CMSC427 Transformations II: Viewing

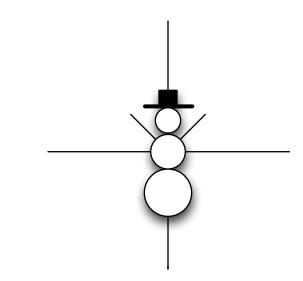
Credit: some slides from Dr. Zwicker

- GIVEN THE TOOLS OF ...
- The standard rigid and affine transformations
- Their representation with matrices and homogeneous coordinates
- WHAT CAN WE DO WITH THESE TOOLS?
- Modeling how can we define transformations we want?
- Viewing how can we use these tools to render objects like polygonal meshes?

Review: modeling with transformations

- Object space
- World space
- Create scene by transforming objects from object to world

- Object coordinate space
- World coordinate space



Modeling

- Shape object
 - Size, reshape
- Place object
 - Position and orientation

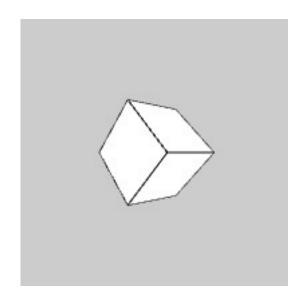
// Processing example

```
size(200,200,P3D);
```

translate(width/2,height/2,0);

rotateY(PI/4); rotateX(PI/4);

box(50);



Transformations in Processing (OpenGL 1.0 and 2.0 style)

- Transforms
- applyMatrix()
- popMatrix()
- printMatrix()
- pushMatrix()
- resetMatrix()
- rotate()
- rotateX()
- rotateY()
- rotateZ()
- <u>scale()</u>
- <u>shearX()</u>
- <u>shearY()</u>
- translate()

- Camera
- beginCamera()
- <u>camera()</u>
- endCamera()
- <u>frustum()</u>
- <u>ortho()</u>
- perspective()
- Tracing
- printMatrix()
- printCamera()
- printProjection()
- Routines *not* in OpenGL 3.0/4.0 but in many utility libraries

Observation I: Parametric transformations

Instead of ...

• Use ...

```
for (int t=0; t < 2*PI; t += 0.1) {
  float x = cx+ r*cos(t);
  float y = cy+ r*sin(t);
  ellipse(x,y,10,10);
}</pre>
```

```
for (int t=0; t < 2*PI; t += 0.1) {
  float x = cx+ r*cos(t);
  float y = cy+ r*sin(t);
  translate(x,y); // Or more ...
  complexObject();
}</pre>
```

- Why? Simplify the code for the object, enable complex transformations.
- Mesh not need understand transformations

- Transforms can accumulate
- translate(5,5);
- translate(10,50);
- Result: (15,15) }

```
for (int t=0; t < 2*PI; t += 0.1)
{
    float x = cx+ r*cos(t);
    float y = cy+ r*sin(t);
    pushMatrix();
    translate(x,y); // Or more ...
    popMatrix();
    complexObject();</pre>
```

 pushMatrix() preserves existing matrix, popMatrix() restores Observation II: Experimenting with 3D transforms

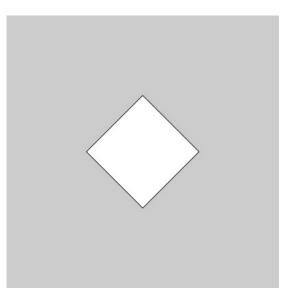
- Get to know transformations by experimentation
- Processing good for this

```
// Basic code
```

```
size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
box(100);
```

• Try

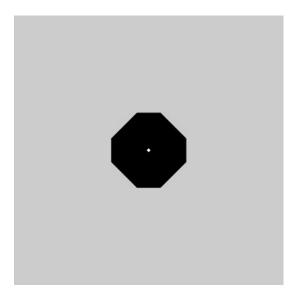
- translate
- scale
- shearX, shearY
- rotateX,rotateY,rotateZ
- Understand
 - Direction of x, y, z
 - Direction of rotations



Observation II: Problem (Processing scales outline stroke)

- More elegant code
- scale(50);
- box(1);

- But we get this picture
- ?????????
- strokeWeight is scaled
- So ... box(50) it is.



Observation 3: Tracing matrix

 Can print current transformation matrix to debug

```
size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
printMatrix();
box(50);
```

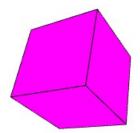
000.7071	-000.7071	000.0000	000.0000
000.7071	000.7071	000.0000	000.0000
000.0000	000.0000	001.0000	-346.4102
000.0000	000.0000	000.0000	001.0000

 Why -346? Where camera is.
 Viewing from +346 in Z

Experiments!

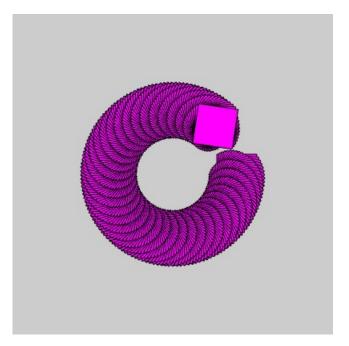
- Translate with positive and negative X,Y,Z
 - Figure out the coordinate system
- Rotate around X, Y, Z in different orders
- Scale non-uniformly in X,Y,Z
- Change order of scale, rotate, translate
- Try a shear

```
float theta = 0;
void setup(){
 size(400,400,P3D);
 fill(255,0,255);
}
void draw(){
 background(255);
 translate(width/2,height/2,0);
 rotateZ(theta);
 rotateX(theta);
 rotateZ(theta);
 box(100);
 theta += 0.01;
```



Orbiting box?

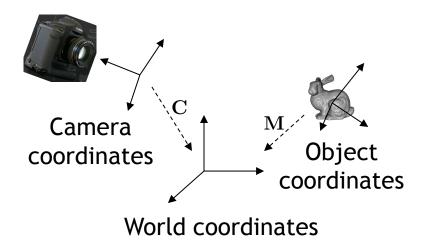
 How animate box rotating around its center as it's orbiting the center of the sketch?



Viewing transformations: the virtual camera

Need to know

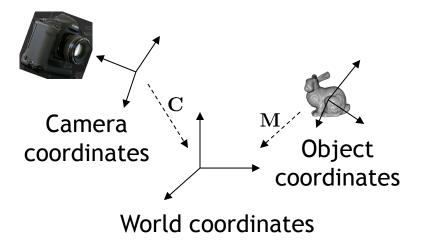
- Where is the camera?
- What lens does it have?



Viewing transformations: the virtual camera

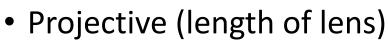
Need to know

- Where is the camera?
 - CAMERA TRANSFORM
- What lens does it have?
 - PROJECTIVE TRANSFORM

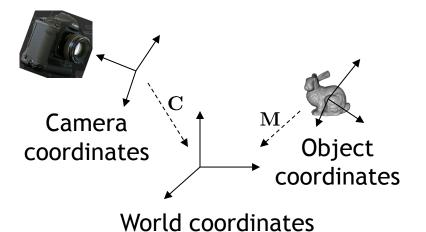


Virtual camera routines in Processing

- Camera (where)
- beginCamera()
- camera()
- endCamera()



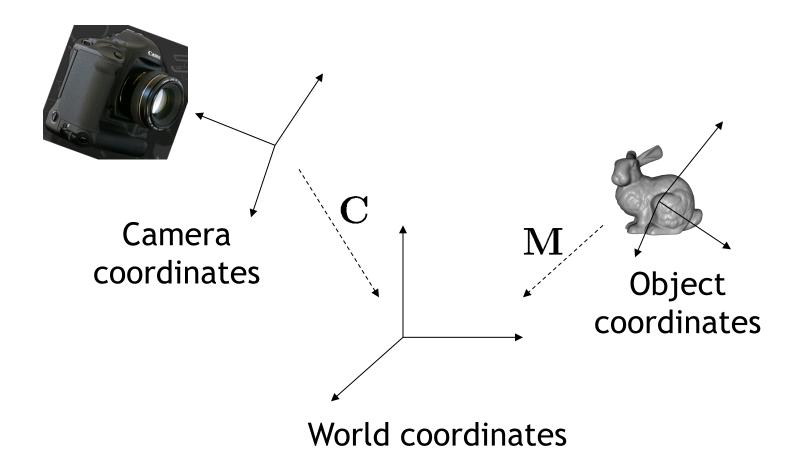
- <u>frustum()</u>
- <u>ortho()</u>
- perspective()
- Tracing
- printCamera()
- printProjection()




```
void setup() {
  size(640, 360, P3D);
  }
void draw() {
  background(0);
  camera(width/2, height/2, (height/2) / tan(PI/6),
      width/2, height/2, 0, 0, 1, 0);
  translate(width/2, height/2, -100);
  stroke(255);
  noFill();
  box(200);
}
```

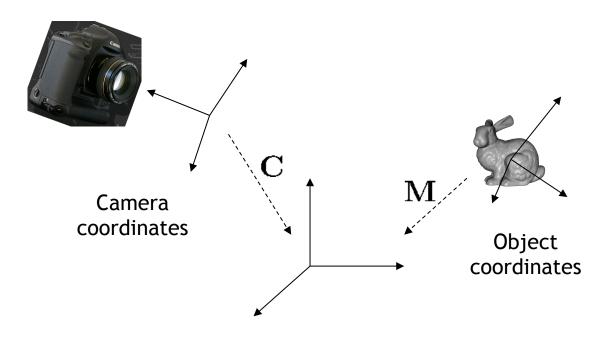
Common coordinate systems

- Camera, world, and object coordinates
- Matrices for change of coordinates C, M



Object coordinates

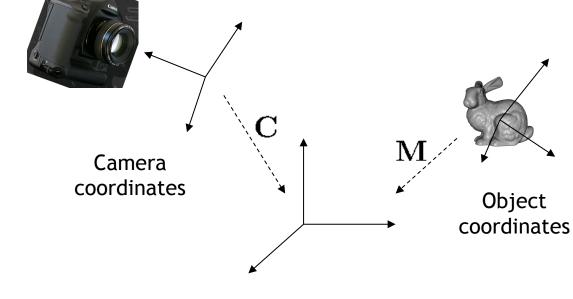
- Coordinates the object is defined with
- Often origin is in middle, base, or corner of object
- No right answer, whatever was convenient for the creator of the object



World coordinates

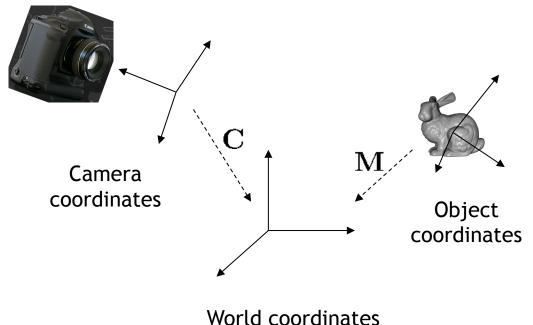
World coordinates

- "World space"
- Common reference frame for all objects in the scene
- Chosen for convenience, no right answer
 - If there is a ground plane, usually *x*-*y* is horizontal and *z* points up



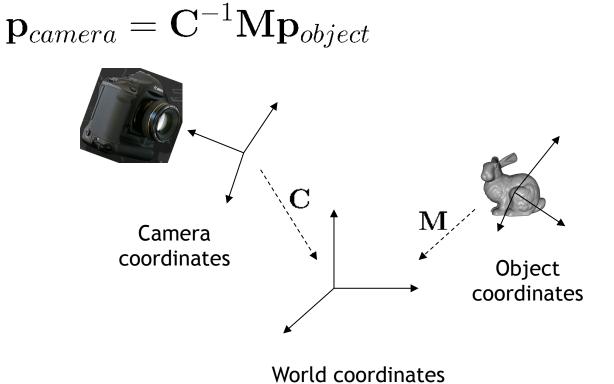
World coordinates

- "Camera space"
- Origin defines center of projection of camera
- Common convention in 3D graphics
 - *x-y* plane is parallel to image plane
 - *z*-axis is perpendicular to image plane

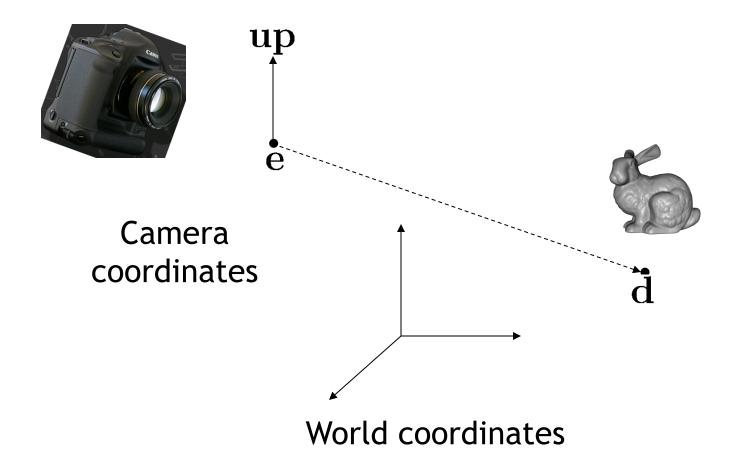


Camera coordinate system

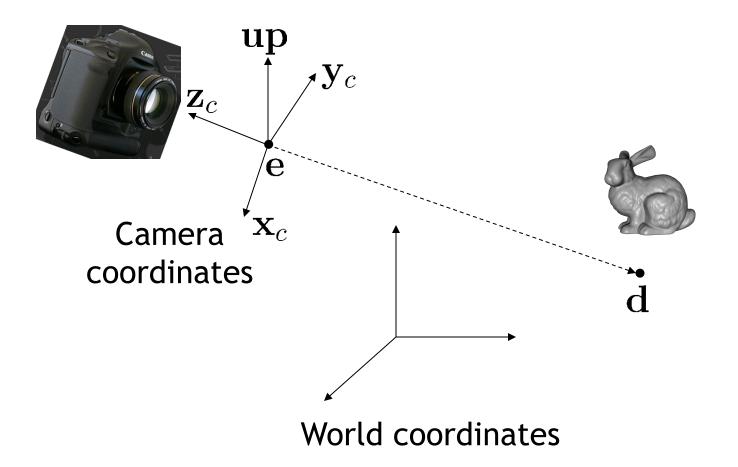
- "Camera matrix" defines transformation from camera to world coordinates
 - Placement of camera in world
- Transformation from object to camera coordinates



• Construct from center of projection , look at e^{up} vector (given in world coords.)



 Construct from center of projection , loek at , up-\dector (givenip) world coords.)



Camera matrix

• z-axis

• x-axis
$$\mathbf{z}_c = rac{\mathbf{e} - \mathbf{d}}{\|\mathbf{e} - \mathbf{d}\|}$$

• y-axis $\mathbf{x}_c = rac{\mathbf{up} imes \mathbf{z}_c}{\|\mathbf{up} imes \mathbf{z}_c\|}$

Camera matrix

• z-axis

• x-axis
$$\mathbf{z}_c = rac{\mathbf{e} - \mathbf{d}}{\|\mathbf{e} - \mathbf{d}\|}$$

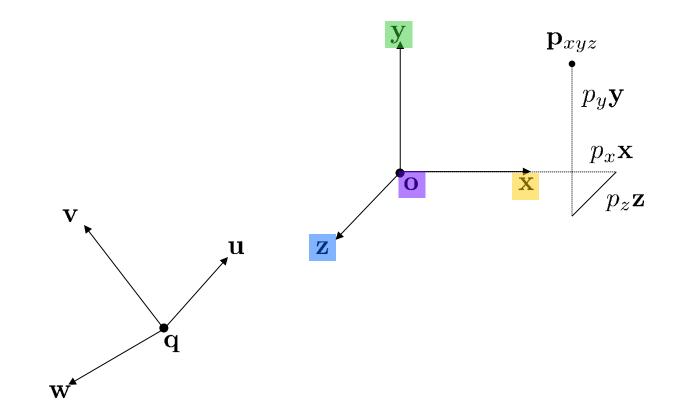
• y-axis
$$\mathbf{x}_c = rac{\mathbf{u}\mathbf{p} imes \mathbf{z}_c}{\|\mathbf{u}\mathbf{p} imes \mathbf{z}_c\|}$$

$$\mathbf{y}_c = \mathbf{z_c} \times \mathbf{x}_c$$

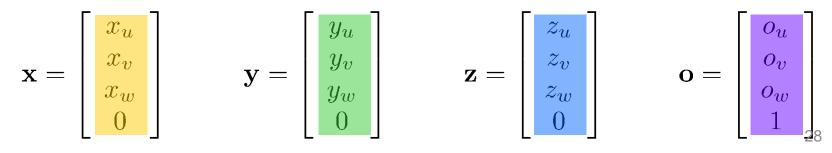
Camera to world transformation

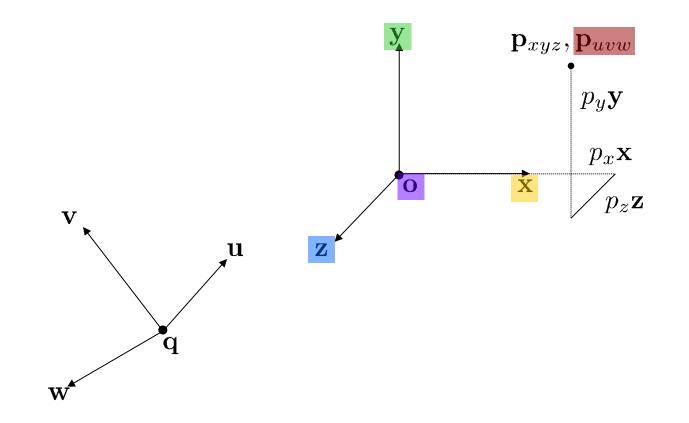
• Think abou
$$\mathbf{C} = \begin{bmatrix} \mathbf{x_c} & \mathbf{y_c} & \mathbf{z_c} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}_{\text{pute}}$$

$$\mathbf{p}' = \mathbf{C}\mathbf{p}$$
$$\mathbf{q}' = \mathbf{C}^{-1}\mathbf{q}$$



Coordinates of xyzo frame w.r.t. uvwq frame

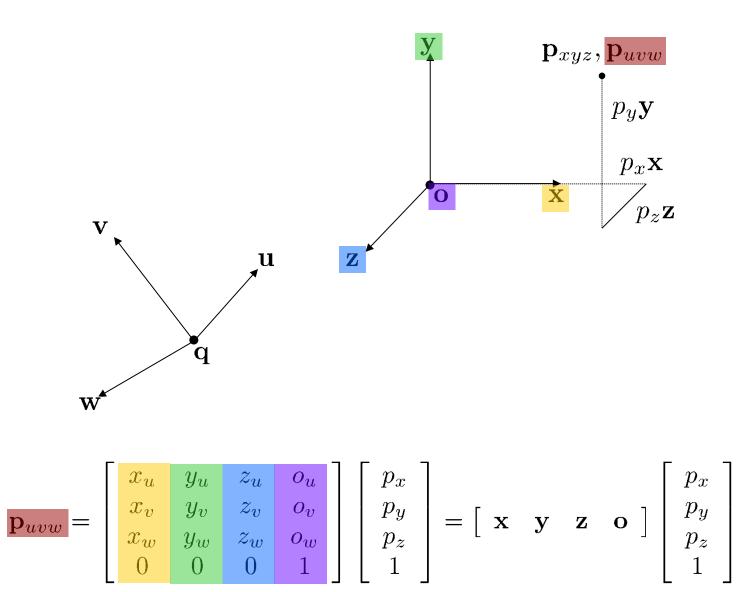




Same point p in 3D, expressed in new uvwq frame

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$

29



• Given coordinates

$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 0 \end{bmatrix} \mathbf{z}$$

• Coordinates of any point with respect to new frame **uvwq** are \mathbf{p}_{xyz}

•
$$\operatorname{Matr}_{\operatorname{Coorc...}}^{\mathbf{p}_{uvw}} = \begin{bmatrix} x_{u} & y_{u} & z_{u} & o_{u} \\ x_{v} & y_{v} & z_{v} & o_{v} \\ x_{w} & y_{w} & z_{w} & o_{w} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} & \mathbf{o} \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix}$$

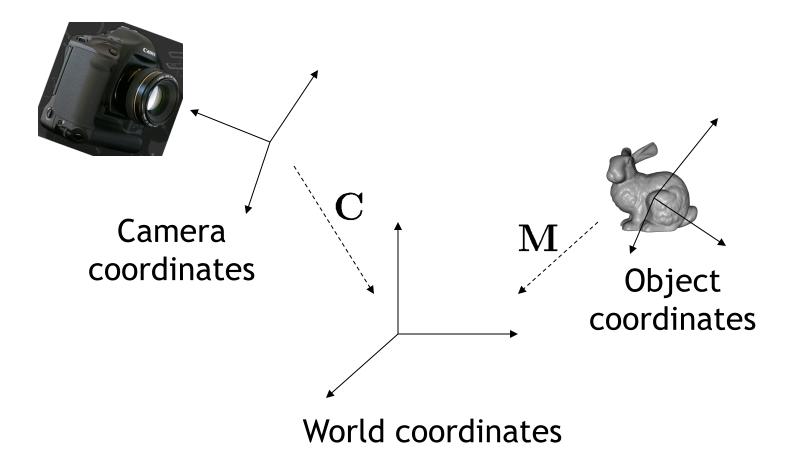
Inverse transformation

- Given point w.r.t. frame
- Want coordinate \mathbf{p}_{uvw} w.r.t. frame $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{q}$

$$\mathbf{p}_{xyz}$$
 $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{o}$

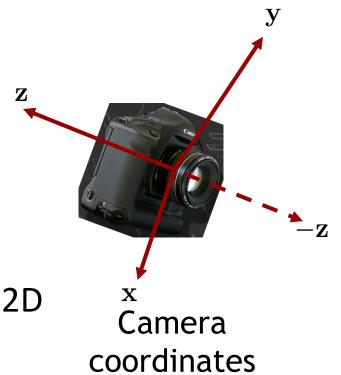
$$\mathbf{p}_{xyz} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} p_u \\ p_v \\ p_w \\ 1 \end{bmatrix}$$

Object, world, camera coords.



Objects in camera coordinates

- We have things lined up the way we like them on screen
 - *x* to the right
 - *y* up
 - *-z* going into the screen
 - Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Today: how to project them into 2D



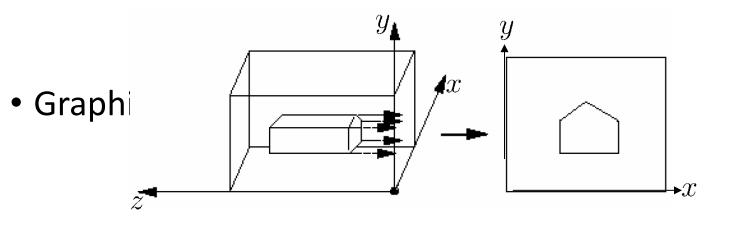
• Given 3D points (vertices) in camera coordinates, determine corresponding 2D image coordinates

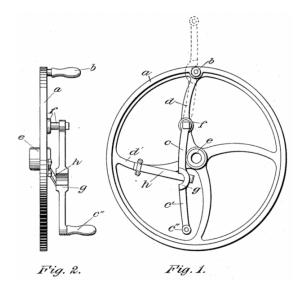
Orthographic projection

- Simply ignore *z*-coordinate
- Use camera space *xy* coordinates as image coordinates
- What we want, or not?

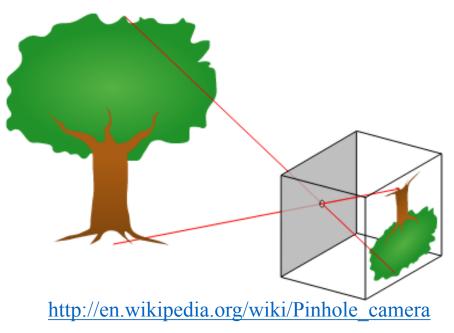
Orthographic projection

• Project points to *x*-*y* plane along parallel lines



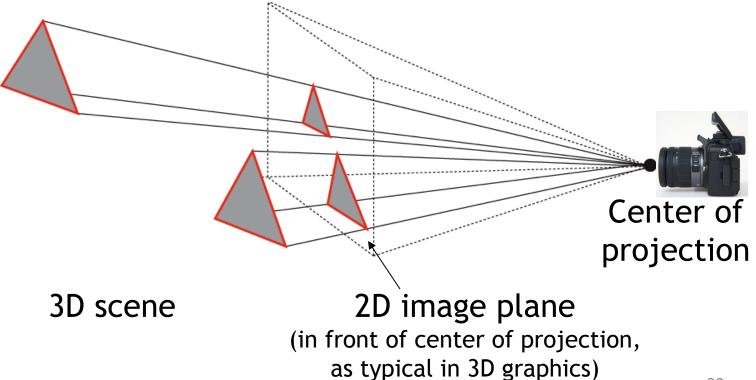


- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)
- Things farther away seem smaller
- Discovery/description attributed to Filippo Brunelleschi, early 1400's

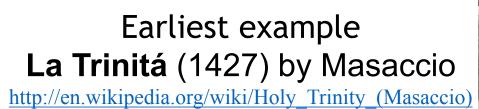


Projection plane behind center of projection, flipped image

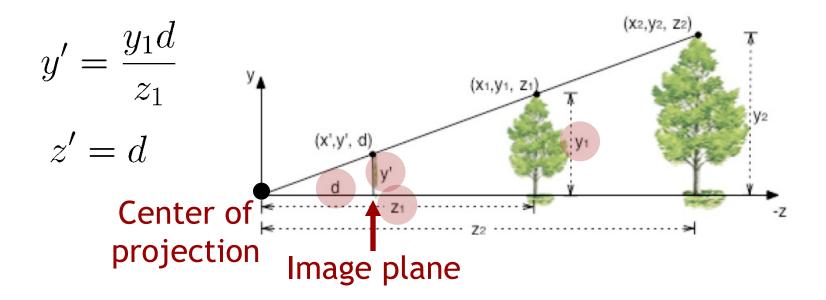
Project along rays that converge in center of projection



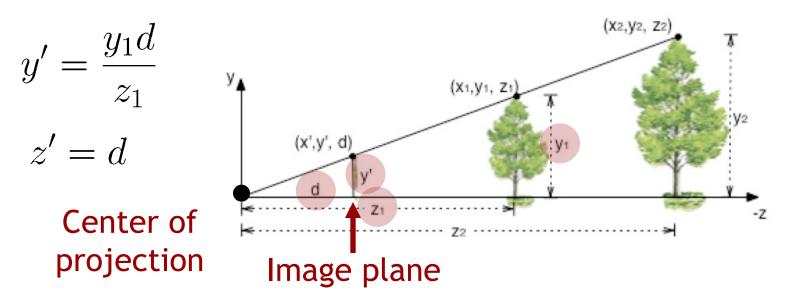
Parallel lines no longer parallel, converge at one point



The math: simplified case

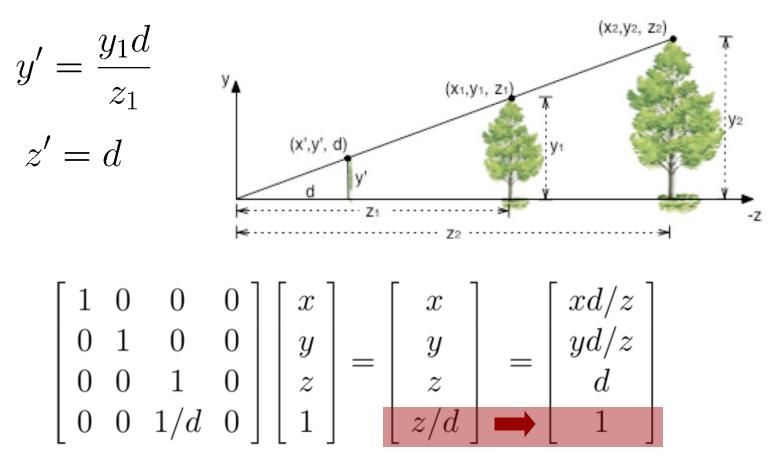


The math: simplified case



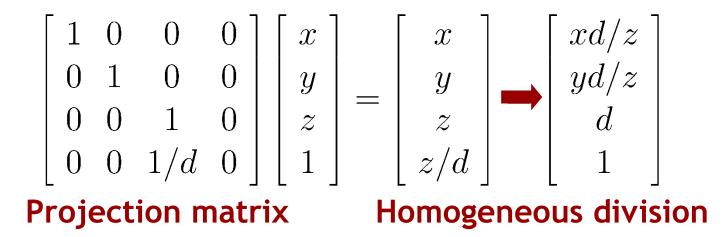
 Can express this using homogeneous coordinates, 4x4 matrices

The math: simplified case



Projection matrix

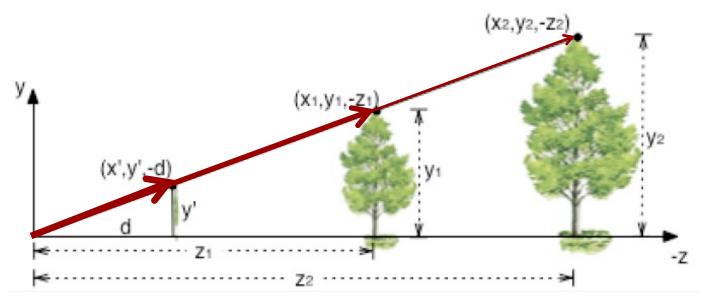
Homogeneous coord. != 1! Homogeneous division 42



- Using projection matrix and homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- Will allow us to
 - handle different types of projections in a unified way
 - define arbitrary view volumes

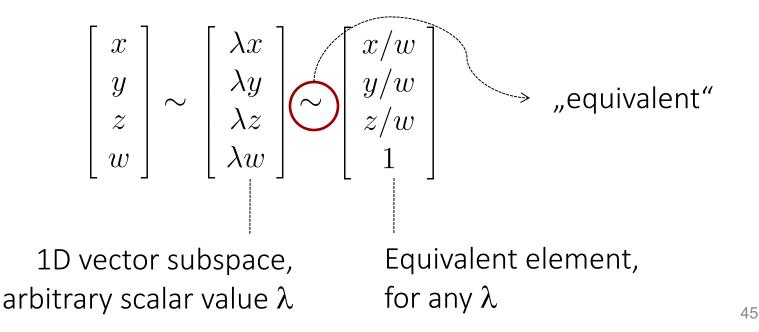
Intuitive example

- All points that lie on one projection line (i.e., a "line-of-sight", intersecting with center of projection of camera) are projected onto same image point
- All 3D points on one projection line are equivalent
- Projection lines form 2D projective space, or 2D projective plane



3D Projective space

- Projective space P³ represented using R⁴ and homogeneous coordinates
 - Each point along 4D ray is equivalent to same 3D point at w=1



 Projective mapping (transformation): any non-singular linear mapping on homogeneous coordinates, for example,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \sim \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

- Generalization of affine mappings
 - 4th row of matrix is arbitrary (not restricted to [0 0 0 1])
- Projective mappings are collineations <u>http://en.wikipedia.org/wiki/Projective_linear_transformation</u> <u>http://en.wikipedia.org/wiki/Collineation</u>
 - Preserve straight lines, but not parallel lines
- Much more theory

http://www.math.toronto.edu/mathnet/questionCorner/projective.html http://en.wikipedia.org/wiki/Projective_space 46

Projective space

http://en.wikipedia.org/wiki/Projective_space

- [xyzw] homogeneous coordinates
- includes points at infinity (w=0)
- projective mappings (perspective projection)

Vector space

- [xyz] coordinates
- represents vectors
- linear mappings (rotation around origin, scaling, shear)

Affine space

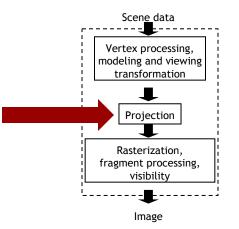
• [xyz1], [xyz0]

homogeneous coords.

- distinguishes points and vectors
- affine mappings (translation)

In practice

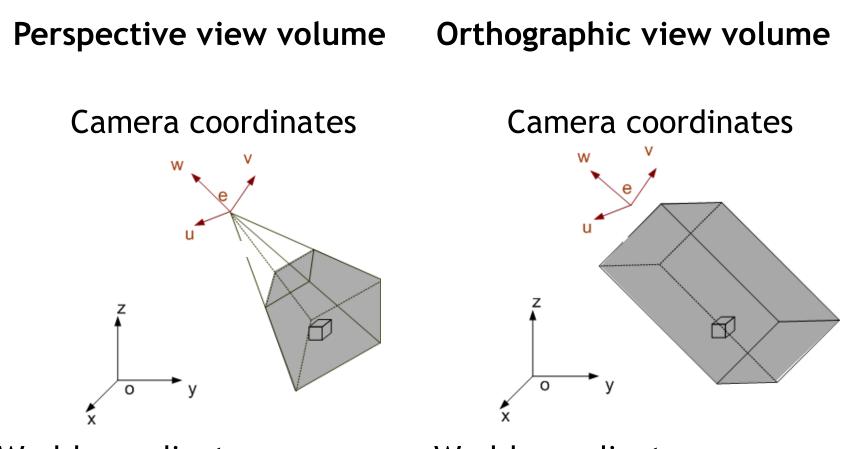
- Use 4x4 homogeneous matrices like other 4x4 matrices
- Modeling & viewing transformations are affine mappings
 - points keep w=1
 - no need to divide by w when doing modeling operations or transforming into camera space
- 3D-to-2D projection is a projective transform
 - Resulting *w* coordinate not always 1
- Divide by w (perspective division, homogeneous division) after multiplying with projection matrix
 - OpenGL rendering pipeline (graphics hardware) does this automatically



Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation

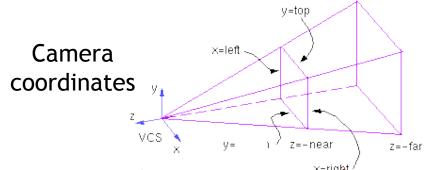
• View volume is 3D volume seen by camera



World coordinates

World coordinates

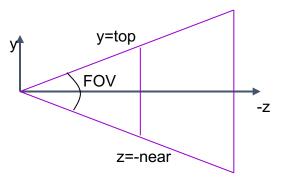
General view volume



- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Often symmetric, i.e., left=-right, top=-bottom

Perspective view volume

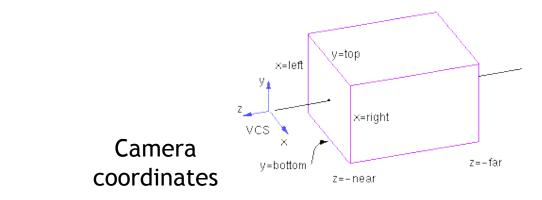
Symmetric view volume



- Only 4 parameters
 - Vertical field of view (FOV)
 - Image aspect ratio (width/height)
 - Near, far clipping planes

aspect ratio= $\frac{right - left}{top - bottom} = \frac{right}{top}$ $tan(FOV / 2) = \frac{top}{near}$

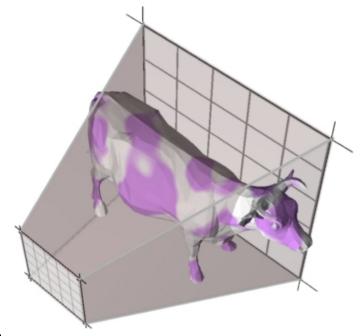
Orthographic view volume



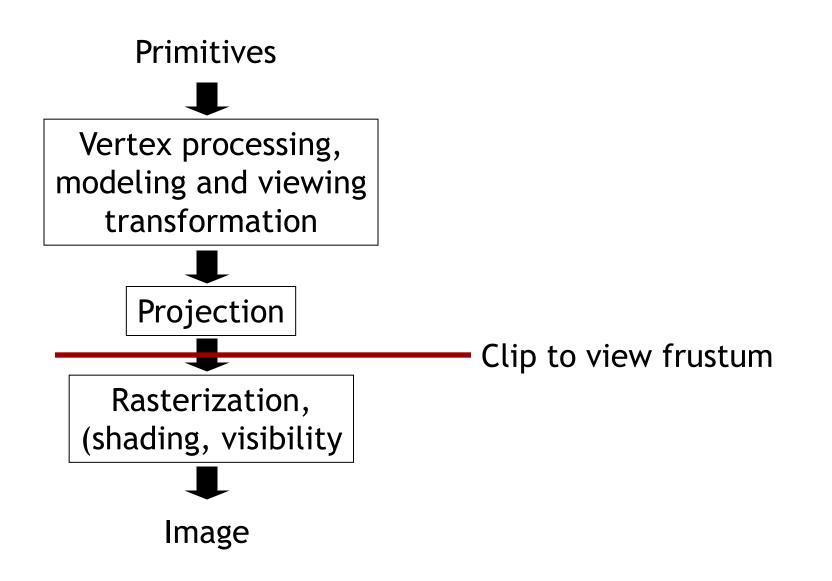
- Parametrized by 6 parameters
 - Right, left, top, bottom, near, far
- If symmetric
 - Width, height, near, far

Clipping

- Need to identify objects outside view volume
 - Avoid division by zero
 - Efficiency, don't draw objects outside view volume
- Performed by OpenGL rendering pipeline
- Clipping always to canonic view volume
 - Cube [-1..1]x[-1..1]x[-1..1] cent
- Need to transform desired view frustum to canonic view frustum



Clipping



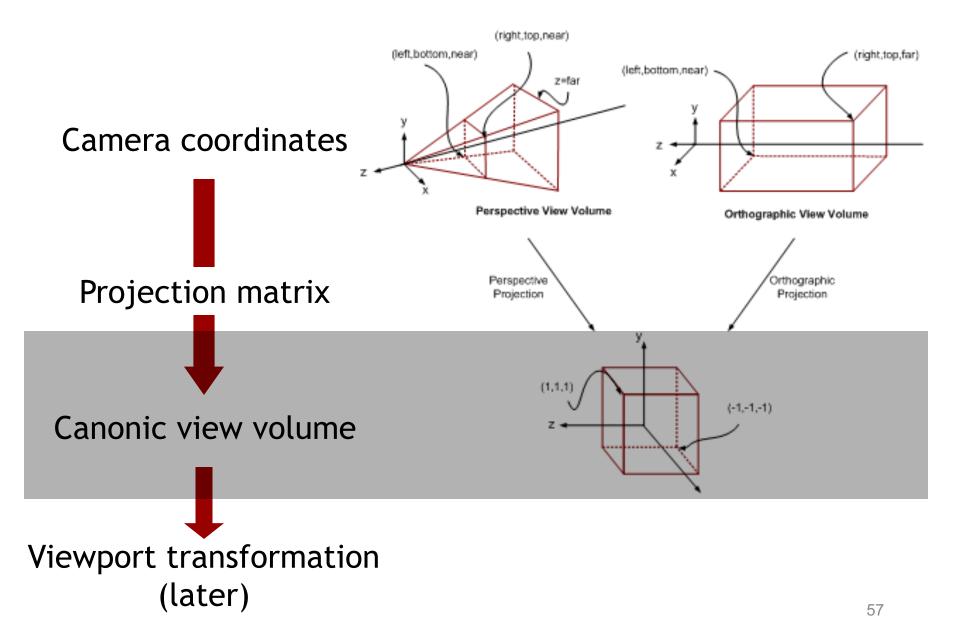
Canonic view volume

- Projection matrix is set such that
 - User defined view volume is transformed into canonic view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

"Multiplying vertices of view volume by projection matrix and performing homogeneous divide yields canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]"

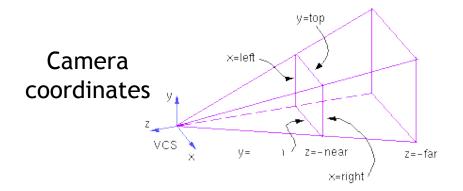
• Perspective and orthographic projection are treated exactly the same way

Projection matrix



Perspective projection matrix

• General view frustum



 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

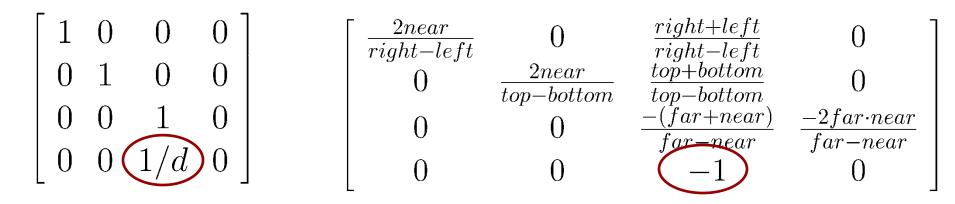
$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0\\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0\\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective projection matrix

• Compare to simple projection matrix from before

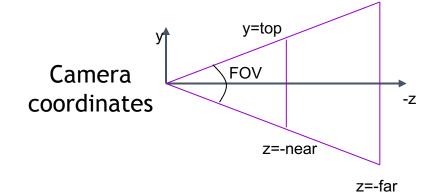
Simple projection

General view frustum



Perspective projection matrix

• Symmetric view frustum with field of view, aspect ratio, near and far clip planes



$$\mathbf{P}_{persp}(FOV, aspect, near, far) = \begin{bmatrix} \frac{1}{aspect \cdot \tan(FOV/2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(FOV/2)} & 0 & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2 \cdot near \cdot far}{near - far} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

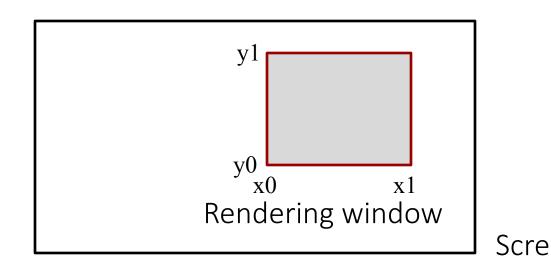
Orthographic projection matrix

$$\mathbf{P}_{ortbo}(right, left, top, bottom, near, far) = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{P}_{ortbo}(width, height, near, far) = \begin{bmatrix} \frac{2}{width} & 0 & 0 & 0 \\ 0 & \frac{2}{height} & 0 & 0 \\ 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\ 0 & 0 & 0 \end{bmatrix}$$
$$w = 1 \text{ after mult.}$$
with orthographic projection matrix

Today

- Rendering pipeline
- Projections
- View volumes
- Viewport transformation

- After applying projection matrix, image points are in normalized view coordinates
 - Per definition range [-1..1] x [-1..1]
- Map points to image (i.e., pixel) coordinates
 - User defined range [x0...x1] x [y0...y1]
 - E.g., position of rendering window on screen

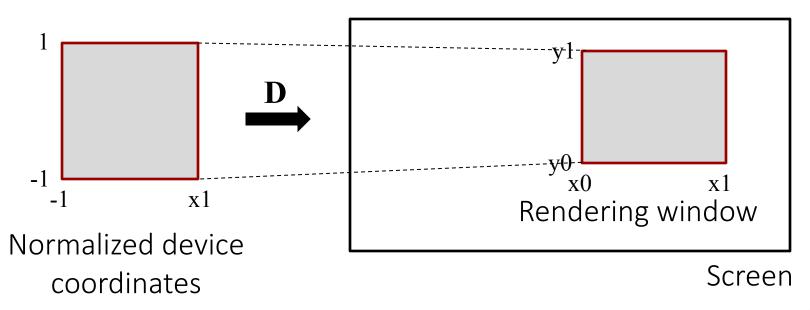


63

Viewport transformation

• Scale and translation

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{D}\mathbf{P}\mathbf{C}^{-1}\mathbf{M} \mathbf{p}$$

Object space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DPC}^{-1} | \mathbf{M} | \mathbf{p}$$

Object space
World space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DP} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space
Camera space

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

 $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$ Object space World space Camera space Canonic view volume

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

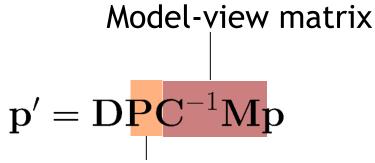
 $\mathbf{p}' = \left| \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \right| \mathbf{M} \left| \mathbf{p} \right|$ $\left| \begin{array}{c} \mathbf{O} \mathbf{b} \mathbf{j} \mathbf{e} \mathbf{c} \mathbf{s} \mathbf{p} \mathbf{a} \mathbf{c} \mathbf{e} \right|$ $\left| \begin{array}{c} \mathbf{W} \mathbf{o} \mathbf{r} \mathbf{l} \mathbf{d} \mathbf{s} \mathbf{p} \mathbf{a} \mathbf{c} \mathbf{e} \right|$ $\left| \begin{array}{c} \mathbf{C} \mathbf{a} \mathbf{m} \mathbf{e} \mathbf{r} \mathbf{a} \mathbf{s} \mathbf{p} \mathbf{a} \mathbf{c} \mathbf{e} \right|$ $\left| \begin{array}{c} \mathbf{C} \mathbf{a} \mathbf{n} \mathbf{o} \mathbf{n} \mathbf{i} \mathbf{c} \mathbf{v} \mathbf{i} \mathbf{e} \mathbf{w} \mathbf{v} \mathbf{o} \mathbf{l} \mathbf{u} \mathbf{m} \mathbf{e} \mathbf{e} \right|$ $\left| \mathbf{M} \mathbf{m} \mathbf{g} \mathbf{e} \mathbf{s} \mathbf{p} \mathbf{a} \mathbf{c} \mathbf{e} \right|$

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix **M**, camera matrix **C**, projection matrix **C**, viewport matrix **D**

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{Mp}$$
$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix}$$
Pixel coordinates $\begin{array}{c} x'/w' \\ y'/w' \\ y'/w' \end{array}$

OpenGL details

 Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D



Projection matrix

- OpenGL rendering pipeline performs these matrix multiplications in vertex shader program
 - More on shader programs later in class
- User just specifies the model-view and projection matrices
- See Java code jrtr.GLRenderContext.draw and default vertex shader in file default.vert

OpenGL details

• Object-to-world matrix **M**, camera matrix **C**, projection matrix **P**, viewport matrix **D**

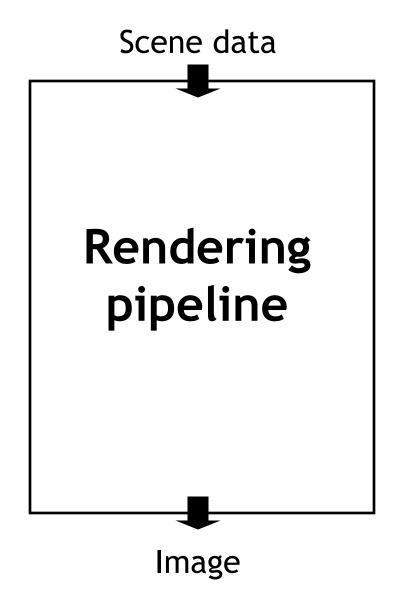
Model-view matrix
$$\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$

Projection matrix

- Exception: viewport matrix, D
 - Specified implicitly via glViewport()
 - No direct access, not used in shader program

Rendering pipeline

http://en.wikipedia.org/wiki/Graphics_pipeline



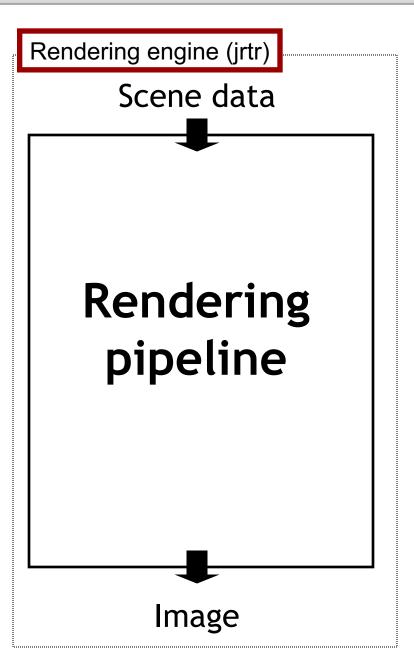
- Hardware & software that draws 3D scenes on the screen
- Most operations performed by specialized hardware (graphics processing unit, GPU,

http://en.wikipedia.org/wiki/Graphics_processing_unit

- Access to hardware through low-level 3D API (DirectX, OpenGL)
 - jogl is a Java binding to OpenGL, used in our projects http://jogamp.org/jogl/www/
- All scene data flows through the pipeline at least once for each frame (i.e., image)

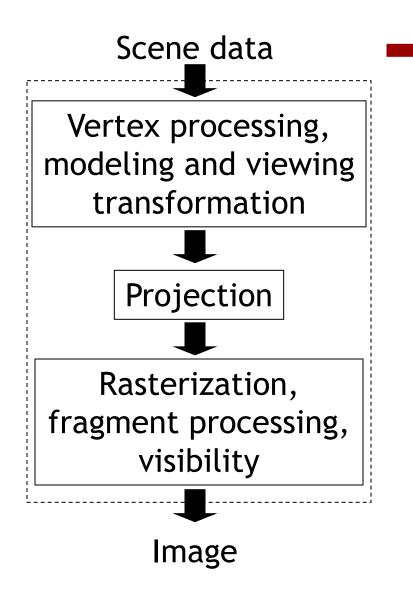
Rendering pipeline

- Rendering pipeline implements object order algorithm
 - Loop over all objects
 - Draw triangles one by one (rasterization)
- Alternatives?
- Advantages, disadvantages?

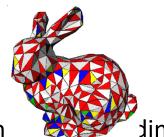


- Additional software layer ("middle-ware") encapsulating low-level API (OpenGL, DirectX, ...)
- Additional functionality (file I/O, scene management, ...)
- Layered software architecture common in industry
 - Game engines <u>http://en.wikipedia.org/wiki</u> /<u>Game_engine</u>

Rendering pipeline stages (simplified)

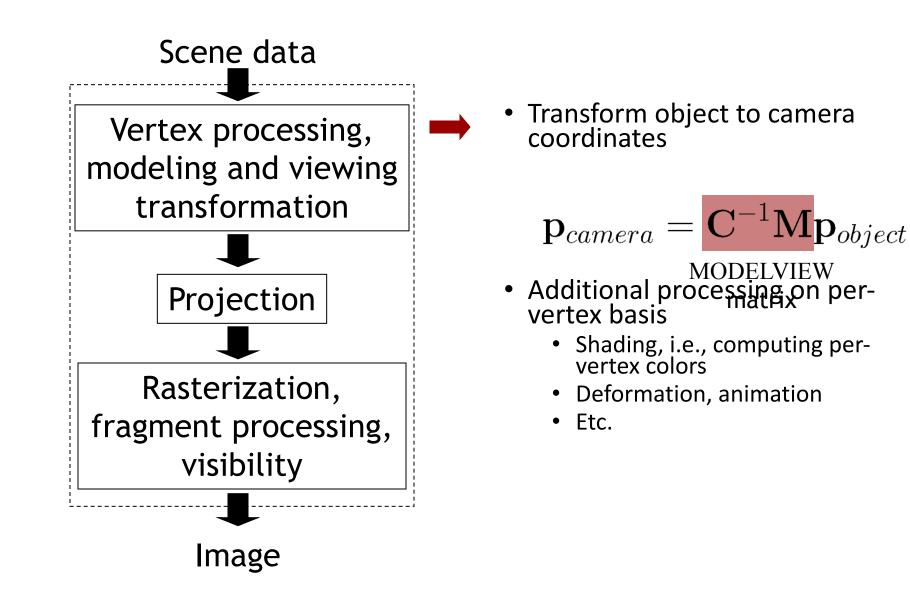


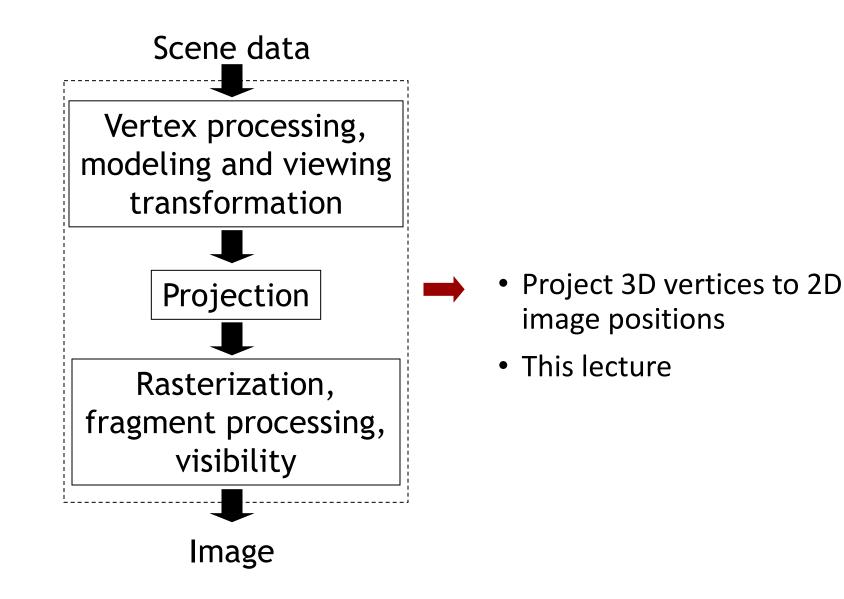
- Geometry
 - Vertices and how they are connected
 - Triangles, lines, point sprites, triangle strips
 - Attributes such as color

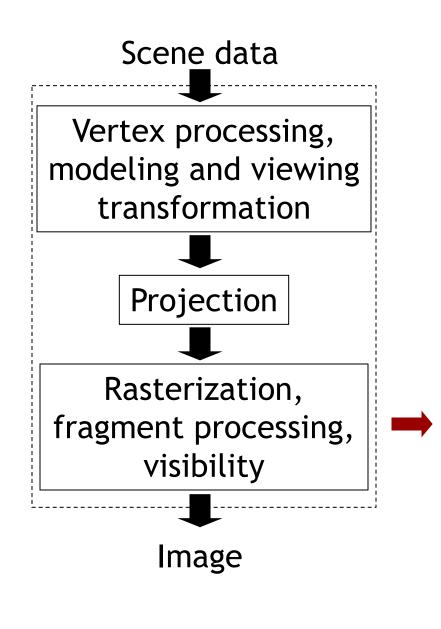


Specified in

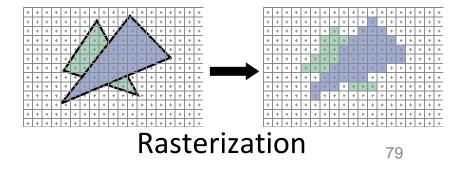
- Jinates
- Processed by the rendering pipeline one-by-one

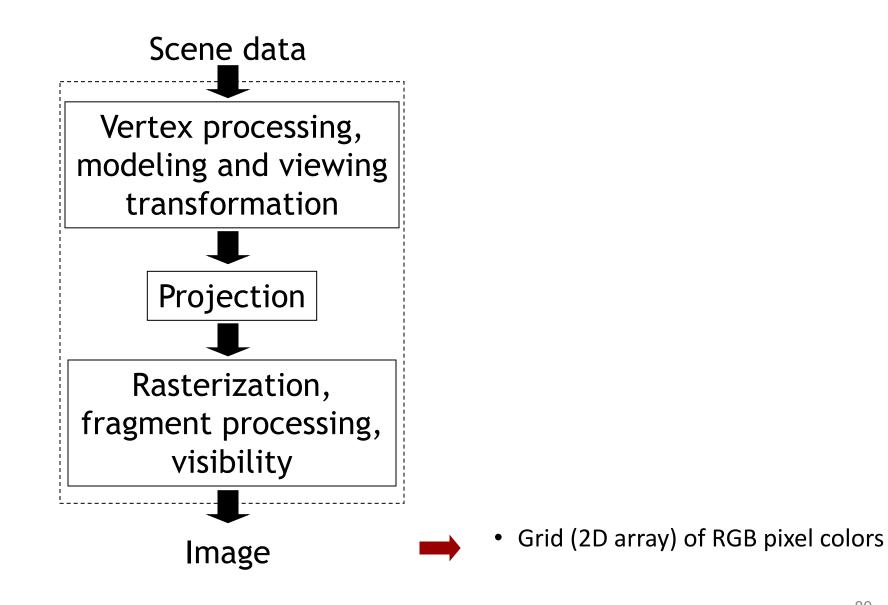






- Draw primitives pixel by pixel on 2D image (triangles, lines, point sprites, etc.)
- Compute per fragment (i.e., pixel) color
- Determine what is visible
- Next lecture





- For today's Processing experiments see
- <u>https://processing.org/tutorials/p3d/</u>
- <u>https://processing.org/tutorials/transform2d/</u>