtime
swingall 3,265 2,193 1,657 998 51% 76% 60% Sun’s new set of GUI Widgets (JFC/Swing 1.1)
tools 1,557 950 737 513 47% 78% 70% Java 1.2 tools (javadoc, javac, jar, ...)
icebrowserbean 226 125 116 88 52% 93% 76% HTML browser
jmark20 309 189 173 91 56% 91% 53% Byte’s java benchmark program
visaj 2,189 1,524 1,157 703 53% 76% 61% Visual GUI builder
ImageEditor 454 359 257 162 57% 72% 63% Image editor, distributed with VisaJ
Hanoi 86 57 46 31 54% 80% 67% Demo applet distributed with Jax
Hanoi big 56 37 30 20 53% 80% 67% Hanoi, partially jax’d
Hanoi jax 38 22 21 16 55% 96% 74% Hanoi, fulled jax’d
javafig 357 198 170 143 48% 86% 84% Java version of xfig
javafig dashO 269 136 131 113 49% 96% 86% javafig, processed by dashO

Programs from SPEC JVM98 (http://www.spec.org/osg/jvm98/)
201 compress 15 11 10 6 64% 85% 59% Modified Lempel-Ziv method (LZW)
202 jess 270 183 136 64 50% 74% 47% Java Expert Shell System based on NASA’s

CLIPS expert shell system
205 raytrace 52 31 24 15 47% 78% 64% Raytracing a dinosaurs (invoked by 227 mtrt)
209 db 10 6 6 5 56% 94% 84% Performs multiple database functions on memory

resident database
213 javac 516 274 226 143 44% 82% 63% Sun’s JDK 1.0.2 Java compiler
222 mpegaudio 120 68 62 45 51% 91% 73% Decompresses MPEG Layer 3 audio
228 jack 115 74 55 36 48% 74% 65% A Java parser generator that is based on the Pur-

due Compiler Construction Tool Set (PCCTS)

sj0r non-classfiles excluded, debugging information stripped, no compression
jar non-classfiles excluded, class files as distributed (debugging information often not stripped), files compressed individually

sjar non-classes excluded, debugging information stripped, files compressed individually
sj0r.gz non-classes excluded, debugging information stripped, individual files not compressed, jar file gzip’d as a whole

Table 1: Benchmark programs studied in this paper

required. See Section 11 for a discussion of eager class
loading.

While it would be possible to include debugging in-
formation in a wire-format, we would typically prefer
to save space by excluding it. I do not encode the at-
tributes LineNumberAttribute, LocalVariableTable nor
SourceFile. Also, because my approach requires that
we renumber entries in the constant pool, I exclude any
unrecognized attributes (we would not be able to up-
date references to the constant pool in unrecognized
attributes).

I also exclude any non-class files (e.g., PNG image
files) from archive in performing my size calculations. I
report compression as the size of the compressed object,
as a percentage of the size of the original object. To
have a consistent and fair comparison of the size of my
archive format with standard jar files, I performed the
following transformations to the benchmarks I studied:

• Remove LineNumberAttribute, LocalVari-
ableTable and SourceFile attributes

• Garbage collect the constant pool (remove unused
constants)

• Sort entries in the constant pool according to type

• Sort UTF constants according to their content

These changes typically give a 20% improvement in
jar file size Sorting of the constant pool entries can give

an improvement of several percent when the class file is
compressed, because it enables zlib to do a better job
of finding repeated patterns. In this paper, when I re-
port the size of original and compressed class files, those
sizes reflect the improvements gained by these transfor-
mations. Any improvements I report for the new tech-
niques in this paper reflect improvements beyond those
gained by removing debugging information and garbage
collecting the constant pool.

I will often refer to gzip and zlib compression inter-
changeable. However, in most situations where I apply
gzip compression I do not include the 18 bytes for the
GZIP header and trailer.

2.1 Gzip’d jar files of uncompressed class files

The compression done in normal jar files are on a file-
by-file basis. We can achieve better compression if we
compress an entire jar file, where the individual files
in the jar file have not been compressed separately. In
tables and text, I refer to these as j0r.gz files (0 for no
compression within the jar file).

3 Basic approaches

When considering techniques for compressing Java
classfile archives, one of the first techniques that jumps
to mind is reusing constant pool entries. Constant pool

248

http://www.spec.org/osg/jvm98/


Uncompressed
Size (Kbytes)

Component swingall javac
Total size 3,265 516
excluding jar overhead 3,010 485

Field definitions 36 7
Method definitions 97 10
Code 768 114
other 72 12
constant pool 2,037 342

Utf8 entries 1,704 295
if shared 371 56
if shared & factored 235 26

Table 2: Classfile breakdown

entries are the things that can be referenced within a
classfile: examples include classes, methods, integers,
doubles, and utf8 encodings of Unicode strings. Of-
ten, constant pool entries reference to other constant
pool entries. For example, the constant pool entry for
a method reference consists of a reference to (the con-
stant pool entry for) the class containing the method,
and a reference to the signature of the method.

As you can see in Table 2, the constant pool entries
often make up most of the size of a classfile. In fact,
the Utf8 entries alone often make up most of size of a
classfile. Simply sharing Utf8 entries across classfiles
leads to substantial reduction.

But now we have to face another issue: encoding
of references to constant pool entries. In most class-
files, the number of constant pool entries is relatively
small. While the standard classfile format usually al-
lots 2 bytes to encode a reference to a constant pool
entry, we can often do so in a single byte. If we com-
press single byte control pool references, we are likely
to get good compression. But if we pool constant pool
entries, it is unlikely that we will be able to encode most
constant pool entries in a single byte.

Numerous data compression algorithms have been
developed. Many of the lossless compression algorithms
in wide use were originally designed as text compression
algorithms, and work on a stream of bytes. In partic-
ular, the Lempel-Ziv family of compression algorithms
have a very strong byte orientation. While it might be
possible to adapt them to compress a stream of larger
values (e.g., 16-bit values), it isn’t clear how efficient
they would be. At any rate, efficient implementations
of the byte-oriented zlib library exist on most platforms
and is part of the standard Java API, so utilizing the
existing library makes sense.

A first solution is to use different numbering for dif-
ferent kinds of constant pool entries (e.g., we can have
Class 17, and MethodRef 17, and IntegerConstant 17).

In almost all1 contexts, we know the type of the con-
stant pool entry whenever we reference it, so this won’t
cause confusion.

This helps some and might be sufficient for small
archives. However, on large archives these techniques
will not be sufficient to allow us to encode most refer-
ences in a single byte. In addition to encoding most
references within a single byte, we would also like the
encoding bytestream to have a very skewed distribu-
tion, so that it can be further compressed. Techniques
for encoding references are discussed in more detail in
Section 5.

Even sharing the Utf8 entries still results in a fair bit
of redundancy. Each time a classname is encoded, the
full package name is encoded (e.g., java.lang), and class-
names appear in full text in the types of fields and meth-
ods. For example, the type of a method that takes one
string as an argument and returns a string is encoded as
(Ljava.lang.String;)Ljava.lang.String;. If we factor out
this duplication, we get another substantial reduction in
the space required for string constants. Note that this
factoring amounts to a wholesale reorganization of the
classfile; the reorganization is described in more detail
in Section 4.

The savings in uncompressed size realized by elim-
inating redundancy often doesn’t fully materialize in
the size of a compressed archive. By eliminating re-
dundancy, we have removed one of the elements the
compressor was using to get better compression. While
factoring and other techniques are useful, they are often
not as effective as they seem at first.

4 Structuring information

In order to reduce redundancy in my archive format, I
redesigned the basic structure of information in a Java
classfile. You can think2 of this restructuring as being
an in-memory format for encoding classfiles, which is
built and then encoded into a bytestream.

Some of the things I did in my reorganization:

• Classnames are encoded as a package name and
a simple class name. All classes from the same
package will share the same package name, and
classes from different packages can share the same
simple class name. For example, the package name
java.lang will occur only once.

• In Java classfiles, the types of methods and fields
are encoded as strings. In my restructured for-
mat, a method type is encoded as an array of

1The exception to this is the bytecode instructions for loading
constants (LDC, LDC W, and LDC2 W). We can handle this by in-
troducing new pseudo-opcodes in the compressed files that describe
the type of constant being loaded (e.g., LDC Integer).

2In fact, my implementation creates an encoding as it traverses
the classfile without completely building an in-memory restructured
classfile.

249



classes containing the return type and the argu-
ment types. A field type is just a class. Primi-
tive types and array types are encoded as special
class references that are converted back to primi-
tive types when decompressed.

• Generic Attributes have been eliminated. Instead,
additional flags are set in the access flags that say
whether specific attributes apply to this object.
For example, there is a bit in the access flags for
a Field definition that tells whether the field has
a constant value. If so, then there is an additional
reference to a constant value (e.g., an integer or a
string).

Once we have a collection of class files in our internal
format, the wire code is generated/parsed by a preorder
traversal of the data-structure, starting from the roots.
As each edge is traversed, an appropriate reference is
encoded. As each primitive (int, long, float, or double)
is encountered, it is encoded.

The internal format for Code (attached to Methods-
Definitions) is more complicated. I separate bytecode
into streams of opcodes, registers numbers, integer con-
stants, virtual method references, field method refer-
ences, and so on. The encoding of bytecodes is discussed
more throughly in Section 7

5 Compressing References

Given a structure for the data we which to encode (Sec-
tion 4), we need a way of encoding a reference to an ob-
ject we may have seen before. For primitives (ints, dou-
bles, ...), I just encode the value of the object, without
bothering to check if I have seen the object previously.

Otherwise, we need an encoding that either says we
have never seen the object before, or identifies the pre-
viously seen object. If we have never seen the ob-
ject before, then at that point we encode all of the
fields/components of the object.

I consider a number of approaches to encoding refer-
ences. The basic approach that worked best was to use
a move-to-front encoding. In a move-to-front encoding,
we maintain an ordered list of all of the objects seen.
Whenever a previously seen object is to be transmitted,
we transmit the position of the object in the list (1 for
the first object in the list) and move the object to the
front of the list. To transmit an object not seen previ-
ously, we transmit the value 0 and insert the object at
the front of the list.

I implemented move-to-front queues using a modi-
fied form of a Skiplist [Pug90] (the Skiplist structure
was modified so that each link recorded the distance it
travels forward in the list). By starting the search for
an element at the bottom level of the Skiplist, increas-
ing the level to the appropriate level for traversing the

Skiplist, and then using a normal Skiplist traversal, I
was able to achieve an expected time bound of O(log k)
to do a move-to-front operation on element k of the
queue, regardless of the total number of elements in the
queue.

This was all that was needed in the decompressor.
In the compressor, we also need a way, given an element
we may have seen before, to determine if we have seen
the element before and if so, where the element is now
in the queue. This was implemented by a hashtable
from elements to the Skiplist nodes that store them.
Once we are at the Skiplist node for an element, we
can walk forward to the end of the list (at each node,
follow the highest link out of that node, keeping track
of the distance traversed by each link). Knowing the
distance to the end of the list and the total size of the
list allows us to calculate the distance of the element
from the front of the list. These operations can all be
done in expected time O(log n), where n is the number
of elements in the queue.

A move-to-front generally does an excellent job of
producing lots of references with small encodings, which
then can often be encoded in a single byte and com-
presses well with a Huffman encoding. However, a
move-to-front encoding pretty much destroys any pat-
terns in the object stream (e.g., an aload 0 instruction
is often followed by a getfield instruction). I tried
using a move-to-front encoding for JVM opcodes, then
using zlib on the result, and got much worse compres-
sion than using zlib on the original JVM opcodes. The
zlib compression scheme both finds repeating patterns
and uses a Huffman-like encoding to efficiently trans-
mit a stream of bytes with a nonuniform distribution
pattern. Thus, a move-to-front encoding may do an ex-
cellent job when zlib cannot find significant repeating
patterns to exploit, but do poorly when they exist.

I compared using zlib on the byte stream generated
by a move-to-front encoding with using a Arithmetic
encoding on the indices generated by a move-to-front
scheme. In the Arithmetic encoding, encoding an in-
dex that occurs with probably p requires log2 1/p bits.
Given the hypothesis that a move-to-front encoding de-
stroys references patterns and only produces a skewed
probably pattern, we would expect the Arithmetic en-
coding to do better. In the cases I examined, this ex-
pectation was fulfilled. For example, for references to
virtual methods in rt.jar, using zlib gave results that
were 2% bigger than an Arithmetic encoding.

However, these results do not include the size of the
dictionaries for the arithmetic encoding, and arithmetic
encoding is rather expensive to compress and decom-
press. The size of the dictionary would be larger than
the savings unless it was fitted to a curve and just the
parameters for the curve were encoded. Given the negli-
gible or non-existent benefits and the performance cost

250



ClassDefinition [] classesDefined;

class PackageName { String name; }
class SimpleClassName { String name; }
class MethodName { String name; }
class FieldName { String name; }

class ClassRef {
PackageName & packageName;
SimpleClassName & simpleClassName;

}
class ClassDefinition {

ClassRef & thisClass;
int access_flags;
ClassRef & superClass;
ClassRef & [] interfaces;
MethodDefiniton [] methods;
FieldDefinition [] fields;
}

class ExceptionRef {
ClassRef & clazz;

}

class MethodRef {
ClassRef & owner;
MethodName & methodName;
ClassRef & type[];
}

class MethodDefinition {
MethodRef & method;
int access_flags;
Code code;
ExceptionRef & exceptionsThrown[];
}

class FieldRef {
ClassRef & owner;
FieldName & fieldName;
ClassRef & type;
}

class FieldDefinition {
FieldRef & field;
int access_flags;
Object & constantValue;
}

& is used to indicate a reference to an object that may be shared and might have been seen before

Figure 1: Fragment of Internal format for class files

Move-to-front
Transients

Benchmark Simple Basic Freq Cache Basic Transients Use Context and Context
rt 503,522 480,535 398,303 337,201 301,704 299,159 293,451 291,052
swingall 172,372 159,869 136,241 117,254 110,370 109,211 107,247 106,223
tools 94,293 85,547 71,396 64,417 57,207 56,778 55,408 54,998
icebrowserbean 16,935 14,907 12,945 11,616 10,596 10,550 10,260 10,233
jmark20 18,041 14,497 12,583 9,897 9,879 9,954 9,622 9,658
visaj 124,297 116,316 99,216 84,854 76,585 76,080 74,800 74,400
ImageEditor 25,669 23,473 19,886 16,871 15,834 15,750 15,361 15,323
Hanoi 5,953 4,704 4,245 3,824 3,788 3,794 3,648 3,650
Hanoi big 3,866 2,973 2,617 2,370 2,316 2,318 2,243 2,242
Hanoi jax 3,078 2,376 2,112 1,883 1,852 1,874 1,814 1,832
javafig dashO 22,727 19,963 17,768 16,870 15,954 15,891 15,450 15,380
javafig 27,897 23,285 20,596 19,573 18,199 18,079 17,630 17,481
201 compress 757 516 506 497 461 477 456 470
202 jess 10,032 8,256 6,831 6,347 6,224 6,176 5,969 5,876
205 raytrace 2,603 1,966 1,812 1,762 1,646 1,671 1,550 1,576
209 db 843 575 489 483 466 476 455 467
213 javac 22,338 17,815 15,109 14,325 14,193 14,041 13,622 13,504
222 mpegaudio 4,568 3,440 3,143 2,917 2,706 2,708 2,644 2,674
228 jack 6,025 4,559 4,077 3,993 3,723 3,747 3,521 3,542

Table 3: Size (in bytes) of compressed references

251



ditching the built-in zlib decoder for a arithmetic de-
coder, I decided that this option wasn’t worth pursuing.

5.1 Variants

I considered the following variants, as

• baselines, to see the advantages given by the move-
to-front encoding;

• competitors, that in the end were not as effective;
and

• variants, that provide minor improvements in com-
pression.

Except where noted, seperate pools were used for
virtual, interface, static and special method references,
and for static and instance field references. The re-
sulting indicies are encoded as a byte stream and com-
pressed as described in Section 6.

5.1.1 Baseline: Simple

Each object is assigned a fixed id. Id’s are assigned se-
quentially, as objects are first seen. All id’s are encoded
as two bytes. A single pool is used for all method refer-
ences, and a single pool is used for all field references.

5.1.2 Baseline: Basic

Each object is assigned a fixed id. Id’s are assigned
sequentially, as objects are first seen, but are encoded
compactly.

5.1.3 Competitor: Freq

Like Basic, except that ids were assigned to objects
so that the most frequently referenced objects had the
smallest id’s. Elements that only occur once are all en-
coded with the same special id.

5.1.4 Competitor: Cache

The Freq scheme was augmented with a LRU cache of
16 elements, implemented as a move-to-front queue. If
an object is in cache, it is encoded according to its po-
sition in the cache. Separate caches were used for each
context.

5.1.5 Variant: move-to-front, transients

In this scheme, objects that are seen exactly once are
encoded specially and are not entered into the move-to-
front queue.

5.1.6 Variant: move-to-front, use context

For method references, in addition to maintaining dif-
ferent MTF queues for different method kinds (virtual,
interface, ...), we also maintain different MTF queues
based on top two values of the computed approximate
stack state (described in Section 7.1). Thus, we have
one MTF queue for virtual methods invoked when there
are two integers on top of the stack, and another MTF
queue for virtual methods invoked when the top two
values on the stack are a reference and an integer.

I do use a common pool for method names across all
method types (virtual, static,...), particularly to avoid
creating duplicate constant pool entries. However, un-
der this option, we maintain different MTF queues for
each method type.

One complication here is that when a method refer-
ence is seen for the first time, it must be inserted into
all of the MTF queues where it might be seen later.

6 Encoding Integers

Both in encoding integers that naturally appear in a
classfile (e.g., integer constants in bytecode, maximum
stack size for code) and in encoding the indices arising
from an encoding of references, we need to consider how
to convert them into a bytestream we can hand off to
the compressor.

Of course, a sequence of 16 or 32 bit integers can
easily be turned into a sequence of 8 bit integers. But
this sequence would contain a mixture of high bytes and
low bytes, which would likely have different frequency
distributions and result in poor compression.

The approach we take for encoded unsigned integers
is to encode the lowest seven bits in a byte, with the
high bit set if more bits are coming. This works well
in cases where we don’t know the maximum value or
distribution but expect that the distribution is skewed
towards small numbers (it works very poorly if most
numbers being encoded are in the range 128-255).

In other situations both the encoder and the decoder
know the range of possible values (e.g., that the integer
to be encoded is in the range 0...4242). In such cases,
we use a scheme that takes into account the range of
values that need to be transmitted. If we know that
values 0 . . . (n − 1) need to be transmitted (n ≤ 216),
we reserve the highest r = bn−2

255 c bit patterns in the
first byte to indicate that this is a two-byte value. If
x ≥ 256− r, x is encoded as

[((x− (256− r)) mod r) + 256− r, b(x− (256− r))/rc]

Using variable length encodings as above for signed
integers would result in a multi-byte encoding of all neg-
ative numbers since their representation is at the high
end of the unsigned range. We fix this by essentially

252



Benchmark programs

Compression for javac mpegaudio
Bytestream 48% 43%

Opcodes 36% 17%
using Stack State 35% 15%
using Custom opcodes 34% 13%

Register numbers 39% 34%
Branch offsets 41% 52%
Method references 35% 28%

Table 4: Compression for bytecode components

moving the sign bit of signed integers into the least sig-
nificant bit position; x is encoded as x ≥ 0 ? 2x :
−2x − 1. Thus, {−3,−2,−1, 0, 1, 2, 3} is encoded as
{5, 3, 1, 0, 2, 4, 6}.

7 Compressing Bytecodes

Java bytecode sequences are a mixture of opcodes, in-
teger constants, register numbers, constant pool refer-
ences and branch offsets. As has been suggested pre-
viously [EEF+97], we might be able to achieve better
compression if we separate that information into sepa-
rate streams and compressed them independently.

Of course, note the “we might”. It isn’t guaran-
teed. For example, local 0 is initially (and generally
throughout a method) used to store this (for non-
static methods). There are some instruction patterns
that depend on the registers and other values in the
bytecode sequence. For example, an aload instruction
is much more commonly followed by a getfield in-
struction when the aload instruction loads local 0. As
it turns out, we would pick this up even though byte-
codes are separated, because a special opcode is used for
loading a reference from local 0 (aload 0). When we
separate out the operands from the opcodes, we don’t
separate out the implicit operands in opcodes such as
iconst 2 and aload 0.

Table 4 shows sample compression factors for byte-
codes, and for various components of bytecodes. As you
can see, we get substantially better compression factors
for a sequence of opcodes than for a sequence of byte-
codes. In some unusual cases, such as mpegaudio, we
get absolutely incredible compression ratios. The other
sequences don’t always compress as well, but the overall
effect is a substantial win.

7.1 Approximate Stack State

I also performed a calculation of the current stack state
(a computation of the number and types of values on
the stack before executing each instruction). This stack
information was used to collapse opcodes. For exam-
ple, if we know the type of the element on the top of

the stack, we can collapse all four addition opcodes into
the iadd instruction, and regenerate the correct opcode
upon decompression. No backwards branches were con-
sidered, and I only remembered the stack state over
one forward branch at any one time (because the de-
compressor has to duplicate this computation, it would
be impossible to consider backward branches). Because
of these limitations, the calculation was an approxima-
tion: sometimes, the system would not know what state
the stack was in. The improvements realized by this
optimization are modest, as seen in Table 4, but not
expensive to computing while compressing or decom-
pressing. Computing the stack information is also use-
ful in compression references (§5). I have incorporated
this optimization into my baseline results.

7.2 Using Custom Opcodes

I tried a custom opcode approach to compressing JVM
opcodes [EEF+97, FP95]. The program looked for pairs
of adjacent opcodes, that, if replaced by new opcode,
would most reduce the estimated length of the pro-
gram, where an opcode that occurred with frequency
p was expected to require log2(1/p) bits. It also consid-
ered skip-pairs, that allowed for a slot between the two
opcodes being combined. After each new opcode was
introduced, the frequencies were recalculated.

Although this approach substantially decreased
number of opcodes, gzipping the resulting sequence of
opcodes gave a result that was only about slightly bet-
ter than gzipping the original sequence of opcodes (see
“Custom opcodes” in Table 4). As implemented, com-
puting the custom opcodes was relatively expensive, but
was very inexpensive to decompress. However, given the
meager improvements, I decided not to incorporate this
technology in the results reported here. Using custom
opcodes may be an attractive in situations where gzip
compression is not being used (because it is not avail-
able on the client or it is too expensive to run on the
client).

8 Compressing Sets of Strings

The zlib compression algorithm works very well on text,
and so we correctly expect that it would work well on
a list of strings. However, because strings make up a
substantial portion of the information in Java class file
(even once we have factored out information like class
names and package names), it is important to do as well
as possible.

Our approach to handling strings is similar to that
for objects in general. The first time a string is en-
counted, we encode a special index to indicate a value
not seen before, and we write the Unicode string using
the UTF encoding. Different categories of strings (e.g.,

253



% of size of jar file
of gzip’d classfiles

Option javac mpegaudio
Standard 22% 37%
Packed Separately 52% 56%
Not gzip’d 49% 99%
Packed Separately and not gzip’d 87% 118%

Table 5: Effects of separate packing and not gzipping

string constants or method names) are put into seper-
ate streams. Strings lengths are written to a separate
stream than the Unicode characters (mixing the two de-
grades compression). When a string is encounted again,
we encode a reference to it using the scheme used for
objects in general, as discussed in Section 5 (e.g., the
index into a move-to-front queue or a fixed-id).

9 Other issues

One reason that my packed format is more compact
is that multiple class files are combined into a single
packed format that shares information. If each class file
were packed separately, the total amount of data that
needs to be communicated increases. Another question
is how much of the compression in my packed format is
due to gzip, and how much is because of the more com-
pact encoding. On normal classfiles, gzip provides a
compression factor of about 2. These effects of combin-
ing classfiles and using gzip are broken out in Table 5.
Not using gzip may be appropriate on very lightweight
clients where running zip is impossible or too expensive.

There is one issue we must be careful about when
decompressing an archive. Normally, when we need to
create a reference to a constant pool entry in a recon-
structed classfile, we can just assign the element refer-
enced to any free slot in the constant pool. However, the
bytecode LDC instruction can only encode an index in
the range 1-255. These instructions can only reference
integer, float and string constants.

The first fix is to assign integer, float and string con-
stant pool entries the smallest available index. Other
constant pool entries are assigned in the largest avail-
able index; we transmit the total number of constant
pool entries required as part of are encoding.

This almost fixes the problem. However, if there
are more than 255 integer, float and string constants
referenced in a classfile, which ones are assigned small
indices? We would like to ensure that the same set
of constants is assigned small indices as in the origi-
nal classfile; otherwise, we would have to change some
LDC instructions to LDC W instructions, which are of
different sizes. This would then require patching all
jump offsets that traversed the changed instruction.

Instead, if a integer, float or string constant is refer-
enced with a LDC W instruction, then it is assigned a
high constant pool index; if it is referenced with a LDC
instruction, it is assigned a low constant pool index.
This assumes that a classfile doesn’t reference the same
constant pool entry with both a LDC and a LDC W
instruction. It would be inefficient to do so, and can
be fixed (and made more efficient) when the classfile is
encoded if necessary.

This almost fixes the problem, except that a inte-
ger, float or string constant can also be referenced as a
constant value for a field. We use an additional bit in
the access flags for a field to encode whether a constant
value int/float/string should be assigned a high index.

10 Evaluation

I report my compression results in Table 6. I used the
move-to-front with transients and context scheme for
references and used calculated stack state to collapse
JVM opcodes.

I report the size of jar files, j0r.gz files (jar files with-
out individual classfile compression but with overall zlib
compression), Jazz files [BHV98] (Section 13.1) and the
archives produced by the techniques described in this
paper.

I also report, in the archives I produce, how much
space is occupied by strings (string constants, class and
method names, ...), opcodes, integers, references and
other (including floating point constants, branch offsets
and registers). As you can see, no one element domi-
nates, so obtaining substantial additional reduction in
archive size would likely require substantial reductions
in all elements.

10.1 Execution time

We timed the execution speed of both the compression
routine and the decompression routine. In the decom-
pressor, we just computed the time required to build
each classfile internally; we did not include the time re-
quired to store the class files into a jar file. Thus, these
times would be appropriate for an application using ea-
ger class loading (Section 11).

The decompressor can decompress about 75-120
Kbytes of wire-format classfiles per second (which
would expand into a substantially larger collection of
classfiles). This is on a Sun Ultra 5 workstation with
a 333Mhz processor using the Sun Solaris production
JVM, version 1.2fcs, which achieves a JVM98 Specmark
of 16.6.

The compressor is about 15 times slower than the
decompressor, but at the moment it still contains a fair
bit of code for generating statistics and is a very general
purpose compressor (i.e., can implement many differ-

254



Size in KBytes Size as % of jar format Size as % of packed format

Benchmark jar j0r.gz Jazz Packed j0r.gz Jazz Packed Strings Opcodes Ints Refs Misc

209 db 6 5 4 3 84% 66% 49% 34% 28% 9% 17% 13%
201 compress 10 6 4 3 59% 41% 29% 29% 32% 14% 17% 8%
Hanoi jax 21 16 12 7 74% 58% 32% 21% 30% 13% 27% 9%
205 raytrace 24 15 12 7 64% 50% 30% 20% 33% 9% 22% 16%
Hanoi big 30 20 15 9 67% 52% 29% 25% 27% 14% 26% 8%
Hanoi 46 31 23 13 67% 49% 29% 22% 29% 12% 29% 8%
228 jack 55 36 30 17 65% 55% 30% 32% 21% 14% 21% 11%
222 mpegaudio 62 45 34 23 73% 54% 37% 9% 24% 37% 12% 18%
icebrowserbean 116 88 80 39 76% 69% 34% 21% 31% 11% 26% 12%
javafig dashO 131 113 102 53 86% 78% 41% 23% 28% 8% 29% 12%
202 jess 136 64 42 23 47% 31% 17% 23% 28% 12% 26% 11%
javafig 170 143 122 64 84% 71% 38% 28% 26% 8% 27% 11%
jmark20 173 91 86 35 53% 50% 20% 22% 25% 13% 28% 12%
213 javac 226 143 90 50 63% 40% 22% 18% 29% 15% 27% 11%
ImageEditor 257 162 123 64 63% 48% 25% 22% 28% 16% 24% 10%
tools 737 513 477 204 70% 65% 28% 26% 27% 10% 27% 11%
visaj 1,157 703 691 238 61% 60% 21% 23% 26% 12% 31% 8%
swingall 1,657 998 887 338 60% 54% 20% 19% 28% 13% 31% 9%
rt 4,652 2,820 8,435 1,069 61% 181% 23% 22% 28% 13% 27% 10%

jar Size of jar file with individual class files stripped of debugging information and compressed
j0r.gz Size of gzip of jar file with class files stripped of debugging information and but not compressed
Jazz Size of Jazz archive [BHV98] (See Section 13.1)

Packed Size of archive produced by techniques in this paper

Table 6: Compression ratios

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1,000 10,000

Size of jar file (KBytes)

S
iz

e 
as

 %
 o

f j
ar

 fi
le

j0r.gz Jazz Packed

Figure 2: Graph of compression ratios

255



Compression Decompression

File time (secs) time (secs) Kbytes/sec

rt 170.62 8.58 125
swingall 54.97 2.92 116
tools 27.61 1.51 135
icebrowserbean 4.72 0.31 127
jmark20 5.59 0.42 83
visaj 36.5 2.07 115
ImageEditor 7.47 0.53 122
Hanoi 1.74 0.13 101
Hanoi big 1.07 0.10 86
Hanoi jax 0.80 0.09 75
javafig 8.72 0.41 157
javafig dashO 7.16 0.49 109
201 compress 0.25 0.09 31
202 jess 3.18 0.24 95
205 raytrace 1.02 0.13 56
209 db 0.27 0.09 31
213 javac 6.56 0.39 129
222 mpegaudio 2.42 0.19 121
228 jack 2.50 0.18 92

Table 7: Execution times

ent compression schemes). A rewrite of the compressor
should provide substantial speed improvements.

The decompressor is 36 Kbytes in jar format, so
if the decompressor had to be downloaded along with
a packed archived, it would only be advantageous for
larger archives. The decompressor is 23 Kbytes in j0r.gz
format, so it could be loaded by first downloading (a
tiny) a classloader than understood j0r.gz archives, and
then downloading the decompressor. If the decompres-
sor were installed as an standard extension, then this
wouldn’t be an issue and would be fine for even very
small archives.

11 Eager class loading

Normally, Java classfiles are loaded on demand. Partic-
ular when each classfile is loaded via a separate file or
net connection, this can be a huge win. However, when
classfiles are loaded out of an archive (a jar file or other
Java classfile archive) that is downloaded over the net,
it is a more dubious idea. To allow on-demand loading,
the archive must be cached on disk or in memory. If it
is cached on disk, that bytes forming the archive may
need to be copied in memory several times (with a good
and large file system cache, they probably won’t need
to be retrieved from disk).

In Sun’s (Sparc Solaris 1.2) implementation of class-
loading from downloaded jar files, no entries can be ex-
amined until the jar directory is downloaded, which is at
the very end of the jar file. The jar file is cached on disk

and kept open until the virtual machine shuts down. It
might be possible to fix some of these implementation
issues, so that entries could be accessed once they have
arrived, and the jar file would be deleted once the class-
loader than opened it was unreachable. But the archive
would still have to be kept cached while classes were
still being loaded, and classes would likely be copied in
memory several times before being loaded.

An alternative approach would be ea-
ger class loading – to load classes into the
JVM as soon as they arrive (i.e., invoke
java.lang.Classloader.defineClass(...)), with-
out buffering them or waiting for the entire archive to
arrive. This allows us quicker access to some of the
class files in the archive, and eliminates the need to
cache or buffer a copy of the jar file.

If this resulted in loading many classes that were
not needed, it might result in increased resource costs
or performance problems. But this is already an issue
for Java archive. If you are going to download a large
archive over a network for direct execution, you already
want to make sure that most of the classes will be ac-
tually used. Otherwise, you will pay the transmission
costs for classfiles you won’t use. There are several ap-
proaches to increasing the percentage of classfiles that
are actually used. A tool such as JAX may be used to
eliminate from third-party libraries classfiles that can-
not be loaded by the application being distributed. Pro-
filing [KCLZ98] could be used to determine a desirable
order for classes. You could also break up packages into
separate archives, and have rarely used classfiles loaded
separately.

The eager class loading approach works with a stan-
dard jar archive, as well with the packed format. Note
that before a class X can be loaded, the superclass of X
and all interfaces implemented by X must be loaded. If
the request to load X is done in a thread separate than
the one which is handling the download and spawning of
threads to load classes, the system won’t deadlock, but
it also won’t be efficient. Instead, we should make sure
that the superclass of X and the interfaces implemented
by X appear in the archive before X.

12 Jar functionality

Java jar files provide functionality beyond just being
an archive of class files. In particular, jar files can con-
tain non-class files (gif images, property files) and the
jar manifest, which contains information such as digital
signatures.

The basic solution to this is to combine a packed
java archive with a standard jar file that contains all
of the non-class files from the jar archive being emu-
lated. One issue that needs to be dealt with is that
compressing and decompressing a Java classfile using

256



% of Gzip’d
Paper classfiles
Slim Binaries [KF97, KF, Fra97] 59
JShrink, DashO, and Jax 65 – 83
jar.gz format (§2.1) 55 – 85
Clazz format [HC98] 52 – 90
Jazz format [BHV98] 40 – 70
This paper (on programs > 10K bytes) 17 – 41

Table 8: Results on wire-code program compression in
related work

the format proposed in this paper will likely modify the
classfile by renumbering the constant pool. Thus, any
signatures for the original classfiles will be invalid for
the decomposed classfiles. However, the decompression
is deterministic: decompression of a packed archive will
always result the identical set of classfile. Therefore, if
you wish to sign your classfiles, you must use the follow-
ing approach: compress the classfiles, and then decom-
press the classfiles. Sign the decompressed classfiles,
and ship the signed manifest from the decompressed
classfiles along with the packed archive.

13 Related Work

Many papers have argued and discussed different as-
pects of machine independent intermediate forms, such
as their suitability for run-time optimization. Given
the wide-spread use of Java, my goal was to develop a
compact wire-code format for Java, without regard to
the merits or problems of the Java virtual machine. A
comparison of quoted compression results from related
work is provided in Table 8.

Ernst et al. [EEF+97] discussed two kinds of code
compression: wire-code and directly executable. The
technique I have proposed is a wire code, so I will limit
myself to comparisons with the wire-code described by
Ernst et al. [EEF+97]. Ernst et al. consider only
code segments of full executables, and thus don’t deal
with significant amounts of symbolic linkage informa-
tion nor data such as strings and floating point con-
stants. They use the lcc intermediate form [FH95],
which is a tree based format. It has been suggested
that a tree based intermediate form is more suited to
compression [KF97]. Despite these differences, our ba-
sic approach is very similar: break out dissimilar objects
into different streams which are compressed separately.

Michael Franz has proposed Slim Binaries [KF97,
KF, Fra97] as a mechanism for distribution of compact,
machine independent programs. It is based on an en-
coding of the abstract syntax tree and symbol table of
a program. The papers on Slim Binaries do not give de-
tails of the encoding, but do give limited experimental

results (Table 8).
Lars Raeder Clausen et al. [CSCM98] describe a

method of factoring Java classfiles by finding custom
macros or opcodes, similar to the techniques described
in [EEF+97]. They focus on embedded systems with
small amounts of memory, and focus on reducing the
size of bytescodes for loaded classfiles. Their techniques
reduce the size of the bytecodes to about 70% – 80% of
their original uncompressed size and require modifica-
tions to the JVM.

Normally, an entire class file must be transmitted
before a class loader will start to process it, and an
entire jar file is transfered before it is used by a class
loader. Krintz et al. [KCLZ98] describe methods that
determine (based on profile information) which classes
and methods are likely to be needed first, transmit the
data needed for these classes and methods first, and al-
low execution to start while the remaining information
about classes and methods is still being transferred. In-
voking a method which hasn’t arrived yet blocks until
the method arrives. I have incorporated parts of this
idea in my provision for eager class loading (§11). Inter-
mingling different classes could change the effectiveness
of compression (since there would likely not be as much
locality of reference).

Tools such as Jax [LTS], Dash-O and JShrink per-
form shrinking and obfuscation by renaming classes,
methods and fields to have short, meaningless names
and stripping out debugging information. The Jax tool
(and perhaps the others) performs transformations such
as removing methods that are never called and merg-
ing a class into its superclass when it can prove that
such a transformation doesn’t effect the semantics of
the program. These tools typically give reductions of
17% - 32% of the classfile size. Surprisingly, the tech-
niques of Section 2, applied after applying DashO, gave
an additional reduction of 2% in the size of the resulting
compressed jar file. The apparent reason is the DashO
doesn’t sort the constant pool, leading to poorer com-
pression. Transformations applied by these tools could
be usefully combined with the techniques in this paper
to provide greater compression than either technique
alone. Tools such as Jax are particularlly using when
an application uses a small portion of a library that is
not installed on most clients. By extracting just the
used portion of the library, the potential savings are
unbounded.

13.1 Jazz compression

The Jazz format [BHV98] is also a custom compressed
format for collections of Java class files. In that regard,
it is very similar to the work described in this paper.
However, the Jazz format does not achieve as good com-
pression rations as the work described here. The Jazz
format is a less radical format. It retains the exist-

257



ing kinds of Constant Pool entries, although it uses a
global constant pool, sharing them across classfiles. But
it doesn’t do the factoring my work does, which elimi-
nates the repetition of package names in classnames and
of classnames in signatures. Also, it uses a fixed Huff-
man encoding indices for each kind of constant pool en-
try, that doesn’t take locality of reference into account.

The Clazz format described by Horspool and Cor-
less [HC98] was a predecessor of the Jazz format. While
there are a number of similarities, the Clazz format is
applied to individual classfiles in isolation, and there-
fore does not achieve a high compression as Jazz or the
compression techniques described in this paper.

14 Conclusion

The Java classfile format is rather fluffy and it should
come as no great surprise that a different format could
lead to smaller files, particularly when information du-
plicated across multiple class files is combined. On the
other hand, a good compression algorithm can work
wonders, and a more efficient format with less redun-
dant information will often not compress as well. So the
amount of additional compression available over gzip’d
classfiles was not obvious. As it turns out, we can ob-
tain compression factors of 2-5 over individually gzip’d
classfiles, which will make an important difference in
mobile and other low bandwidth applications.

We have been making the assumption that for each
kind of data, one particular encoding scheme is opti-
mal. Of course, this isn’t the case: different schemes
will work better with different benchmarks. To achieve
even better compression, the compression stage could
try several encoding methods of each kind of data, and
select the one that happens to work best. The encoded
data would include a description of the encoding mech-
anism used for each data sequence, and would not be
substantially harder to decode than if a fixed policy was
used for each kind of data.

There are a number of other approaches that might
give minor performance improvements. The only
change I can think of that would likely give non-trivial
improvements would be assume a standard set of pre-
loaded references to frequently used package names,
classes, method references and so on. It actually
isn’t guaranteed that this would improve compression
(preloaded references that were never used would de-
grade compression), but I expect it would help on small
archives. This would also likely increase the size of the
decompressor, so in the situations where the decom-
pressor is not pre-installed, there would not be any net
benefit.

As a research tool, the goal is to get as much com-
pression as possible. However, as a tool that might be
widely distributed and reimplemented, it might be bet-

ter to have a specification of the packed format that
is simple and clear. It may be appropriate to simplify
the format by, for example, dropping approximate stack
state (§7.1).

I expect that an implementation will be available for
download from http://www.cs.umd.edu/∼pugh by the
date of the conference.

15 Acknowledgments

Thanks to the referees and others who provided me with
feedback about the paper. Special thanks to Quetzal-
coatl Bradley, R. Nigel Horspool and Jan Vitek, who
provided me with an implementation of Jazz [BHV98]
so that I could do a proper comparison of my work with
Jazz.

References

[BHV98] Quetzalcoatl Bradley, R. Nigel Horspool, and Jan
Vitek. Jazz: An efficient compressed format for java
archive files. In Proceedings of CASCON’98, Novem-
ber 1998.

[CSCM98] Lars Raeder Clausen, Ulrik Pagh Schultz, Charles
Consel, and Gilles Muller. Java bytecode compres-
sion for embedded systems. Technical Report 1213,
Irisa, December 1998.

[EEF+97] Jens Ernst, William Evans, Christopher Fraser,
Steven Lucco, and Todd Proebsting. Code compres-
sion. In ACM SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation, June
1997.

[FH95] Christopher Fraser and David Hanson. A Retargetable
C Compiler: Design and Implementation. Addison
Wesley Longman, 1995.

[FP95] Christopher Fraser and Todd Proebsting. Cus-
tom instruction sets for code compression.
www.research.microsoft.com/~toddpro/papers/pldi2.ps,
October 1995.

[Fra97] Michael Franz. Mobile Object Systems: Towards the
Programmable Internet, volume 1222, pages 263–276.
Springer Lecture Notes in Computer Science, 1997.

[HC98] R. Nigel Horspool and Jason Corless. Tailored com-
pression of java class files. Software – Practice and
Experience, 28(12):1253–1268, October 1998.

[KCLZ98] Chandra Krintz, Brad Calder, Han Bok Lee, and
Benjamin Zorn. Overlapping execution with trans-
fer using non-strict execution for mobile programs. In
Eighth SIAM Conference on Architectural Support for
Programming Languages and Operating Systems, Oc-
tober 1998.

[KF] Thomas Kistler and Michael Franz. A tree-based al-
ternative to Java byte-codes. International Journal
of Parallel Programming. To appear.

[KF97] Thomas Kistler and Michael Franz. Slim binaries.
Communications of the ACM, 40(12):87–94, Decem-
ber 1997.

[LTS] Chris Laffra, Frank Tip, and Pete Sweeny.
Jax – the Java Application eXtractor.
www.alphaWorks.ibm.com/formula/JAX.

[Pug90] William Pugh. Skip lists: A probabilistic alterna-
tive to balanced trees. Commincations of the ACM,
33(6):668–676, June 1990.

258

http://www.cs.umd.edu/~pugh
http://www.alphaWorks.ibm.com/formula/JAX

	Introduction
	Methodologies and Baselines
	Gzip'd jar files of uncompressed class files

	Basic approaches
	Structuring information
	Compressing References
	Variants
	Baseline: Simple
	Baseline: Basic
	Competitor: Freq
	Competitor: Cache
	Variant: move-to-front, transients
	Variant: move-to-front, use context


	Encoding Integers
	Compressing Bytecodes
	Approximate Stack State
	Using Custom Opcodes

	Compressing Sets of Strings
	Other issues
	Evaluation
	Execution time

	Eager class loading
	Jar functionality
	Related Work
	Jazz compression

	Conclusion
	Acknowledgments

