CMSC427 Computer Graphics

Staff

Instructor

Prof. Roger Eastman

Teaching assistant

Patrick Owen

Today

- Course overview: what and why
- Course organization: how
- Getting started: Drawing curves

Computer graphics

Key topics this semester

Modeling

Rendering

Interaction

Modeling

- Creating models of objects and scenes
 - Shape
 - Appearance
 - Behavior/animation
- Techniques
 - By hand
 - By algorithm
 - By capture

http://en.wikipedia.org/wiki/3D_modeling

Modeling by hand

- Example: Blender (freeware)
 - https://www.blender.org

- Professional tools
 - Artistic (Maya, Lightwave)
 - Engineering (Autocad, Solidworks)
 - General (Sketchup)
 - Free AND easy (Tinkercad)
 - Search for 3D modeling tool

Modeling by procedure

Creating shape, behavior by algorithm

E-on Vue software for procedural environments

Modeling by capture

- Measure values from real world
- 3D scanner for static shapes
 - Structure IO sensor
 - Trnio/Scann3D on phones
 - Will do in this class

Rendering

- Synthesis of 2D image from 3D scene
- http://en.wikipedia.org/wiki/Rendering (computer graphics)

Input

 Data structure that stores object and scene info (geometry, material properties, lights, camera)

Output

- 2D image (array of pixels)
- Red, Green, Blue values for each pixel

Photorealistic rendering

 Physically based simulation of light, materials, camera. Slow, rendering farms, is constantly evolving. Soft shadows, realistic surfaces.

Jin Hee Lee

Interactive rendering

Real time, realistic but approximate physics.
 Uses specialized GPUs, standard APIs
 (OpenGL). Hard shadows, cheats in lighting.

Non-photorealistic rendering

- Stylized, cartoonish, for artor illustration
- https://en.wikipedia.org/wiki/Non-photorealistic_rendering

Beyond 2D rendering ...

Stereo VR rendering

- Haptic feedback
 - virtual objects
 - Ultrasound, Univ. of Bristol

3D printing!

Interaction – input

 Broad range of input devices beyond keyboard, mouse

Event driven programming

The Why?

- What's your interests?
- What's your experience?
- Why are you taking this course, and what do you want to get out of it?

- Graphics resume assignment for Thursday
- On Canvas
- Submit on Piazza

Course objectives

- 1. Write efficient interactive 2D and 3D graphics programs using different graphics systems.
- 2. Create object and scene shape and behavioral models using algorithmic techniques.
- Render these models at varying levels of photorealism.
- 4. Describe and apply mathematical and algorithmic foundations as needed for programming, modeling and rendering.

Graphics systems (limited list of examples!)

3D real time APIs Languages Game engines

DirectX C/C++ Unity

OpenGL Java (with JOGL) Unreal

Vulcan Java-Processing Blender

GLSL Javascript Godot

WebGL Python Horde3D

Rendering engines Widget sets Physics engines

POV-Ray QT with C/C++ Box2D

Orge Java Bullet

Yafaray Javascript/HTML Open Dynamics

Keyshot TCL/TK Chipmunk2D

Renderman GLUT

Moral: evolving, must learn to learn

Course schedule

- Unit I Object modeling: curves and surfaces
- Unit II Basics of rendering and OpenGL
- Unit III Scene modeling: composite objects and scene, 3D interactivity
- Unit IV Advanced rendering for realism
- Unit V Advanced modeling for complex shapes

Course organization

- Lecture
 - CSI 1121 TuTh 3:30-4:45 pm

- Canvas
 - Course material and assignments will be posted here.

- Piazza
 - We will use a class discussion forum for answering lecture and assignment questions.

Staff

Instructor

Prof. Roger Eastman (reastman@umd.edu)

Office and hours:

A.V. Williams

Teaching assistant

Patrick Owen (patowen95@gmail.com)

Office and hours:

A.V. Williams

Textbooks

- Required: None
- Provided: David Mount notes on foundations
- Recommended for projects (trade books):
 - OpenGL Superbible (6th edition), by G. Sellers, R. S. Wright, and N. Haemel, 2013.
 - Anton's OpenGL 4 Tutorials, by Anton Gerdelan, Amazon Digital Services, 2014.
 - OpenGL Shading Language (3rd Edition), by Randi J. Rost (Author), et al., Addison-Wesley Professional, 2009
- Recommended for general material (textbooks):
 - Computer Graphics Programming in OpenGL with Java, V. Scott Gordon and John Clevenger, Mercury, 2017
 - Fundamentals of Computer Graphics, Fourth Edition 4th (3rd)
 Edition, by Steve Marschner and Peter Shirley, AK Peters 2015

Web resources

- Khronos group:
 - https://www.khronos.org
- Online web tutorials of quality:
 - https://learnopengl.com
 Joey de Vries
 - http://www.iquilezles.org/www/index.htm
 - http://learningwebgl.com/blog/
- Additional relevant online sources will be distributed through the semester

Prerequisites

Assume you

Know Java

Know OOP and data structures (420)

Are familiar with some linear algebra

Will review

Matrix operations

Don't assume you

Have programmed graphics before

Have written interactive programs

Assignments and workload

- Homework (25%)
 - Weekly homeworks of varying effort and worth
- Quizzes and exams (30%)
- Projects and labs (45%)
 - Labs: short, focused programming exercises on particular concepts
 - Projects: more substantial programming efforts

Processing

- Complete open source, freeware graphics system from IDE to language to API
- Designed for artists, other "non-CS" types
 - Ben Fry and Casey Reas @ MIT
- Large ecology of supporting libraries
- Used this semester to sketch ideas
- Can be downloaded, or used online:
- https://processing.org
- http://sketchpad.cc