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Abstract—We present Purity, a configurable, data-centric,
communication profiler for the Chapel language that analyzes
memory and communication access patterns in a multi-node
PGAS environment. By integrating Purity into the compiler
and runtime framework of Chapel we can instrument Chapel
programs to capture memory and communication operations
and produce both online and fine-grain post execution re-
porting. Our profiler is equipped with a sampling mechanism
for reducing overhead, handles complex data structures, and
generates detailed execution profiles that map data motion to
the variable, field, loop, and node levels for both distributed and
non-distributed instantiations. In a case study, Purity provided
valuable insight into task and data locality which allowed us to
develop a programmatic solution for reducing nearly 90% of
remote operations in SSCA#2.
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I. INTRODUCTION

Measuring the performance of parallel applications is im-
portant in order to ensure the best utilization of available
system resources in a distributed environment. There are
many performance aspects to consider when profiling program
execution. The performance tuning on a per node basis is typ-
ically centered around CPU cores utilization, GPU processing,
memory, and disk access. However, over an entire cluster the
focus tends to shift to workload balance, task and data locality,
and network latency and utilization.
High-level parallel languages such as Chapel need tools to
better measure and understand task and data locality in a multi-
node environment. What is missing in the HPC community is
a fine-grain tool that can contextually map data motion back to
the variables used within various sections of code to identify
where bottlenecks exist. In this paper we present a data-centric,
communication profiler called Purity which addresses these
concerns by providing detailed profiling of program executions
for the Chapel language.

II. DESIGN

Our primary goal for the design was to develop a comprehen-
sive tool that can analyze and profile memory and communi-
cation access patterns over a multi-node PGAS environment.
The Chapel community has expressed keen interest in the
development of a profiling system that is integrated into the

Chapel framework. We have achieved both these goals with
Purity.

To effectively profile PGAS access patterns, we determined
that all communications need to be monitored during runtime
execution and mapped back to their respective source vari-
ables. Each communication operation will contain references
to a local and remote memory address. These addresses can
be resolved if we establish an association between allocated
memory ranges and variable definition identifiers. Generating
this map will involve both static and dynamic analysis.

Fig. 1. Purity: Pipeline Overview

The static analyzer’s primary job is to identify and instrument
the source variables defined in the user modules which are
relevant to remote communications. It will also generate static
files pertaining to key aspects of the user modules of a Chapel
program for use in a later stage of the analysis.

Dynamic analysis is responsible for associating memory
ranges with variable definitions for use with mapping the
remote addresses of communication operations during pro-
filing. However, the prospect of building and maintaining a
map of the entire partitioned global address space (PGAS)
during runtime could range anywhere from cost prohibitive
to downright intractable, depending on the program’s needs
and the number of nodes involved. First, it will incur a



large overhead on system resources of the principle node(s)
which could slow program execution. Secondly, this scenario
will require every node to report all of their heap operations
over the network, including potentially even stack variable
addresses during procedure invocations.
Thus in order to mitigate impact on system and network
resources that profiling may incur, dynamic analysis must
be performed independently on each node. However doing
so leaves each analyzer with only a partial view of the
PGAS. A unified view is required in order to resolve the
definition identifier of a remote address for the corresponding
communication. Therefore, each dynamic analyzer records the
memory and communication operations of its host for post
processing.
The post processing reads in the static files generated by the
static analyzer in the compiler and the event logs produced
by the dynamic analyzers on each node at runtime, performs
a series of analyses, and produce a detailed profile for each
execution of the instrumented Chapel program. The profile
consists of a series of comma delimited files which provide
a summary ranking variables by percentage of remote opera-
tions, loop analysis, request aggregation and byte throughput
report at the node and flat index level, and a coverage report.

III. IMPLEMENTATION

The integration of Purity into Chapel involved the modification
of the compiler with the introduction of five new passes for
static analysis and a profile module. Incorporated into the
runtime framework were the dynamic analyzer, a C imple-
mented thread-safe ADT library, and a signal processing layer.
Purity can be configured both through the command line and
by environment variables. Purity was built from the Chapel
1.15.0 open-source distribution which includes the Chapel
compiler, internal modules, runtime framework, and third-
party dependencies.

A. Static Analysis

The static analyzer comprises of a source analysis pass, profile
propagation, and four instrumentation passes. It also incorpo-
rates a profile module into the Chapel program. The profile
module provides functionality for launching, updating, and
finalizing dynamic analysis across the network during runtime.
Through C interoperability with Chapel, the profile module
also allows the compiler to link instrumented call expressions
to dynamic analysis functions in the runtime framework.
Source analysis is performed at the earliest point possible
in the compiler, right after parsing is complete, and has
several responsibilities. First, it analyzes the abstract syntax
tree (AST) structures to identify candidate variables and their
definitions for instrumentation in later passes. Secondly, the
pass stores relevant information pertaining to modules, class
and record definitions, procedures, variables, and domains.
Third, the body of each function definition is analyzed to
identify and catalog loop hierarchies. Finally, its responsible
for loading the profile module. The data gathered by source

Fig. 2. Purity: Static Analysis

analysis is used to both inform procedure propagation and
generate static files at a later stage.

Profile propagation was designed to persist profile information
between compiler passes, disambiguate the different defini-
tions of source variables when multiple definitions are gen-
erated by the compiler, and when required, spread contextual
annotations down the chains of compiler generated temporary
variables that originated from interactions with one or more
candidate variables. The annotations of temporary variables
aid in the instrumentation of candidate variable definitions and
’new’ allocations in later passes so that memory addresses can
be properly associated with the correct definition identifiers at
runtime.

Fig. 3. Compiler Pass Constellation

After deep inspection we discovered that certain interactions
with wide references in the compiler’s AST representations
will result in the generation of communication operations. A
wide reference is a reference to a memory address in the PGAS
environment that could either be local or remote. The problem
is we are not able to determine which variables require
instrumentation until after the ’insert wide references’ pass
which is a late pass in the compiler. Therefore, placeholders
are needed for the preliminary instrumentation of candidate



variables.

Late stage instrumentation is part of the reason why the static
analyzer requires an additional four passes. The first pass
follows ’scope resolution’ and adds definition placeholders to
the ASTs. The second pass comes after ’create task functions’
and is responsible for instrumenting the launching of the
dynamic analyzer across all node, consolidation of online
reporting, and the finalization of the analysis in compiler
generated main or ’chpl gen main’ which is managed and
controlled by the main node. The third pass was inserted
after ’check resolved’ and instruments compiler generated
class constructors with field definition placeholders. The final
instrumentation is performed after ’insert wide references’
and is responsible for the identification and replacement of
placeholders for wide reference variables, as well as the
instrumentation of ChapelArray and Atomics internal modules.

The Chapel compiler has two back ends, native C and LLVM.
Since all instrumentation is completed before the ’codegen’
pass, the profiler will support either Chapel option.

B. Dynamic Analysis

Dynamic analysis comprises of a memory tracker, pulse sam-
pling, synchronization, and an event recorder. Pulse sampling
uses signal processing as a means to provide an easy way to
scale back the handling and recording of runtime operations.
We describe the sampling mechanism later in this section.
Dynamic analysis also provides online, high-level aggregate
reporting of local, remote, cached, and prefetched operations.
Each node will host a dynamic analyzer with a partial view
of the PGAS and will report memory and communication
operations to an event logger for post processing.

Fig. 4. Purity: Dynamic Analysis

Since the runtime framework was implemented in the C
language, an abstract datatype (ADT) library was constructed
to manage various aspects of the dynamic analyzer. Included
in this library is a hashmap ADT which is thread-safe, supports
dynamic growth, can be extended for multimap capabilities,
and was designed so that all operations perform in constant
time. Primarily it is used for task mapping and keeping track

of the depth of parallelism to assist the memory tracker in
the dynamic mapping of memory addresses for optionally
either or both heap instantiations and stack variables with
source variable definition identifiers. These structures will
also assist in the resolution of variables effected by domain
resizing during runtime regardless of whether the allocations
are distributed or locally stored.

Pulse sampling can be enabled to reduce the analysis overhead
and file size of generated event logs. While sampling is inac-
tive, memory operations will still be processed and recorded
but communications will not. The Chapel-communication in-
terface layer is also informed so that unsampled communi-
cations will not generate synchronizations. Pulse sampling
is controlled by a signal processing layer which supports
options for ’sigalarm’, ’sigprof’, and PAPI. Given a sequence
of intervals and callback functions, sampling can be enabled or
disabled for controlled durations. Intervals for ’sigalarm’ and
’sigprof’ are in seconds, while PAPI intervals are measured in
total instructions or ’PAPI TOT INS’.

Synchronization allows post analysis to model the memory
state of each node for resolving communications. To achieve
this, a monotonically increasing synchronization identifier is
recorded with each operation and exchanged through piggy-
backing remote communications between nodes for synchro-
nizing the event logs. Existing AM requests and AM handler
functions inside the Chapel-GASNet interface were expanded
to support both one-way and two-way sharing of synchro-
nization identifiers. Direct calls to GASNet operations are
followed by a short AM request instead to avoid having
to modify all conduits in the third-party GASNet library.
When ’chpl comm barrier’ is called, all other nodes share
synchronization information with the main node.

C. Post Analysis

The current version of the post analysis was written in Ruby
and contains a parser for handling static and event logs, a
simulator for synchronizing and maintaining a unified view of
memory allocation states for each node in the cluster in order
to resolve communications, and performs several analyses.
First, it produces a summary of local, cached, prefetched, and
remote get and put operations for each source variable tracked,
which are ranked by percentage of total remote operations
performed. Secondly, the loop hierarchy maps generated by
the static analyzer are used in loop analysis to provide a
breakdown of each variable ranked by the number of remote
operations performed at each relevant loop. Third, request
aggregation and byte throughput analysis drills down further
by generating node and flat PGAS index matrices for each
variable.

Finally, coverage analysis captures all unmapped heap allo-
cations and unresolved communication operations, aggregates
them by module and line number, and ranks them from most to
least unmapped remote operations. Generally, 95% or better
is considered acceptable coverage for the execution of any
standard benchmark with a reasonable input size, with an



Fig. 5. Purity: Post Analysis

aim of 99% or better. To account for any slightly out of
sync matching of communications and referenced allocations
between the event logs that may arise due to network latency
or nondeterministic thread behavior, freed heap allocations are
removed from the host node’s memory structure and then
stored in a separate shadow memory structure for a few
parsing cycles. This second channel mapping usually improves
coverage by less than 1%.

Though rather complex, the true strength of Purity resides in
its ability to account for everything. At each point in the
program’s execution and over the entire cluster Purity can
answer:

• How was each communication handled?
• Which module and loop did the operation occur?
• Which nodes were involved?
• How many bytes were transmitted?
• Which variable instantiations were involved?
• Which definitions were they instantiated from?
• Which fields, subfields, and/or indices were affected?

In fact, the only thing the analysis can’t answer is ”What
was the value stored at index Xi over the PGAS for a
particular variable instantiation X at time T in the program’s
execution?”, as this would require an enormous amount of
time and space to record.

D. Configurations

For the compiler, profiling can be configured either at the com-
mand line or through environment variables. When choosing
which integrated profiler option to instrument a Chapel pro-
gram with, the –profile option has four types: cctimer, ccsignal,
dcprof, dcsample. The ’dc’ stands for data-centric communi-
cation profiler and ’cc’ stands for code-centric performance
profiler, ’signal’ and ’sample’ rely upon the signal processing
layer for aggregating results. The cctimer and ccsignal options
are based on our previous work [1]. The dcprof option will
produce full event logs while with dcsample, the output file
size can be scaled back. Throughout the course of the paper
we will be focusing on the dcprof and dcsample options only.

chpl –profile=dcsample
CHPL PROFILE=dcsample

The profile input option provides a filename to the static
analyzer while compiling a Chapel program. When used in
conjunction with dcprof or dcsample, the static analyzer can
be directed with a finite definition list of variables to track. If
no file is provided, by default all variables in the user modules
will be scanned and targeted for instrumentation.
chpl –profile-input=<filename>
CHPL PROFILE INPUT=<filename>
At runtime, the profile settings for the dynamic analyzer
can be preconfigured and reconfigured for each execution
through environment variables. The signal processing layer
provides three options: sigalarm, sigprof, PAPI which can be
set using the profile signal and interval environment variables.
The interval variable can be assigned one or more values as
illustrated below.
CHPL PROFILE SIGNAL=sigprof
CHPL PROFILE INTERVAL=0.01,0.02
The following environment variables will direct Purity as what
to log. In general, undefined variables or a variable assigned
with a value of zero means no recording of that type will occur.
Heap: 1: log only memory operations pertaining to memory
addresses that can be associated with a valid variable definition
identifier, 2: log all memory operations regardless of their
associations. Comms: 1: log remote operations only 2: log both
local and remote communications. Sync: 1: one-way, 2: two-
way synchronization. Verbose: 0: event logs are populated by
brief lines which are recognized by the post analysis simulator,
1: provides full information to go along with debugging or for
special purposes. Below is the default configuration.
CHPL PROFILE RECORD HEAP=1
CHPL PROFILE RECORD STACK=1
CHPL PROFILE RECORD COMMS=1
CHPL PROFILE RECORD SYNC=2
CHPL PROFILE RECORD VERBOSE=0
CHPL PROFILE PATHOUT=<program directory>
The profiler can also be configured to produce debug infor-
mation using the follow environment variable.
CHPL PROFILE DEBUG=1

E. Challenges

The actual arguments of generated communication calls al-
ways involve compiler generated temporary variables and most
of the time there is no easy programmatic way to know what
these variables are actually referring to. We overcome this
by tracking heap and potentially stack memory addresses to
resolve the source variables in reference.
The symbol list and AST can best be thought of as an ever
changing sea of identifiers and addresses where nothing can be
known or relied upon from one pass to the next or sometimes
even between multiple sections of the same pass. We use
symbol and procedural propagation in an attempt to limit or
mitigate these effects.
Both the local and remote addresses of all generated communi-
cation calls for atomics refer to compiler generated temporary



stack variables on both sides of the communication. The ad-
dresses of local temporary variables need to be associated with
the respective atomic’s definition identifier while the operation
is being performed. This requires special instrumentation of
atomic operations inside the internal Atomic module.

The compiler sometimes completely removes any reference to
stack variables originally defined in the user modules and then
replaces them with compiler generated temporary variables.
Disabling copy propagation may fix the problem but it can
also cause type incompatibility errors to occur in later passes.

The Chapel runtime environment is totally unaware of remote
operations on the receiving side because the read and writes to
remote addresses are handled deep within a third-party com-
munication substrate and each substrate handles it differently.
As a result, remote communications are only monitored on the
sender’s side.

It’s not apparent always which variables will involve remote
operations until after the insert wide reference pass in the
compiler, especially when CHPL GASNET SEGMENT is
set to ’everything’. This pretty much requires the insertion
of placeholders early on to be followed up by late stage
instrumentation of all relevant source variable.

IV. EVALUATION

Two benchmarks, FFT from the High Performance Computing
Challenge (HPCC) and SSCA#2 were employed on cluster
Deepthought2 to assess the efficacy of Purity on a real system.
Deepthought2 is a high-performance computing cluster hosted
by the University of Maryland, College Park. It comprises
of 444 Dell C8220, 40 C8220X, and 4 R820 Poweredge
nodes which utilize a FDR infiniband interconnect [2]. Since
Deepthought2 uses infiniband, Chapel communications were
configured for GASNet with an IBV substrate, memory seg-
ment set to everything, and using MPI as the spawner.

Initially we evaluated the impact on program performance
profiling and found to be around a 70% increase. Using the
default configuration of the dynamic analyzer, we discovered
an average of 69.22% is added to the execution’s wall time
when testing FFT on Deepthought2, using 4 nodes with 20
threads per node and an input of n=16. As a general rule, the
overhead of the dynamic analyzer should grow linearly with
the program time. Depending on the Chapel framework build
configuration, nature of the Chapel program’s interaction with
the PGAS environment, and what the profiler has been set to
log, the percentage may vary.

Similarly the growth and size of the event log files can vary
depending the program, problem size, duration of execution,
and the profilers configuration for burst sampling and what is
to be recorded. Table I illustrates the average line size and
operations recorded over all of the event logs generated by
FFT using 4 nodes and an input size of n=16 while using
burst sampling with intervals 0.01, 0.02 seconds. For this run
the combined size of the static files are at 8,244 bytes, event
logs sum to 10,975,920 bytes, and post analysis results are at

TABLE I
FFT BENCHMARK EVENT LOG RECORD SIZES AND TOTALS

Event Type Average Record Size Total Log Records
Heap Operation 29.54 Bytes 132,486
Stack Operation 26.16 Bytes 66,886
Communication 51.25 Bytes 28,349
Synchronization 16.73 Bytes 127,424

Deepthought2, 4 nodes, 20 threads per node, n=16
Using the default profile record configuration
and burst sampling with intervals=0.01,0.02

732,866 bytes. FFT is a fairly well optimized benchmark so
10 MB of event logs should represent a lower bound.

A. HPCC-FFT

The FFT benchmark was chosen from HPCC because it
utilizes both block and cycle distributions to perform one-
dimensional Discrete Fourier Transform (DFT) computa-
tions [3]. The implementation strategy uses radix-4 butterflies
and involves dividing DFT into two phases which rely on
different distributed memory layouts for eliminating remote
operations when executing computations over 4n nodes. The
algorithm is initialized by an input vector called z. The first
phase uses Zblk which is a permutated block distributed
vector computed from z and the second phase uses a cyclic
distribution Zcyc. After each phase the values are copied from
one storage format to the other.

Runs were made using an input of n=16 or problem size of
65,536 over 4 nodes with 20 threads each. In both cases, the
figures were obtained from the median result of a series of
runs based on the total number of remote operations.

TABLE II
FFT ONLINE OVERVIEW

Access Operation Normal Cached
local get 12,344,241 9,157,766
remote get 222,641 127,444
cached get 0 89,467
remote prefetch 0 1,674
local put 1,692,848 1,442,956
remote put 107,279 2,376

Deepthought2, 4 nodes, 20 threads per node, n=16

Initially we compared enabling and disabling the Chapel
PGAS cache to test the effectiveness of the automated remote
cache option. This option can be enabled in the Chapel com-
piler by using –cache-remote. The cache provides aggregation,
write behind, and read ahead features at runtime which can
reduce remote communications. Table II provides an overview
of local, remote, cached, and prefetch operations that were
produced during the executions. The percentage of operations
that were remote without caching were 2.3% and 1.22%
when caching was enabled with 40.49% of potential remote
operations recovered from cache. Also we found that runs with



caching enabled produced roughly 60% less remote operations
than without caching.

TABLE III
FFT LOOP ANALYSIS - TOP RANKING VARIABLES

Loop Remote Local % of
RemoteModule Range Get Put Get Put

Zcyc, fft.chpl, 101
fft.chpl 327-328 1877 0 432 0 17.19%
fft.chpl 117-118 1753 0 344 0 16.06%
fft.chpl 112-113 0 1152 0 215 10.55%
fft.chpl 324-325 0 1056 0 217 9.67%

Zblk, fft.chpl, 92
ChapelArray 3562-3563 3709 0 740 0 33.97%
fft.chpl 327-328 0 0 0 1692 0.00%
fft.chpl 117-118 0 0 0 1526 0.00%
fft.chpl 112-113 0 0 374 0 0.00%
fft.chpl 324-325 0 0 348 0 0.00%

Twiddles, fft.chpl, 77
ChapelArray 3562-3563 385 0 59 0 3.53%
fft.chpl 281-285 0 268 0 77 2.45%
fft.chpl 143-173 101 0 7820 0 0.93%

Deepthought2, 4 nodes, 20 threads per node, n=16

We then performed loop analysis for FFT. Table III provides a
partial view of the results for the three top ranking variables.
After comparing against the relevant source files, we deter-
mined that these loops can be categorized into two cases that
account for 90.97% of all remote operations in this run.

112, 324: forall (b, c) in zip (Zblk, Zcyc) do
113, 325: c = b;
...

117, 327: forall (b, c) in zip (Zblk, Zcyc) do
118, 328: b = c;

Fig. 6. fft.chpl, Parallel mapping between block and cyclic distributions.

Case 1: 53.47% of total remote operations occurred on fft.chpl,
lines 112-113 and 324-325 which uses parallel loops to map
vector values from the block distributed domain of Zblk into
the cyclic distributed domain of Zcyc and loops fft.chpl, lines
117-118 and 327-328 which map the reverse as shown in
Figure 6. Furthermore, the fact that all operations on Zblk are
local and 82.86% of accesses to Zcyc are remote, according
to Table III, suggests that the parallel zip iteration feature in
Chapel uses the domain of the first zip entry to determine task
locality since all four loops use Zblk as the first entry.

Case 2: Another 33.97% of all remote operations have been
reported to take place in a loop of one of Chapels internal
modules ChapelArray.chpl, lines 3562-3563 in reference to
Zblk. Further inspection allowed us to trace this back to
fft.chpl, line 295 where bit reverse operations over the domain
of Zblk remap it’s values into Perm. ChapelArray.chpl,
lines 3562-3563 loop in reference to Twiddles accounts
for 3.53% of remote operations and also stems from the
bit reverse operations in fft.chpl when applied through the
bitReverseShuffle() procedure. The benchmark uses

this function to permutate the values of distributed vectors
prior to DFT computations.

108: bitReverseShuffle (Zblk); // from main()
...

261: bitReverseShuffle (Twiddles) ; // from initVectors ()
...

293: proc bitReverseShuffle (Vect: [?Dom]) {
294: const numBits = log2(Vect .numElements),
295: Perm: [Dom] Vect.eltType = [ i in Dom]

Vect( bitReverse ( i , revBits =numBits));
296: Vect = Perm;
297: }
...

322: bitReverseShuffle (Zblk); // from verifyResults ()

Fig. 7. fft.chpl, bitReverseShuffle() and its invocations

After further analysis of the AST and intermediate repre-
sentation (IR), we determined in both cases that the remote
accesses are intentional and not incidental, e.g. not stemming
from an unintended consequence of some implicit feature
of the language or nonoptimal compiler generation. We also
concluded that there is no programmatic approach that will
reduce remote operations in these loops any further. In other
words, the developer(s) clearly understood how to apply the
language features of Chapel in the most efficient way to
achieve good task locality. Therefore, no major improvement
can be made for the FFT benchmark. However, this analysis
still demonstrates the effectiveness of Purity to isolate variable
usage in sections of code associated with the highest depen-
dency on remote memory in the PGAS environment, which
leads to insight into what is actually occurring during runtime
execution of a Chapel program.

B. SSCA#2

The next benchmark we evaluated was SSCA#2 which stands
for Scalable Synthetic Compact Applications graph analysis,
version 2 [4]. The benchmark generates and performs a series
of approximate betweenness centrality (BC) computations over
a weighted, directed multigraph given a set of starting vertices.

TABLE IV
SSCA#2 ONLINE OVERVIEW

Access Operation 4N 20T 8N 10T
local get 164,906,162 78,732,860
remote get 11,639,989 3,667,122
local put 65,107,050 12,997,944
remote put 599,594 761,280

Deepthought2, N nodes, T threads per node,
scale=8, low scale=5, high scale=8

Tests were performed on Deepthought2 under two different
cluster configurations, 4 nodes with 20 threads each and 8
nodes with 10 threads each. Once again, median results were
used. The overviews in Table IV produced at runtime found
a percentage of remote to total operations to be 5.05% and
4.61% respectively for the two configurations.



Through loop analysis we discovered that 42.14% of all remote
operations occurred in the loop at SSCA2 kernels.chpl on line
582 (see Table V and Figure 9). In order to understand what
this means we first need to look at how starting vertices and
their corresponding tasks are delegated in the BC algorithm.

279: forall s in starting vertices do on
vertex domain. dist . idxToLocale(s) {

...
286: const tid = TPVM.gettid();
287: const tpv = TPVM.getTPV(tid);

Fig. 8. SSCA2 kernels.chpl, from Approximate Betweenness Centrality

The outer most parallel loop of BC delegates tasks over
starting vertices to the respective node on which that vertex is
stored as illustrated in Figure 8 in order to maximize task and
data locality in a parallel environment. Each task requires a
set of variables for processing its assigned starting vertex and
these variables are managed by a taskPrivateData class.
In order to reuse the instantiations of taskPrivateData
for future tasks, task private variable array or TPV, a block
distributed vector of taskPrivateData, is allocated and
managed by TPVM. TPVM is an instantiation of TPVManager
class which during the invocation of gettid() is responsible
for yielding thread control back to the runtime framework until
the requested element in TPV is no longer in use by another
task and can be obtained and safely used by the requesting
task.

TABLE V
SSCA#2 LOOP ANALYSIS - TOP RANKING VARIABLES

Loop or Line Remote % of
RemoteModule Range Get Put

TPVM.TPV, SSCA2 kernels.chpl, 577
SSCA2 kernels.chpl 582-582 4544 0 42.14%
SSCA2 kernels.chpl 586 7 0 0.06%
SSCA2 kernels.chpl 589 5 0 0.05%
SSCA2 kernels.chpl 581 5 0 0.05%
taskPrivateData::barrier.tasksFinished, SSCA2 kernels.chpl, 600
SSCA2 kernels.chpl 345-423 795 0 7.37%
SSCA2 kernels.chpl 456-463 192 0 1.78%
SSCA2 kernels.chpl 331-463 44 0 0.41%

taskPrivateData::BCaux, SSCA2 kernels.chpl, 569
SSCA2 kernels.chpl 550 252 0 2.34%
Atomics.chpl 1260 0 146 1.35%
Atomics.chpl 1396 0 97 0.90%
SSCA2 kernels.chpl 331-463 87 0 0.81%
Atomics.chpl 1240 0 56 0.52%

Deepthought2, 4 nodes, 20 threads per node,
scale=5, low scale=3, high scale=4

The while condition of the loop in gettid() (see Figure 9
again) first accesses the this reference of the TPVManager
class, followed by the class field TPV and then performs a
get index operation over a distributed array to obtain a used
field in taskPrivateData class and invoke a test and set
atomic operation.

TABLE VI
SSCA#2 REMOTE REQUESTS

TPVM.TPV, SSCA2 kernels.chpl, 577
Sender

Receiver n0 n1 n2 n3
n0 0 1282 1601 1678

Deepthought2, 4 nodes, 20 threads per node,
scale=5, low scale=3, high scale=4

Node-level request aggregation for TPVM.TPV in Table VI
shows that all remote operations access the memory of
the main node from other nodes, which indicates that
TPVManager and the underlining Chapel framework struc-
tures that manage the TPV array were instantiated and only
exist on the main node.

To confirm this, we used –no-inline to disable the inline
pass in the compiler which revealed that most of the remote
get operations for TPVM.TPV occurred inside the internal
module ChapelArray.chpl on line 1978. This line involves
acquiring an array instance field, which references a subclass
of BaseArr, in order to access its type and also obtains the
privatized identifier field to be used as arguments for looking
up the address of a privatized class. Remote get operations
are performed every time other nodes attempt to access these
fields.

576: class TPVManager {
579: proc gettid () {
580: const tid = this .currTPV.fetchAdd(1) % numTPVs;
581: on this .TPV[tid] do
582: while this.TPV[tid] .used. testAndSet () do

chpl task yield () ;
583: return tid ;
584: }

Fig. 9. Original: SSCA2 kernel.chpl

576: class TPVManager {
579: proc gettid () {
580: const tid = this .currTPV.fetchAdd(1) % numTPVs;
581: on this .TPV[tid] do {
582: const t = this.TPV[tid];
583: while t .used. testAndSet () do chpl task yield () ;
584: }
585: return tid ;
586: }

Fig. 10. Optimized: SSCA2 kernel.chpl

With these insights in mind, a simple programmatic solution
was devised in order to eliminate redundant remote commu-
nications. Figure 9 shows the original gettid() function in
the SSCA#2 kernel and Figure 10 illustrates the optimization
that was discovered. Since the instantiation of TPVManager
and the underlining structures that manage TPV reside in
memory on the main node, resolving this for TPVManager,
its member variable TPV, and the corresponding element at



index tid over the PGAS before entering the while loop will
significantly reduce redundant remote operations generated by
other nodes. Test and set operations can still be performed on
the network atomic used inside the loop, which will allow
gettid() to appropriate the next tid to a requesting task.

TABLE VII
OPTIMIZED SSCA#2 ONLINE OVERVIEW

Access Operation 4N 20T 8N 10T
local get 58,274,483 65,646,873
remote get 814,509 1,148,972
local put 242,889,900 32,550,756
remote put 599,449 760,957

Deepthought2, N nodes, T threads per node,
scale=8, low scale=5, high scale=8

The optimized output in Table VII shows the percentage of
remote to total operations for the optimized version to be
0.47% and 1.91% respectively with a reduction of 88.45%
and 56.87% of remote operations from the original version of
SSCA#2.

V. RECOMMENDATIONS

The finding in SSCA#2 provides a classic example where
a programmatic solution can significantly reduce remote
operations. In this case, accessing TPV required a remote
get operation to resolve _pid for record _array in
ChapelArray.chpl which is an underlining structure that man-
ages the distributed array for TPV. Then a second remote get
operation was needed to acquire the TPV element at index
tid. By resolving the TPV element before entering the loop,
redundant remote operations can be avoided. Further testing
on Deepthought2 indicated that enabling automated remote
caching does not alleviate the problem. Therefore, either it
must be handled explicitly by the developer or an automated
solution in the compiler is needed to identify, target, and
mitigate these cases.

VI. RELATED WORK

Hui Zhang [5] has developed a data-centric performance
profiler based on his preliminary work [6]. He employs an al-
gorithm originally proposed by Nick Rutar [7] which assigns a
percentage of ”blame” to variables based on their involvement
in computational impact on performance. His profiler handles
heap, stack, and local variables and can also manage com-
plex data structures. Using PAPI it provides a data sampling
mechanism for reducing overhead. However, this version of
his profiler can only profile Chapel programs in single-node
environments. In contrast, Purity is a multi-node, data-centric
communication profiler which focuses on resolving local and
remote memory addresses of communication operations to
determine which variables were involved. It is not concerned
with CPU usage or program wall time. In fact Purity has no
concept of time at all. For instance, it does not rely on the
CPU times produced by a cluster of nodes since there is no
guarantee that the clock times will be synchronized. Instead

Purity relies upon a system that exchanges monotonically in-
creasing synchronization identifiers between nodes to establish
an ordering of events. It employs a simulator which models
a unified view of the memory allocation environment of the
entire PGAS over the course of events while performing fine-
grain post analysis.

Parallel performance wizard (PPW) [8] is a profiler that pro-
vides support for different parallel programming models which
incorporate PGAS, such as UPC and SHMEM. Highlights of
PPW which peaked our interest were the Event Type Mapper
and Visualization Manager. For Purity, we considered adding
an analysis to characterize the communication access patterns
of each variable within the execution of various loops and
sections of code. We also considered developing a GUI appli-
cation for post analysis that can produce visualizations similar
to the data transfers and array distribution visualizations in
PPW.

Some of the other profiling approaches we looked at were Tal-
lent and Kerbyson [9] which is based on HPCToolkit [10] and
supports PNNL’s Global Array programming model, Liu and
Mellor-Crummey [11] also utilizes the HPCTookit, Itahashi et
al. [12] proposed a design of a profiler for the X10 PGAS
language, and Oeste et al. [13].

VII. FUTURE WORK

Ideally, we want to release Purity with future versions of
Chapel as a production ready tool. However, this comes with
its own set of challenges. Our initial approach was to imple-
ment and integrate the profiler in a way that least impacted
the Chapel source distribution. However, painfully we learned
that this is not always possible when devising solutions to
overcome some of the problems we encountered. Unfortu-
nately our solutions introduced many changes which required
modifications throughout the compiler and to a less extent the
runtime framework. A clearer approach for implementation is
likely necessary in order for the Chapel community to support
Purity in future releases.

Secondly, many approaches were attempted at the compiler
level which produced a great deal of dead code and in
some cases inoptimal code. The implementation of profile
propagation in the static analysis needs to be cleaned up as
it currently impacts the performance of the compiler by up to
an order of magnitude when enabling Purity. Obviously this
needs to be optimized before Purity can be released.

Third, we are planning on developing a GUI in C/C++ for post
analysis that would allow a way for the user to scroll to any
point in the program simulation, provide a detailed drill down
interface, and given a set of parameters can produce intuitive
visualizations. The GUI could illustrate either a 3D height or
heat map for request aggregation and byte throughput analysis
for visualizing node and flat PGAS index matrices of a target
variable, either within a specified section of code or over the
entire execution.



VIII. CONCLUSION

We have developed and integrated into the Chapel framework
a configurable, data-centric, communication profiler called
Purity that analyzes memory and communication access pat-
terns over a multi-node PGAS environment. Our tool provides
online reporting, accounts for nested loop hierarchies, handles
tracking for complex data structures, and reduces overhead
with pulse sampling. Purity produces scalable, fine-grain pro-
file results at the variable, field, loop, node, and flat index level
for both distributed and non-distributed instantiations. Using
the FFT and SSCA#2 benchmarks, we have demonstrated the
efficacy of Purity to identify PGAS bottlenecks and provide
the developer with a better understanding of where PGAS
dependencies reside and how task and data locality behaves in
their Chapel program. During the evaluation, Purity provided
us with valuable insight into a simple programmatic solution
that reduced remote operations for SSCA#2 by up to 88%.
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