CMSC427
Parametric surfaces
and polygonal meshes



Note

* These slides are incomplete

* See accompanying PDF with detailed outline
* Will develop many equations in class

* Reading later to supplement



Moving to 3D

* Polygonal meshes

» Set of standard shapes
in Blender

e And how to create them
e And store them

e And draw them
. lathe render
= =



Bilinear patch

* Blending of four 3D points

* Ruled surface
* Swept out by sequence of lines

P P2

PO

P3



Bilinear patch

* Blend simultaneously along two lines
 PO1 =t(P1-PO) + PO
e P23 =t(P2-P3) + P3
* Same tin [0,1]

P1 P2

PO
P23

PO

P3



Bilinear patch

* Blend simultaneously along two lines
e PO1 =tP1 + (1-t)PO

e P23 =tP3 + (1-t)P2 P01

e Sametin[0,1]

P1 P2

P23

P
* Then blend between :

the two lines P3

* P=5sP23 + (1-s)P01
* P =5s(tP1 + (1-t)P0O) + (1-s)(tP3 + (1-t)P2)



Bilinear patch

* Questions
* What order polynomial? P P2
e Convex combination?
* What is drawn if t is constant? Po1 P
 What is drawn if s is constant?

P23

PO

P3

e P=s(tP1 + (1-t)PO) + (1-s)(tP3 + (1-t)P2)



Bilinear patch

* Questions
* What order polynomial? P P2
e Convex combination?
* What is drawn if t is constant? Po1 P
 What is drawn if s is constant?

P23

PO

P3

e P=5s(tP1 + (1-t)PO) + (1-s)(tP3 + (1-t)P2)
e P =stP1 + s(1-t)PO + (1-s)tP3 + (1-s)(1-t)P2



Coons patch

* What's happening in this
surface?




Coons patch

* What's happening in this
surface?

* Blending two arcs
 |s this a ruled surface?




Coons patch

 Blend four arbitrary curves

* Here C1, C2, D1, D2




Circle with trig: review

Parametric equation

x = R cos(t)
sin(t)

A\ y = R sin(t)
cos(t)

0<t<??




Parametric cone




Parametric cylinder




Rendering faces: need location and normal

* Need distance and orientation
relative to lights to compute
reflected light

light %
source
Ve

< normal vector

/ to sidewall

normal vector
to front wall




Polygonal mesh

e Simplest mesh: tetrahedron

* Indexed mesh representation
e Vertex list
* Normal list

. a) b)
° . . .
Fa CE I Ist A y numVerts | 4 ::: '!' "l' ::
' - - L
pt « 0 0 0 1
: numNorms 4 STl o]=1T0
norm i 2:: uu _.l
STTI-1 10 |0
numFaces 4 : —
' 3 _ﬁ .5 _5
1 face | o] 2 121
e - /4
Ljof(ojr|of2)111]3
2010112111312 (3]3
(o212 (o

* Non-indexed representation
* List of faces with repeated vertices




Polygonal mesh

* Hill's barn
* 10 vertices
7 faces

* 7 normals




Polygonal mesh

* Hill's barn
* 10 vertices
7 faces

* 7 normals

e Solution for one face:
* Face vertices (CCW):
56789

e Face normals:
e 55555

 Alternative: triangulate
* Facel: 567, Face2:579,Face3:789



Drawing mesh

* Draw as points: iterate through points

* Draw as lines: iterate through adj. pts. in faces

 Problem?

* Alternative: add edge list to structure
* Alternative: better link faces to avoid redundancy

* Draw as “solid”: iterate through faces

numVerts
pt
numNorms
norm
numFaces

face

b)
4 0 | 0 0
0 |01 [0
o lolo 1
4 STl o =110
11 ST O 10 =1
ST7I-110 |0
) 43|13 |3 ]3
2 / g ;’? ti
L{O]|0]1 02 13
21001211 A(2113]3
31011212110




File formats

e STL
e https://en.wikipedia.org/wiki/STL (file format)

 OBJ
* https://en.wikipedia.org/wiki/Wavefront .obj file

* Many others

* Not hard to generate your own STL files



Meshlab

* Free viewing software: Meshlab
e (http://www.meshlab.net)
* Good for viewing, repairing, decimating meshes

e Sources of 3D mesh models:
e SketchFab (https://sketchfab.com)
* Thingiverse (https://www.thingiverse.com)

 Stanford repository
(http://graphics.stanford.edu/data/3Dscanrep/)

e Std Examples: Utah teapot, Stanford bunny



Generating polygonal mesh from parametric surface
* Step 1:

e Sources of 3D mesh models:
e SketchFab (https://sketchfab.com)
* Thingiverse (https://www.thingiverse.com)

» Stanford repository
(http://graphics.stanford.edu/data/3Dscanrep/)

* Std Examples: Utah teapot, Stanford bunny



Topological properties of meshes

* Is a mesh well connected?
* Any flaws?
e More later




Generating mesh from parametric surface

* Given parametric surface
* P(u,v) =<x(u,v), y(u,v), z(u,v) >

e Generate mesh

ud

V=<x,y,z>

* Steps: = o 1 , ;
e 1. Set # divisions in = v U=uo ut u2 u3
uvasn, m
* 2. Generate u,v
in for loops bV W, w V3
* 3. Store in 2D array @
of 3D points 2 v 79 v
* 4. From array
generate faces 3 w3
4 v4




Computing normal vectors for mesh

* Approach 1: Cross product of numeric data
* Find vl and v2 from vertices (which?)
* N=vlxv2
* Less arbitrary: Newell’s method

* Approach 2: Partial derivatives of parametric curve
* Given vector P(u,v) = < x(u,v), y(u,v), z(u,v)>
 Derive vectors dU = dP(u,v)/du and dV = dP(u,v)/dv
e N=dUxdV

e Approach 3: Gradient vector of implicit surface
* Given implicit function f(x,y,z)
 Derive gradient < df/dx, df/dy, df/dz >



Creating polygonal meshes: summary

* Fixed shapes.

* Any shape based on idiosyncratic data, such as the exact
shape of a stone, foot, sculpture, etc. All hard-coded, some
from real world data collection

* Regular polyhedron
* Cubes, tetrahedrons, icosahedrons, dodecahedrons, ...

* Operations that create shapes
* Extrusion
 Lathing (surfaces of rotation)
 Surface subdivision

e Parametric shapes (related to operations)
 Bilinear patches, quadrics, superellipses, etc.



