
CMSC427	
Transformations	II:	
Viewing

Credit:	some	slides	from	Dr.	Zwicker

• GIVEN	THE	TOOLS	OF	…
• The	standard	rigid	and	affine	transformations
• Their	representation	with	matrices	and	
homogeneous	coordinates

• WHAT	CAN	WE	DO	WITH	THESE	TOOLS?
• Modeling – how	can	we	define	transformations	
we	want?

• Viewing – how	can	we	use	these	tools	to	render	
objects	like	polygonal	meshes?

What next?

• Object	space

• World	space

• Create	scene	by	
transforming	objects	
from	object	to	world

• Object	coordinate	
space

• World	coordinate	space

Review: modeling with transformations

Modeling

• Shape	object
• Size,	reshape

• Place	object
• Position	and	orientation

// Processing example

size(200,200,P3D);

translate(width/2,height/2,0);

rotateY(PI/4);
rotateX(PI/4);

box(50);

• Transforms
• applyMatrix()
• popMatrix()
• printMatrix()
• pushMatrix()
• resetMatrix()
• rotate()
• rotateX()
• rotateY()
• rotateZ()
• scale()
• shearX()
• shearY()
• translate()

• Camera
• beginCamera()
• camera()
• endCamera()
• frustum()
• ortho()
• perspective()

Transformations in Processing (OpenGL 1.0 and 2.0 style)

• Tracing
• printMatrix()
• printCamera()
• printProjection()

• Routines	not in	OpenGL	
3.0/4.0	but	in	many	
utility	libraries

• Instead	of	… • Use	…

• Why?	Simplify	the	code	for	
the	object,	enable	complex	
transformations.

• Mesh	not	need	understand	
transformations

Observation 1: Parametric transformations

for	(int t=0;	t <	2*PI;	t +=	0.1)	{
float x	=	cx+	r*cos(t);
float y	=	cy+	r*sin(t);
translate(x,y);	//	Or	more	…
complexObject();

}

for	(int t=0;	t <	2*PI;	t +=	0.1)	{
float x	=	cx+	r*cos(t);
float y	=	cy+	r*sin(t);
ellipse(x,y,10,10);

}

• Transforms	can	
accumulate

• translate(5,5);
• translate(10,50);
• Result:	(15,15)

• pushMatrix()	preserves	
existing	matrix,	
popMatrix()	restores

Observation 1: Problem!

for (int t=0; t < 2*PI; t += 0.1)
{

float x = cx+ r*cos(t);
float y = cy+ r*sin(t);
pushMatrix();
translate(x,y); // Or more …

popMatrix();
complexObject();

}

• Get	to	know	
transformations	by	
experimentation

• Processing	good	for	this

• Try
• translate
• scale
• shearX,	shearY
• rotateX,rotateY,rotateZ

• Understand
• Direction	of	x,	y,	z
• Direction	of	rotations

Observation II: Experimenting with 3D transforms

// Basic code

size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
box(100);

• More	elegant	code

• scale(50);
• box(1);

• But	we	get	this	picture
• ?????????
• strokeWeight is	scaled

• So	… box(50)	it	is.

Observation II: Problem (Processing scales outline stroke)

• Can	print	current	
transformation	
matrix	to	debug

• Why	-346?	
Where	camera	is.
Viewing	from	
+346	in	Z

Observation 3: Tracing matrix

000.7071 -000.7071 000.0000 000.0000
000.7071 000.7071 000.0000 000.0000
000.0000 000.0000 001.0000 -346.4102
000.0000 000.0000 000.0000 001.0000

size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
printMatrix();
box(50);

Experiments!

• Translate	with	positive	and	negative	X,Y,Z
• Figure	out	the	coordinate	system

• Rotate	around	X,	Y,	Z	in	different	orders
• Scale	non-uniformly	in	X,Y,Z
• Change	order	of	scale,	rotate,	translate
• Try	a	shear	

Transformations and animations

float theta = 0;

void setup(){
size(400,400,P3D);
fill(255,0,255);

}

void draw(){
background(255);
translate(width/2,height/2,0);
rotateZ(theta);
rotateX(theta);
rotateZ(theta);
box(100);
theta += 0.01;

}

• How	animate	box	
rotating	around	its	
center	as	it’s	orbiting	
the	center	of	the	
sketch?

Orbiting box?

Viewing transformations: the virtual camera

Need	to	know
• Where	is	the	camera?

• What	lens	does	it	have?

14

World coordinates

Object
coordinates

Camera
coordinates

Viewing transformations: the virtual camera

Need	to	know
• Where	is	the	camera?

• CAMERA	TRANSFORM

• What	lens	does	it	have?
• PROJECTIVE	TRANSFORM

15

World coordinates

Object
coordinates

Camera
coordinates

Virtual camera routines in Processing

16

World coordinates

Object
coordinates

Camera
coordinates

• Camera	(where)
• beginCamera()
• camera()
• endCamera()

• Projective	(length	of	lens)
• frustum()
• ortho()
• perspective()

• Tracing	
• printCamera()
• printProjection()

Camera routine in Processing

void setup() {
size(640, 360, P3D);
}

void draw() {
background(0);

camera(width/2, height/2, (height/2) / tan(PI/6),
width/2, height/2, 0, 0, 1, 0);

translate(width/2, height/2, -100);
stroke(255);
noFill();
box(200);

}

Common coordinate systems

• Camera,	world,	and	object	coordinates
• Matrices	for	change	of	coordinates	C, M

World coordinates

Object
coordinates

Camera
coordinates

Object coordinates

• Coordinates	the	object	is	defined	with
• Often	origin	is	in	middle,	base,	or	corner	of	object
• No	right	answer,	whatever	was	convenient	for	the	
creator	of	the	object

World coordinates

Object
coordinates

Camera
coordinates

19

World coordinates

• “World	space”
• Common	reference	frame	for	all	objects	in	the	
scene

• Chosen	for	convenience,	no	right	answer
• If	there	is	a	ground	plane,	usually	x-y is	horizontal	and	z
points	up

World coordinates

Object
coordinates

Camera
coordinates

20

Camera coordinate system

• “Camera	space”
• Origin	defines	center	of	projection	of	camera
• Common	convention	in	3D	graphics

• x-y plane	is	parallel	to	image	plane
• z-axis	is	perpendicular	to	image	plane

World coordinates

Object
coordinates

Camera
coordinates

21

Camera coordinate system

• “Camera	matrix”	defines	transformation	from	
camera	to	world coordinates

• Placement	of	camera	in	world

• Transformation	from	object	to	camera	coordinates

World coordinates

Object
coordinates

Camera
coordinates

22

Camera matrix

• Construct	from	center	of	projection				,	look	at				,	up-
vector							(given	in	world	coords.)

World coordinates

Camera
coordinates

23

Camera matrix

World coordinates

Camera
coordinates

• Construct	from	center	of	projection				,	look	at				,	
up-vector							(given	in	world	coords.)

24

Camera matrix

• z-axis

• x-axis

• y-axis

25

Camera matrix

• z-axis

• x-axis

• y-axis

26

Camera matrix

• Camera	to	world	transformation

• Think	about:	What	does	it	mean	to	compute

27

Change of coordinates

Coordinates of xyzo frame w.r.t. uvwq frame

28

Change of coordinates

Same point p in 3D, expressed in new uvwq frame

29

Change of coordinates

30

Change of coordinates

• Given	coordinates	

of	basis	xyzo with	respect	to	new	frame	uvwq
• Coordinates	of	any	point									with	respect	to	new	
frame	uvwq are	

• Matrix	contains old	basis	vectors	(x,y,z,o)	in	new	
coordinates	(u,v,w,q)

31

Change of coordinates

Inverse	transformation
• Given	point									w.r.t.	frame	
• Want	coordinates									w.r.t.	frame

32

Object, world, camera coords.

World coordinates

Object
coordinates

Camera
coordinates

33

Objects in camera coordinates

• We	have	things	lined	up	the	way	we	like	them	on	
screen

• x to	the	right
• y up
• -z going	into	the	screen
• Objects	to	look	at	are	in	
front	of	us,	i.e.	have	
negative z values

• But	objects	are	still	in	3D
• Today:	how	to	project	them	into	2D

Camera
coordinates

34

Projections

• Given	3D	points	(vertices)	in	camera	coordinates,	
determine	corresponding	2D	image	coordinates

Orthographic	projection
• Simply	ignore	z-coordinate
• Use	camera	space	xy coordinates	as	image	
coordinates

• What	we	want,	or	not?

35

Orthographic projection

• Project	points	to	x-y plane	along	parallel	lines

• Graphical	illustrations,	architecture

36

Perspective projection

• Most	common	for	computer	graphics
• Simplified	model	of	human	eye,	or	camera	lens	
(pinhole	camera)

• Things	farther	
away	seem	smaller

• Discovery/description
attributed	to
Filippo	Brunelleschi,
early	1400’s

http://en.wikipedia.org/wiki/Pinhole_camera

37

Projection	plane	behind	center	of	
projection,	flipped	image

Perspective projection

• Project	along	rays	that	converge	in	center	of	
projection

2D image plane
(in front of center of projection,

as typical in 3D graphics)

Center of
projection

3D scene

38

Perspective projection

Parallel lines
no longer parallel,

converge at one point

Earliest example
La Trinitá (1427) by Masaccio

http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio) 39

Perspective projection

The	math:	simplified	case

Image plane

Center of
projection

40

Perspective projection

The	math:	simplified	case

• Can	express	this	using	homogeneous	coordinates,	
4x4	matrices

Image plane
Center of
projection

41

The	math:	simplified	case

Perspective projection

Homogeneous coord. != 1!
Homogeneous division

Projection matrix
42

Perspective projection

• Using	projection	matrix	and	homogeneous	division
seems	more	complicated	than	just	multiplying	all	
coordinates	by	d/z, so	why	do	it?

• Will	allow	us	to	
• handle	different	types	of	projections	in	a	unified	way
• define	arbitrary	view	volumes

Homogeneous divisionProjection matrix

43

Intuitive example

• All	points	that	lie	on	one	projection	line	(i.e.,	a	
"line-of-sight",	intersecting	with	center	of	
projection	of	camera)	are	projected	onto
same	image	point

• All	3D	points	on	one	projection	line	are	equivalent
• Projection	lines	form	2D	projective	space,	or
2D	projective	plane

44

3D Projective space

• Projective	space	P3 represented	using	R4 and	
homogeneous	coordinates

• Each	point	along	4D	ray	is	equivalent	to	same	3D	point	
at	w=1

„equivalent“

1D	vector	subspace,
arbitrary	scalar	value	l

Equivalent	element,	
for	any	l 45

3D Projective space

• Projective mapping (transformation):	
any non-singular	linear	mapping	on	homogeneous	
coordinates,	for	example,

• Generalization	of	affine	mappings
• 4th	row	of	matrix	is	arbitrary	(not	restricted	to	[0 0 0 1])

• Projective mappings are collineations
http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation

• Preserve straight	lines,	but	not	parallel	lines
• Much	more	theory

http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space 46

Projective space

Projective	space
http://en.wikipedia.org/wiki/Projective_space

• [xyzw]	homogeneous	coordinates
• includes	points	at	infinity	(w=0)
• projective	mappings	(perspective	projection)

Vector	space
• [xyz]	coordinates
• represents	vectors
• linear	mappings
(rotation	around	origin,
scaling,	shear)

Affine	space
• [xyz1],	[xyz0]
homogeneous coords.

• distinguishes	points	
and	vectors

• affine	mappings
(translation)

47

In practice

• Use	4x4	homogeneous	matrices	like	other	4x4	matrices
• Modeling	&	viewing	transformations	are	affine	mappings

• points	keep	w=1
• no	need	to	divide	by	w when	doing	modeling	operations	or	
transforming	into	camera	space

• 3D-to-2D	projection	is	a	projective	transform
• Resulting	w coordinate	not	always	1

• Divide	by	w (perspective	division,	homogeneous	division)	
after	multiplying	with	projection	matrix

• OpenGL	rendering	pipeline	(graphics	hardware)	
does	this	automatically Vertex processing,

modeling and viewing
transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

48

Today

• Rendering	pipeline
• Projections
• View	volumes,	clipping
• Viewport	transformation

49

View volumes

• View	volume	is	3D	volume	seen	by	camera

World coordinates

Camera coordinates

World coordinates

Camera coordinates

Perspective view volume Orthographic view volume

50

Perspective view volume

General	view	volume

• Defined	by	6	parameters,	in	camera	coordinates	
• Left,	right,	top,	bottom	boundaries
• Near,	far	clipping	planes

• Clipping	planes	to	avoid	numerical	problems
• Divide	by	zero
• Low	precision	for	distant	objects

• Often	symmetric,	i.e.,	left=-right,	top=-bottom

Camera
coordinates

51

Perspective view volume

Symmetric	view	volume

• Only	4	parameters
• Vertical	field	of	view	(FOV)
• Image	aspect	ratio	(width/height)
• Near,	far	clipping	planes

-z
FOV

y

z=-near

z=-far

y=top

aspect ratio= right - left
top - bottom

=
right
top

tan(FOV / 2) = top
near

52

Orthographic view volume

• Parametrized	by	6	parameters
• Right,	left,	top,	bottom,	near,	far

• If	symmetric
• Width,	height,	near,	far

Camera
coordinates

53

Clipping

• Need	to	identify	objects	outside	view	volume
• Avoid	division	by	zero
• Efficiency,	don’t	draw	
objects	outside	view	
volume

• Performed	by	OpenGL	
rendering	pipeline

• Clipping	always	to	
canonic	view	volume

• Cube	[-1..1]x[-1..1]x[-1..1] centered	at	origin
• Need	to	transform	desired	view	frustum	to	canonic	
view	frustum

54

Clipping

Vertex processing,
modeling and viewing

transformation

Projection

Rasterization,
(shading, visibility

Primitives

Image

Clip to view frustum

55

Canonic view volume

• Projection	matrix	is	set	such	that
• User	defined	view	volume	is	transformed	into	canonic	
view	volume,	i.e.,	unit	cube	[-1,1]x[-1,1]x[-1,1]

“Multiplying	vertices	of	view	volume	by	projection	
matrix	and	performing	homogeneous	divide	yields	
canonic	view	volume,	i.e.,	cube	[-1,1]x[-1,1]x[-1,1]“

• Perspective	and	orthographic	projection	are	
treated	exactly	the	same	way

56

Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation
(later) 57

Perspective projection matrix

• General	view	frustum

Camera
coordinates

58

Perspective projection matrix

• Compare	to	simple	projection	matrix	from	before

Simple	projection General	view	frustum

59

Perspective projection matrix

• Symmetric	view	frustum	with	field	of	view,	aspect	
ratio,	near	and	far	clip	planes

Ppersp (FOV ,aspect,near, far) =

1
aspect × tan(FOV / 2)

0 0 0

0 1
tan(FOV / 2)

0 0

0 0 near + far
near - far

2 ×near × far
near - far

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

-z
FOV

y

z=-near

z=-far

y=top

Camera
coordinates

60

Orthographic projection matrix

Portho(right, left, top,bottom,near, far) =

2
right - left

0 0 -
right + left
right - left

0 2
top - bottom

0 -
top + bottom
top - bottom

0 0 2
far - near

far + near
far - near

0 0 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

Portho(width,height,near, far) =

2
width

0 0 0

0 2
height

0 0

0 0 2
far - near

far + near
far - near

0 0 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

Camera
coordinates

w = 1 after	mult.
with	orthographic
projection	matrix

61

Today

• Rendering	pipeline
• Projections
• View	volumes
• Viewport	transformation

62

Viewport transformation

• After	applying	projection	matrix,	image	points	are	in	
normalized	view	coordinates

• Per	definition	range	[-1..1] x [-1..1]
• Map	points	to	image	(i.e.,	pixel)	coordinates

• User	defined	range	[x0…x1] x [y0…y1]
• E.g.,	position	of	rendering	window	on	screen

x0 x1
y0

y1

Screen	
Rendering	window

63

Viewport transformation

• Scale	and	translation

D x0 , x1, y0 , y1()=

x1 - x0() 2 0 0 x0 + x1() 2
0 y1 - y0() 2 0 y0 + y1() 2
0 0 1 2 1 2
0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

x0 x1
y0

y1

Rendering	window

Screen	

-1 x1
-1

1

Normalized device
coordinates

D

64

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Object space

65

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Object space
World space

66

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space

67

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates	

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space
Canonic view volume

68

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space

Image space
Canonic view volume

69

The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates	

• Object-to-world	matrix	M,	camera	matrix	C,
projection	matrix	C,	viewport	matrix	D

Pixel coordinates

70

OpenGL details

• Object-to-world	matrix	M,	camera	matrix	C, projection	
matrix	P,	viewport	matrix	D

• OpenGL	rendering	pipeline	performs	these	matrix	
multiplications	in	vertex	shader program

• More	on	shader programs	later	in	class
• User	just	specifies	the	model-view	and	projection	
matrices

• See	Java	code jrtr.GLRenderContext.draw and	default	
vertex	shader in	file	default.vert

Model-view matrix

Projection matrix

71

OpenGL details

• Object-to-world	matrix	M,	camera	matrix	C, projection	
matrix	P,	viewport	matrix	D

• Exception:	viewport	matrix,	D
• Specified	implicitly	via	glViewport()
• No	direct	access,	not	used	in	shader program

Model-view matrix

Projection matrix

72

Rendering pipeline

Scene data

Image

• Hardware	&	software	that	
draws	3D	scenes	on	the	screen

• Most	operations	performed	by	
specialized	hardware	(graphics	
processing	unit,	GPU,	
http://en.wikipedia.org/wiki/Graphics_processing_unit)

• Access	to	hardware	through	
low-level	3D	API	(DirectX,	
OpenGL)

• jogl is	a	Java	binding	to	OpenGL,	
used	in	our	projects
http://jogamp.org/jogl/www/

• All	scene	data	flows	through	
the	pipeline	at	least	once	for	
each	frame	(i.e.,	image)

Rendering
pipeline

http://en.wikipedia.org/wiki/Graphics_pipeline

73

Rendering pipeline

• Rendering	pipeline	implements	object	order
algorithm

• Loop	over	all	objects
• Draw	triangles	one	by	one	(rasterization)

• Alternatives?
• Advantages,	disadvantages?

74

Rendering engine

Scene data

Image

• Additional	software	layer	
(“middle-ware”)	
encapsulating	low-level	
API	(OpenGL,	DirectX,	…)

• Additional	functionality	
(file	I/O,	scene	
management,	…)

• Layered	software	
architecture	common	in	
industry

• Game	engines
http://en.wikipedia.org/wiki
/Game_engine

Rendering
pipeline

Rendering engine (jrtr)

75

Rendering pipeline stages (simplified)

• Geometry
• Vertices	and	how	they	are	
connected

• Triangles,	lines,	point	sprites,	
triangle	strips

• Attributes	such	as	color

• Specified	in	object	coordinates
• Processed	by	the	rendering	
pipeline	one-by-one

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

76

Rendering pipeline stages (simplified)

• Transform	object	to	camera	
coordinates

• Additional	processing	on	per-
vertex	basis

• Shading,	i.e.,	computing	per-
vertex	colors

• Deformation,	animation
• Etc.

MODELVIEW
matrix

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

77

Rendering pipeline stages (simplified)

• Project	3D	vertices	to	2D	
image	positions

• This	lecture

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

78

Rendering pipeline stages (simplified)

• Draw	primitives	pixel	by	pixel	
on	2D	image	(triangles,	lines,	
point	sprites,	etc.)

• Compute	per	fragment	(i.e.,	
pixel)	color

• Determine	what	is	visible
• Next	lecture

Rasterization

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

79

Rendering pipeline stages (simplified)

• Grid	(2D	array)	of	RGB	pixel	colors

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing,

visibility

Image

80

• For	today’s	Processing	experiments	see

• https://processing.org/tutorials/p3d/
• https://processing.org/tutorials/transform2d/

References

