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• GIVEN	THE	TOOLS	OF	…
• The	standard	rigid	and	affine	transformations
• Their	representation	with	matrices	and	
homogeneous	coordinates

• WHAT	CAN	WE	DO	WITH	THESE	TOOLS?
• Modeling – how	can	we	define	transformations	
we	want?

• Viewing – how	can	we	use	these	tools	to	render	
objects	like	polygonal	meshes?

What next?



• Object	space

• World	space

• Create	scene	by	
transforming	objects	
from	object	to	world

• Object	coordinate	
space

• World	coordinate	space

Review: modeling with transformations



Modeling

• Shape	object
• Size,	reshape

• Place	object
• Position	and	orientation

// Processing example

size(200,200,P3D);

translate(width/2,height/2,0); 

rotateY(PI/4); 
rotateX(PI/4);

box(50); 



• Transforms
• applyMatrix()
• popMatrix()
• printMatrix()
• pushMatrix()
• resetMatrix()
• rotate()
• rotateX()
• rotateY()
• rotateZ()
• scale()
• shearX()
• shearY()
• translate()

• Camera
• beginCamera()
• camera()
• endCamera()
• frustum()
• ortho()
• perspective()

Transformations in Processing (OpenGL 1.0 and 2.0 style)

• Tracing
• printMatrix()
• printCamera()
• printProjection()

• Routines	not in	OpenGL	
3.0/4.0	but	in	many	
utility	libraries



• Instead	of	… • Use	…

• Why?	Simplify	the	code	for	
the	object,	enable	complex	
transformations.

• Mesh	not	need	understand	
transformations

Observation 1:  Parametric transformations

for	(int t=0;	t <	2*PI;	t +=	0.1)	{
float x	=	cx+	r*cos(t);
float y	=	cy+	r*sin(t);
translate(x,y);	//	Or	more	…
complexObject();

}

for	(int t=0;	t <	2*PI;	t +=	0.1)	{
float x	=	cx+	r*cos(t);
float y	=	cy+	r*sin(t);
ellipse(x,y,10,10);

}



• Transforms	can	
accumulate

• translate(5,5);
• translate(10,50);
• Result:	(15,15)

• pushMatrix()	preserves	
existing	matrix,	
popMatrix()	restores

Observation 1: Problem!

for (int t=0; t < 2*PI; t += 0.1) 
{

float x = cx+ r*cos(t);
float y = cy+ r*sin(t);
pushMatrix();
translate(x,y); // Or more …

popMatrix();
complexObject();

}



• Get	to	know	
transformations	by	
experimentation

• Processing	good	for	this

• Try
• translate
• scale
• shearX,	shearY
• rotateX,rotateY,rotateZ

• Understand
• Direction	of	x,	y,	z
• Direction	of	rotations

Observation II:  Experimenting with 3D transforms

// Basic code

size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
box(100);



• More	elegant	code

• scale(50);
• box(1);

• But	we	get	this	picture
• ?????????
• strokeWeight is	scaled

• So	… box(50)	it	is.

Observation II: Problem (Processing scales outline stroke)



• Can	print	current	
transformation	
matrix	to	debug

• Why	-346?	
Where	camera	is.
Viewing	from	
+346	in	Z

Observation 3:  Tracing matrix 

000.7071 -000.7071  000.0000  000.0000 
000.7071  000.7071  000.0000  000.0000 
000.0000  000.0000  001.0000 -346.4102 
000.0000  000.0000  000.0000  001.0000

size(400,400,P3D);
translate(width/2,height/2,0);
rotateZ(PI/4);
printMatrix();
box(50);



Experiments!

• Translate	with	positive	and	negative	X,Y,Z
• Figure	out	the	coordinate	system

• Rotate	around	X,	Y,	Z	in	different	orders
• Scale	non-uniformly	in	X,Y,Z
• Change	order	of	scale,	rotate,	translate
• Try	a	shear	



Transformations and animations

float theta = 0;

void setup(){
size(400,400,P3D);
fill(255,0,255);

}

void draw(){
background(255);
translate(width/2,height/2,0);
rotateZ(theta);
rotateX(theta);
rotateZ(theta);
box(100);
theta += 0.01;

}



• How	animate	box	
rotating	around	its	
center	as	it’s	orbiting	
the	center	of	the	
sketch?

Orbiting box?



Viewing transformations: the virtual camera

Need	to	know
• Where	is	the	camera?

• What	lens	does	it	have?
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World coordinates

Object
coordinates

Camera
coordinates



Viewing transformations: the virtual camera

Need	to	know
• Where	is	the	camera?

• CAMERA	TRANSFORM

• What	lens	does	it	have?
• PROJECTIVE	TRANSFORM
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World coordinates

Object
coordinates

Camera
coordinates



Virtual camera routines in Processing
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World coordinates

Object
coordinates

Camera
coordinates

• Camera	(where)
• beginCamera()
• camera()
• endCamera()

• Projective	(length	of	lens)
• frustum()
• ortho()
• perspective()

• Tracing	
• printCamera()
• printProjection()



Camera routine in Processing

void setup() {  
size(640, 360, P3D);
}

void draw() {  
background(0);  

camera(width/2, height/2, (height/2) / tan(PI/6), 
width/2, height/2, 0, 0, 1, 0); 

translate(width/2, height/2, -100);  
stroke(255);  
noFill();  
box(200);

}  



Common coordinate systems

• Camera,	world,	and	object	coordinates
• Matrices	for	change	of	coordinates	C, M

World coordinates

Object
coordinates

Camera
coordinates



Object coordinates

• Coordinates	the	object	is	defined	with
• Often	origin	is	in	middle,	base,	or	corner	of	object
• No	right	answer,	whatever	was	convenient	for	the	
creator	of	the	object

World coordinates

Object
coordinates

Camera
coordinates
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World coordinates

• “World	space”
• Common	reference	frame	for	all	objects	in	the	
scene

• Chosen	for	convenience,	no	right	answer
• If	there	is	a	ground	plane,	usually	x-y is	horizontal	and	z
points	up

World coordinates

Object
coordinates

Camera
coordinates

20



Camera coordinate system

• “Camera	space”
• Origin	defines	center	of	projection	of	camera
• Common	convention	in	3D	graphics

• x-y plane	is	parallel	to	image	plane
• z-axis	is	perpendicular	to	image	plane

World coordinates

Object
coordinates

Camera
coordinates
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Camera coordinate system

• “Camera	matrix”	defines	transformation	from	
camera	to	world coordinates

• Placement	of	camera	in	world

• Transformation	from	object	to	camera	coordinates

World coordinates

Object
coordinates

Camera
coordinates
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Camera matrix

• Construct	from	center	of	projection				,	look	at				,	up-
vector							(given	in	world	coords.)

World coordinates

Camera
coordinates
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Camera matrix

World coordinates

Camera
coordinates

• Construct	from	center	of	projection				,	look	at				,	
up-vector							(given	in	world	coords.)
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Camera matrix

• z-axis

• x-axis

• y-axis
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Camera matrix

• z-axis

• x-axis

• y-axis
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Camera matrix

• Camera	to	world	transformation

• Think	about:	What	does	it	mean	to	compute
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Change of coordinates

Coordinates of xyzo frame w.r.t. uvwq frame
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Change of coordinates

Same point p in 3D, expressed in new uvwq frame
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Change of coordinates
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Change of coordinates

• Given	coordinates	

of	basis	xyzo with	respect	to	new	frame	uvwq
• Coordinates	of	any	point									with	respect	to	new	
frame	uvwq are	

• Matrix	contains old	basis	vectors	(x,y,z,o)	in	new	
coordinates	(u,v,w,q)
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Change of coordinates

Inverse	transformation
• Given	point									w.r.t.	frame	
• Want	coordinates									w.r.t.	frame
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Object, world, camera coords.

World coordinates

Object
coordinates

Camera
coordinates
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Objects in camera coordinates

• We	have	things	lined	up	the	way	we	like	them	on	
screen

• x to	the	right
• y up
• -z going	into	the	screen
• Objects	to	look	at	are	in	
front	of	us,	i.e.	have	
negative z values

• But	objects	are	still	in	3D
• Today:	how	to	project	them	into	2D

Camera
coordinates
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Projections

• Given	3D	points	(vertices)	in	camera	coordinates,	
determine	corresponding	2D	image	coordinates

Orthographic	projection
• Simply	ignore	z-coordinate
• Use	camera	space	xy coordinates	as	image	
coordinates

• What	we	want,	or	not?
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Orthographic projection

• Project	points	to	x-y plane	along	parallel	lines

• Graphical	illustrations,	architecture
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Perspective projection

• Most	common	for	computer	graphics
• Simplified	model	of	human	eye,	or	camera	lens	
(pinhole	camera)

• Things	farther	
away	seem	smaller

• Discovery/description
attributed	to
Filippo	Brunelleschi,
early	1400’s

http://en.wikipedia.org/wiki/Pinhole_camera
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Projection	plane	behind	center	of	
projection,	flipped	image



Perspective projection

• Project	along	rays	that	converge	in	center	of	
projection

2D image plane
(in front of center of projection,

as typical in 3D graphics)

Center of
projection

3D scene
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Perspective projection

Parallel lines 
no longer parallel,

converge at one point

Earliest example
La Trinitá (1427) by Masaccio

http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio) 39



Perspective projection

The	math:	simplified	case

Image plane

Center of
projection
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Perspective projection

The	math:	simplified	case

• Can	express	this	using	homogeneous	coordinates,	
4x4	matrices

Image plane
Center of
projection
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The	math:	simplified	case

Perspective projection

Homogeneous coord. != 1!
Homogeneous division

Projection matrix
42



Perspective projection

• Using	projection	matrix	and	homogeneous	division
seems	more	complicated	than	just	multiplying	all	
coordinates	by	d/z, so	why	do	it?

• Will	allow	us	to	
• handle	different	types	of	projections	in	a	unified	way
• define	arbitrary	view	volumes

Homogeneous divisionProjection matrix
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Intuitive example

• All	points	that	lie	on	one	projection	line	(i.e.,	a	
"line-of-sight",	intersecting	with	center	of	
projection	of	camera)	are	projected	onto
same	image	point

• All	3D	points	on	one	projection	line	are	equivalent
• Projection	lines	form	2D	projective	space,	or
2D	projective	plane
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3D Projective space

• Projective	space	P3 represented	using	R4 and	
homogeneous	coordinates

• Each	point	along	4D	ray	is	equivalent	to	same	3D	point	
at	w=1

„equivalent“

1D	vector	subspace,
arbitrary	scalar	value	l

Equivalent	element,	
for	any	l 45



3D Projective space

• Projective mapping (transformation):	
any non-singular	linear	mapping	on	homogeneous	
coordinates,	for	example,

• Generalization	of	affine	mappings
• 4th	row	of	matrix	is	arbitrary	(not	restricted	to	[0 0 0 1])

• Projective mappings are collineations
http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation

• Preserve straight	lines,	but	not	parallel	lines
• Much	more	theory

http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space 46



Projective space

Projective	space
http://en.wikipedia.org/wiki/Projective_space

• [xyzw]	homogeneous	coordinates
• includes	points	at	infinity	(w=0)
• projective	mappings	(perspective	projection)

Vector	space
• [xyz]	coordinates
• represents	vectors
• linear	mappings
(rotation	around	origin,
scaling,	shear)

Affine	space
• [xyz1],	[xyz0]
homogeneous coords.

• distinguishes	points	
and	vectors

• affine	mappings
(translation)
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In practice

• Use	4x4	homogeneous	matrices	like	other	4x4	matrices
• Modeling	&	viewing	transformations	are	affine	mappings

• points	keep	w=1
• no	need	to	divide	by	w when	doing	modeling	operations	or	
transforming	into	camera	space

• 3D-to-2D	projection	is	a	projective	transform
• Resulting	w coordinate	not	always	1

• Divide	by	w (perspective	division,	homogeneous	division)	
after	multiplying	with	projection	matrix

• OpenGL	rendering	pipeline	(graphics	hardware)	
does	this	automatically Vertex processing,

modeling and viewing
transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image

48



Today

• Rendering	pipeline
• Projections
• View	volumes,	clipping
• Viewport	transformation
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View volumes

• View	volume	is	3D	volume	seen	by	camera

World coordinates

Camera coordinates

World coordinates

Camera coordinates

Perspective view volume Orthographic view volume
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Perspective view volume

General	view	volume

• Defined	by	6	parameters,	in	camera	coordinates	
• Left,	right,	top,	bottom	boundaries
• Near,	far	clipping	planes

• Clipping	planes	to	avoid	numerical	problems
• Divide	by	zero
• Low	precision	for	distant	objects

• Often	symmetric,	i.e.,	left=-right,	top=-bottom

Camera
coordinates
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Perspective view volume

Symmetric	view	volume

• Only	4	parameters
• Vertical	field	of	view	(FOV)
• Image	aspect	ratio	(width/height)
• Near,	far	clipping	planes

-z
FOV

y

z=-near

z=-far

y=top

aspect ratio= right - left
top - bottom

=
right
top

 

tan(FOV / 2) = top
near
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Orthographic view volume

• Parametrized	by	6	parameters
• Right,	left,	top,	bottom,	near,	far

• If	symmetric
• Width,	height,	near,	far

Camera
coordinates
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Clipping

• Need	to	identify	objects	outside	view	volume
• Avoid	division	by	zero
• Efficiency,	don’t	draw	
objects	outside	view	
volume

• Performed	by	OpenGL	
rendering	pipeline

• Clipping	always	to	
canonic	view	volume

• Cube	[-1..1]x[-1..1]x[-1..1] centered	at	origin
• Need	to	transform	desired	view	frustum	to	canonic	
view	frustum
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Clipping

Vertex processing,
modeling and viewing

transformation

Projection

Rasterization,
(shading, visibility

Primitives

Image

Clip to view frustum
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Canonic view volume

• Projection	matrix	is	set	such	that
• User	defined	view	volume	is	transformed	into	canonic	
view	volume,	i.e.,	unit	cube	[-1,1]x[-1,1]x[-1,1]

“Multiplying	vertices	of	view	volume	by	projection	
matrix	and	performing	homogeneous	divide	yields	
canonic	view	volume,	i.e.,	cube	[-1,1]x[-1,1]x[-1,1]“

• Perspective	and	orthographic	projection	are	
treated	exactly	the	same	way

56



Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation
(later) 57



Perspective projection matrix

• General	view	frustum

Camera
coordinates
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Perspective projection matrix

• Compare	to	simple	projection	matrix	from	before

Simple	projection General	view	frustum
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Perspective projection matrix

• Symmetric	view	frustum	with	field	of	view,	aspect	
ratio,	near	and	far	clip	planes

Ppersp (FOV ,aspect,near, far) =

1
aspect × tan(FOV / 2)

0 0 0

0 1
tan(FOV / 2)

0 0

0 0 near + far
near - far

2 ×near × far
near - far

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

-z
FOV

y

z=-near

z=-far

y=top

Camera
coordinates
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Orthographic projection matrix

Portho(right, left, top,bottom,near, far) =

2
right - left

0 0 -
right + left
right - left

0 2
top - bottom

0 -
top + bottom
top - bottom

0 0 2
far - near

far + near
far - near

0 0 0 1
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ú
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Portho(width,height,near, far) =

2
width

0 0 0

0 2
height

0 0

0 0 2
far - near

far + near
far - near

0 0 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

Camera
coordinates

w = 1 after	mult.
with	orthographic
projection	matrix
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Today

• Rendering	pipeline
• Projections
• View	volumes
• Viewport	transformation
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Viewport transformation

• After	applying	projection	matrix,	image	points	are	in	
normalized	view	coordinates

• Per	definition	range	[-1..1] x [-1..1]
• Map	points	to	image	(i.e.,	pixel)	coordinates

• User	defined	range	[x0…x1] x [y0…y1]
• E.g.,	position	of	rendering	window	on	screen

x0 x1
y0

y1

Screen	
Rendering	window
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Viewport transformation

• Scale	and	translation

D x0 , x1, y0 , y1( )=

x1 - x0( ) 2 0 0 x0 + x1( ) 2
0 y1 - y0( ) 2 0 y0 + y1( ) 2
0 0 1 2 1 2
0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

x0 x1
y0

y1

Rendering	window

Screen	

-1 x1
-1

1

Normalized device
coordinates

D
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Object space
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Object space
World space
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates	

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space
Canonic view volume
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Object space
World space

Camera space

Image space
Canonic view volume
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The complete transform

• Mapping	a	3D	point	in	object	coordinates	to	pixel	
coordinates	

• Object-to-world	matrix	M,	camera	matrix	C, 
projection	matrix	C,	viewport	matrix	D

Pixel coordinates

70



OpenGL details

• Object-to-world	matrix	M,	camera	matrix	C, projection	
matrix	P,	viewport	matrix	D

• OpenGL	rendering	pipeline	performs	these	matrix	
multiplications	in	vertex	shader program

• More	on	shader programs	later	in	class
• User	just	specifies	the	model-view	and	projection	
matrices

• See	Java	code jrtr.GLRenderContext.draw and	default	
vertex	shader in	file	default.vert

Model-view matrix

Projection matrix
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OpenGL details

• Object-to-world	matrix	M,	camera	matrix	C, projection	
matrix	P,	viewport	matrix	D

• Exception:	viewport	matrix,	D
• Specified	implicitly	via	glViewport() 
• No	direct	access,	not	used	in	shader program

Model-view matrix

Projection matrix
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Rendering pipeline

Scene data

Image

• Hardware	&	software	that	
draws	3D	scenes	on	the	screen

• Most	operations	performed	by	
specialized	hardware	(graphics	
processing	unit,	GPU,	
http://en.wikipedia.org/wiki/Graphics_processing_unit)

• Access	to	hardware	through	
low-level	3D	API	(DirectX,	
OpenGL)

• jogl is	a	Java	binding	to	OpenGL,	
used	in	our	projects
http://jogamp.org/jogl/www/

• All	scene	data	flows	through	
the	pipeline	at	least	once	for	
each	frame	(i.e.,	image)

Rendering
pipeline

http://en.wikipedia.org/wiki/Graphics_pipeline
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Rendering pipeline

• Rendering	pipeline	implements	object	order
algorithm

• Loop	over	all	objects
• Draw	triangles	one	by	one	(rasterization)

• Alternatives?
• Advantages,	disadvantages?
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Rendering engine

Scene data

Image

• Additional	software	layer	
(“middle-ware”)	
encapsulating	low-level	
API	(OpenGL,	DirectX,	…)

• Additional	functionality	
(file	I/O,	scene	
management,	…)

• Layered	software	
architecture	common	in	
industry

• Game	engines
http://en.wikipedia.org/wiki
/Game_engine

Rendering
pipeline

Rendering engine (jrtr)
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Rendering pipeline stages (simplified)

• Geometry
• Vertices	and	how	they	are	
connected

• Triangles,	lines,	point	sprites,	
triangle	strips

• Attributes	such	as	color

• Specified	in	object	coordinates
• Processed	by	the	rendering	
pipeline	one-by-one

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Transform	object	to	camera	
coordinates

• Additional	processing	on	per-
vertex	basis

• Shading,	i.e.,	computing	per-
vertex	colors

• Deformation,	animation
• Etc.

MODELVIEW
matrix

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Project	3D	vertices	to	2D	
image	positions

• This	lecture

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image

78



Rendering pipeline stages (simplified)

• Draw	primitives	pixel	by	pixel	
on	2D	image	(triangles,	lines,	
point	sprites,	etc.)

• Compute	per	fragment	(i.e.,	
pixel)	color

• Determine	what	is	visible
• Next	lecture

Rasterization

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image
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Rendering pipeline stages (simplified)

• Grid	(2D	array)	of	RGB	pixel	colors

Vertex processing,
modeling and viewing

transformation

Projection

Scene data

Rasterization,
fragment processing, 

visibility

Image
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• For	today’s	Processing	experiments	see

• https://processing.org/tutorials/p3d/
• https://processing.org/tutorials/transform2d/

References


