
CMSC427	Notes	on	piecewise	parametric	curves:	Hermite,	Catmull-Rom,	and	Bezier	
	
I.	Parametric	curves	and	surfaces	
	
	 Model	shapes	and	behavior	with	parametric	curves	
	 Have	done	lines,	circles,	cylinders,	superellipses,	and	others	
	 But	limitations	–	how	can	we	model	an	arbitrary	shape?	A	face,	a	mountain?	
	 	
II.	Solution:	Piecewise	parametric	curves	
	
	 Model	arbitrary	shapes	with	piecewise	parametric	curves	
	 Each	piece	locally	approximates	part	of	a	complex	shape	
	 	
III.	Continuity:	parametric	and	geometric	
	
	 How	to	join	piecewise	sections?	How	to	keep	the	overall	curve	smooth?	
	 Continuity	at	joining	points,	or	knots	
	 Ck	continuity	–	continuity	of	parametric	curve	and	derivatives	
	 	 C0	–	matching	position		
	 	 C1	–	matching	position	and	direction	(tangent),	and	speed	
	 	 C2	–	matching	position,	direction	and	curvature	
	 	 Given	f,	g	adjacent	piecewise	curves,	we	have	for	derivative	i	that	
	 	 	 𝑓(#) 𝑡& = 𝑔(#) 𝑡& 	at	𝑡&	in	knot	k	
	 		
	 Gk	continuity	–	geometric	continuity	without	respect	to	arc	length	
	 	 G0	–	matching	position		
	 	 G1	–	matching	position	and	direction	(tangent),	not	always	speed	
	 	 G2	–	matching	position,	direction	and	curvature	
	 	 Given	f,	g	adjacent	piecewise	curves,	we	have	for	derivative	i	that	
	 	 	 𝑓(#) 𝑡& = 𝑠𝑔(#) 𝑡& 	at	𝑡&	in	knot	k,	eg,	the	derivatives	are	proportional	
	
IV.	Linear,	quadratic	and	cubic	curves	
	
	 Options	for	piecewise	curves	are	linear,	quadratic,	cubic	and	higher	order	curves	

• Piecewise	linear	approximation	–	commonly	used	
• Quadratic	curve	–	used,	but	hard	to	get	C1	continuity	at	both	ends	
• Cubic	curve	–	has	inflection	point,	so	can	switch	direction	and	achieve	C1/C2	

Used	in	industrial	design	–	generally	smooth	enough	for	perception	
Not	smooth	enough	for	all	applications	–	motion	control,	other	

	 Conclusion:		 cubic	curve	is	adequate	for	most	purposes	
	 	 	 	
	 	



V.	How	to	specify	curves:	control	points	and	interpolation	
	
	 Control	point	–	data	point	that	controls	shape	of	curve	

Interpolation	–	curve	goes	through	control	point	
Approximation	–	curve	goes	close	to,	or	is	controlled	by,	control	point	
Local	vs.	global	control	–		 Local	control,	only	nearby	points	control	shape	

	 	 	 	 	 Global	control,	all	points	control	entire	curve	
	
VI.	First	example:	Hermite	cubic	curve	(2D	version)	
		
Given	a	parametric	equation	of	(x,y)	in	t	in	[0,1]	
	

	
𝑥 𝑡 = 𝑎𝑡, + 𝑏𝑡/ + 𝑐𝑡 + 𝑑
𝑦 𝑡 = 𝑒𝑡, + 𝑓𝑡/ + 𝑔𝑡 + ℎ

	

	
The	resulting	curve	interpolates	points	P0,	P1	
and	matches	tangents	T0,	T1	
	
Since	x(t)	and	y(t)	are	independent,	consider	first	x(t)	and	four	parameters	a,	b,	c	and	d.	
(Developments	for	y(t),	and	z(t),	are	similar.)	We	have	the	derivative:	
	
	 𝑥′ 𝑡 = 3𝑎𝑡/ + 2𝑏𝑡 + 𝑐	
	
And	we	have	the	following	four	constraints	at	t	=	0	(at	P0)	and	t	=	1	(at	P1):	
	

𝑥 0 = 𝑑
𝑥′(0) = 𝑐

𝑥 1 = 𝑎 + 𝑏 + 𝑐 + 𝑑
𝑥′ 1 = 3𝑎 + 2𝑏 + 𝑐

	

	
If	we	substitute	and	solve	for	a,	b,	c	and	d	we	get	this	curve	that	satisfies	the	constraints.	
	

𝑑 = 𝑥0
𝑐 = 𝑑𝑥0

𝑏 = −3𝑥0 + 3𝑥1 − 2𝑑𝑥0 − 𝑑𝑥1
𝑎 = 2𝑥0 − 2𝑥1 + 𝑑𝑥0 + 𝑑𝑥1

	

	 	
	Call	this	Hermite	version	1.	There	will	be	similar	equations	for	y(t)	and	z(t).	
	

𝑥 𝑡 = (2𝑥0 − 2𝑥1 + 𝑑𝑥0 + 𝑑𝑥1)𝑡, + (−3𝑥0 + 3𝑥1 − 2𝑑𝑥0 − 𝑑𝑥1)𝑡/ + (𝑑𝑥0)𝑡 + 𝑥0	
	
	
	 	

P0=(x0,y0)

P1 = (x1,y1)
T1=<dx1,dy1>

T0=<dx0,dy0>



VII.	Matrix	form	of	curves	
	
The	development	of	the	Hermite	curve	equations	is	fine,	but	can	be	more	efficiently	(and	
effectively)	given	in	matrix	format.	If	we	rewrite	the	four	constraint	equations	in	matrix	format	
	

𝑥 0 = 𝑑
𝑥′(0) = 𝑐

𝑥 1 = 𝑎 + 𝑏 + 𝑐 + 𝑑
𝑥′ 1 = 3𝑎 + 2𝑏 + 𝑐

	

	
we	get	

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

𝑎
𝑏
𝑐
𝑑
=

𝑥0
𝑥1
𝑑𝑥0
𝑑𝑥1

	

	
or	

𝑀𝐴 = 𝐺	
	
with	M	the	matrix,	A	the	parameter	vector,	and	G	the	geometry	vector.	Solving	we	get	
	

𝐴 = 𝑀>?𝐺	
	
or	the	Hermite	basis	matrix		
	

	
𝑎
𝑏
𝑐
𝑑
=

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

𝑥0
𝑥1
𝑑𝑥0
𝑑𝑥1

	

	
Call	this	Hermite	version	2,	matrix	form.	The	basis	matrix	𝑀>?	is	a	compact	representation.	
	
IIX.	Vector	matrix	form	
	
To	make	the	matrix	representation	more	compact	we	replace	the	scalar	x0,	x1,	etc,	with	point	
and	vectors	P0	=	<x0,y0,z0>,	P1	=	<x1,y1,z1>,	T0=<dx0,dy0,dz0>,	T1=<dx1,dy1,dz1>,	to	get:	
	

𝒂
𝒃
𝒄
𝒅

=

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

𝑷𝟎
𝑷𝟏
𝑻𝟎
𝑻𝟏

	

	
Now	we	have	a	polynomial	with	vector	coefficients.	Call	this	Hermite	version	3.		
	

𝑃 𝑡 = 𝒂𝑡, + 𝒃𝑡/ + 𝒄𝑡 + 𝒅	



There’s	one	additional	representation		
	

𝑃 𝑡 = 𝑡, 𝑡/ 𝑡 1

𝒂
𝒃
𝒄
𝒅

= 𝑡, 𝑡/ 𝑡 1

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

𝑷𝟎
𝑷𝟏
𝑻𝟎
𝑻𝟏

	

	
IX.	Blending	functions.		
	
A	fourth	version	of	the	Hermite	equation	rewrites	it	in	terms	of	blending	functions	that	weights	
each	of	the	data	points.	We	take	the	first	version	
	

𝑥 𝑡 = (2𝑥0 − 2𝑥1 + 𝑑𝑥0 + 𝑑𝑥1)𝑡, + (−3𝑥0 + 3𝑥1 − 2𝑑𝑥0 − 𝑑𝑥1)𝑡/ + (𝑑𝑥0)𝑡 + 𝑥0	
	
and	group	the	data	terms	
	

𝑥 𝑡 = 2𝑡, − 3𝑡/ + 1 𝑥0 + −2𝑡, + 3𝑡/ 𝑥1 + 𝑡, − 2𝑡/ + 𝑡 𝑑𝑥0 + 𝑡, − 𝑡/ 𝑑𝑥1	
	
To	get	the	four	blending	functions	
	

ℎ00(𝑡) = 2𝑡, − 3𝑡/ + 1
ℎ01(𝑡) = −2𝑡, + 3𝑡/

ℎ10(𝑡) = 𝑡, − 2𝑡/ + 𝑡
ℎ00(𝑡) = 𝑡, − 𝑡/

	

	 	
From	Wikipedia,	the	four	blending	functions	graph	as	below.	These	four	functions	sum	to	1,	so	
represent	an	affine	combination.		
	
	

	
	
The	way	to	look	at	this	is,	each	of	the	curves	weight	the	input	data	points,	so	the	red	curve	(h00)	
represents	the	proportion	of	P0	that	contributes	to	the	output	point.	 	



X.	Computing	the	tangents	
	
If	we’re	given	four	points,	we	can	set	up	a	matrix	to	compute	the	tangents	from	four	original	
points.	Assuming	these	are	𝑥>?,	𝑥J,	𝑥?,	and	𝑥/,	we	can	define	the	matrix	H	that	takes	the	original	
points	into	the	point/tangent	vector,	as	in	𝐺 = 𝐻𝑃,	where	P	is	a	vector	of	the	original	points.		
	
	
	
This	can	be	inserted	into	the	Hermite	equation		
	
	
	
Given	our	final	Hermite	equation	version	5,	our	final	version:	

𝑃 𝑡 = 	 𝑡, 𝑡/ 𝑡 1

𝑎
𝑏
𝑐
𝑑
= 𝑡, 𝑡/ 𝑡 1

1 −1 −1 1
−1 1 1 −1
−1 1 0 0
1 0 0 0

𝑥J
𝑥?
𝑥>?
𝑥/

	

	
	
IIX.	Catmull-Rom	splines	
	
If	you	build	a	Hermite	curve	from	a	polyline	you	can	have	a	problem	with	C1	continuity,	as	the	
obvious	way	to	define	tangents	from	point	to	point	is	not	symmetric.	At	one	control	point	the	left	
and	right	tangents	would	not	be	equal.		At	control	point	P3	in	the	diagram	below	the	left	and	
right	tangents	are	computed	from	P2	and	P4,	respectively.	

	

	
	
Catmull-Rom	curves	use	a	symmetric	definition	of	the	tangent	at	a	control	point	by	defining	the	
slope	at	point	Pi	as	the	difference	between	P(i+1)	and	P(i-1).		

	
	
	

P0

P1

P2

P3

P4

P5
left right

P0

P1

P2

P3

P4

P5



Our	previous	work	with	Hermite	curves	gives	us	most	of	the	required	math.			The	key	is	changing	
the	tangent	matrix	H	which	computes	derivatives	at	control	points	P0	and	P1.	(The	½	comes	from	
weighting	the	tangent	vector	–	we	used	a	weight	of	1	for	Hermite	curves,	but	it’s	traditional	to	
use	½	for	Catmull-Rom.	In	the	general	development	you’ll	see	a	tuning	factor	of	a.)	
	

𝑥0
𝑥1
𝑑𝑥0′
𝑑𝑥1′

=

1 0 0 0
0 1 0 0

1/2 0 −1/2 0
−1/2 0 0 1/2

𝑥J
𝑥?
𝑥>?
𝑥/

	

	
We	use	the	same	basis	matrix	as	from	the	Hermite	curves	to	get:	
	
	
or	
	

𝑃 𝑡 = 𝑡, 𝑡/ 𝑡 1

𝑎
𝑏
𝑐
𝑑
= 𝑡, 𝑡/ 𝑡 1

2 −2 −0.5 0.5
−3.5 3 1 −0.5
0.5 0 0.5 0
1 0 0 0

𝑥J
𝑥?
𝑥>?
𝑥/

	

	
XII.	Bezier	curves	
	
Finally,	Bezier	curves.	These	are	often	used	graphics	design,	such	as	in	programs	like	Adobe	
Illustrator.	TrueType	fonts	use	quadratic	Bezier	curves	while	Postscript	and	SVG	use	cubic.	Bezier	
curves	are	deemed	more	flexible	and	intuitive,	particularly	for	a	sequence	of	points	in	a	polyline,	
and	can	more	easily	manage	kinks.		
	
The	primary	difference	with	Hermite	is	that	the	two	middle	points	define	the	tangents,	and	the	
two	end	points	are	interpolated	(in	the	four	point	version.)	For	an	extended	polyline	a	Bezier	
curve	may	not	interpolated	individual	points	beyond	the	first	and	final.	
	
	
	
The	curve	enters	P0	on	a	tangent	P0-P1,	and	exits	P3	on	a	tangent	P2-P3.		
	

	
	
The	translate	to	our	Hermite	curve	is	given	by:	



	
	 P0	=	P0	
	 P1	=	P3	
	 T0	=	3(P1-P0)	
	 T1	=	3(P3-P2)	
	
The	development	of	the	Bezier	curve	can	be	done	in	the	same	fashion	as	Hermite	from	here.	
	 	
	
	
XIII.	Defining	Bezier	curves	with	De	Casteljau's	algorithm	
	
See	PowerPoint	slides	on	this	construction.	
	
	
	
	
Links	
	
http://graphics.stanford.edu/courses/cs148-09/lectures/splines.pdf	
	
https://pomax.github.io/bezierinfo/	
	
	
	
	
	
	


