CMSC427 Shading Intro

Credit: slides from Dr. Zwicker

Today

Shading

- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Shading

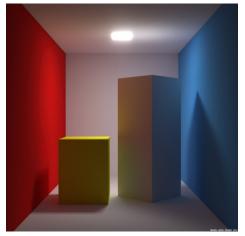
- Compute interaction of light with surfaces
- Requires simulation of physics
 - Solve Maxwell's equations (wave model)? http://en.wikipedia.org/wiki/Maxwell's_equations
 - Use geometrical optics (ray model)?

http://en.wikipedia.org/wiki/Geometrical_optics http://en.wikipedia.org/wiki/Ray (optics)

"Global illumination" in computer graphics

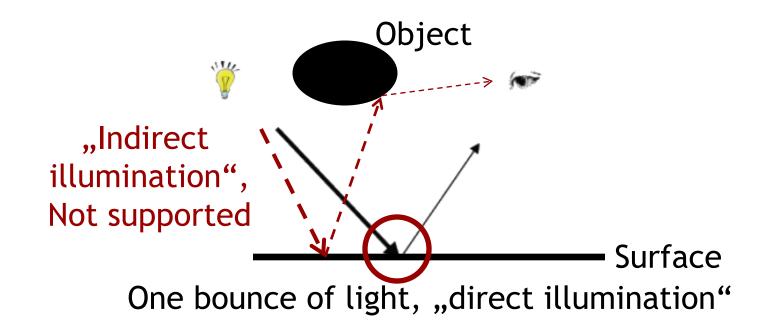
http://en.wikipedia.org/wiki/Global_illumination

- "Gold standard" for photorealistic image synthesis
- Based on geometrical optics (ray model)
- Multiple bounces of light
 - Reflection, refraction, volumetric scattering, subsurface scattering
- Computationally expensive, minutes per image
- Movies, architectural design, etc.


Global illumination

http://www.pbrt.org/gallery.php

Henrik Wann Jensen


Henrik Wann Jensen

Henrik Wann Jensen

Interactive applications

- Approximations to global illumination possible, but not standard today
- Usually
 - Reproduce perceptually most important effects
 - One bounce of light between light source and viewer
 - "Local/direct illumination"

Local illumination

Each object rendered by itself

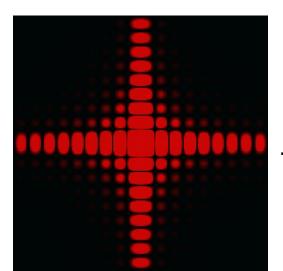
Today

Shading

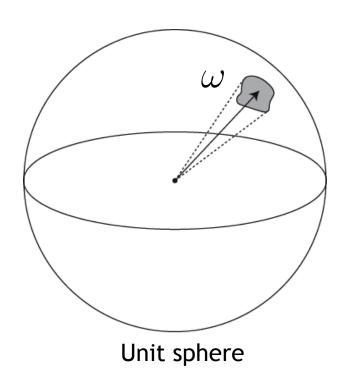
- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Material appearance

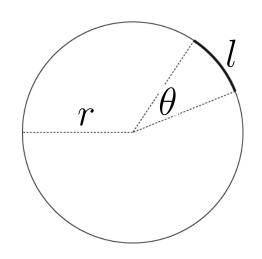
- What is giving a material its color and appearance?
- How is light reflected by a
 - Mirror
 - White sheet of paper
 - Blue sheet of paper
 - Glossy metal



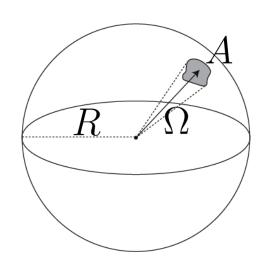
Radiometry


- Physical units to measure light energy
- Based on the geometrical optics model
- Light modeled as rays
 - Rays are idealized narrow beams of light http://en.wikipedia.org/wiki/Ray_%28optics%29
 - Rays carry a spectrum of electromagnetic energy
- No wave effects, like interference or diffraction

Diffraction pattern from square aperture


Solid angle

- Area of a surface patch on the unit sphere
 - In our context: area spanned by a set of directions
- Unit: steradian sr
- Directions usually denoted by ω



Angle and solid angle

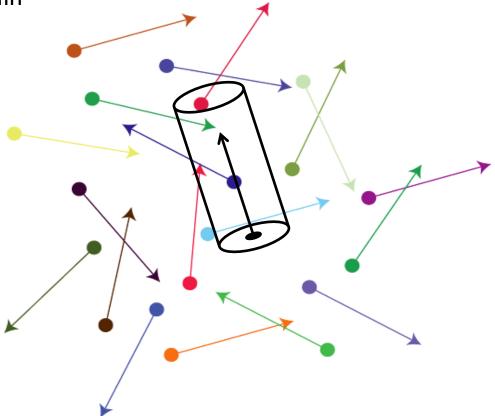
Circle with radius r

Sphere with radius *R*

- Angle $\theta = l/r$
- Unit circle has 2π radians
- Solid angle $\Omega = A/R^2$
- Unit sphere has 4π steradians

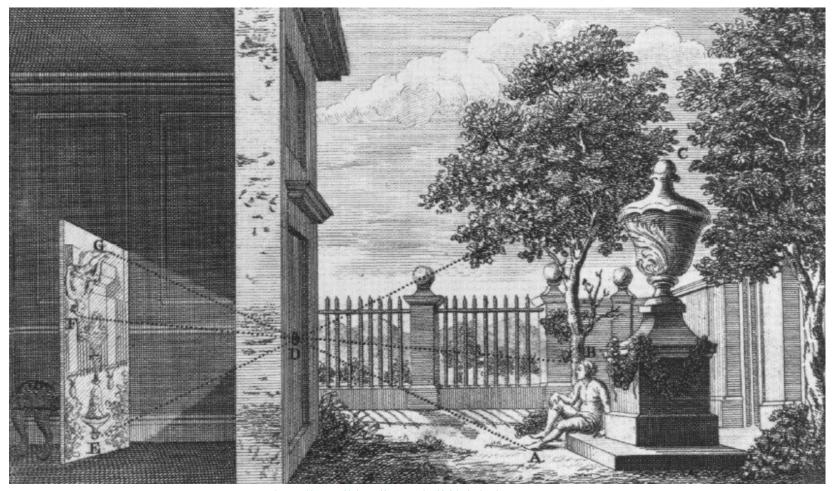
Radiance

http://en.wikipedia.org/wiki/Radiance


- "Energy carried along a narrow beam (ray) of light"
- Energy passing through a small area in a small bundle of directions, divided by area and by solid angle spanned by bundle of directions, in the limit as area and solid angle tend to zero
- Units: energy per area per solid angle

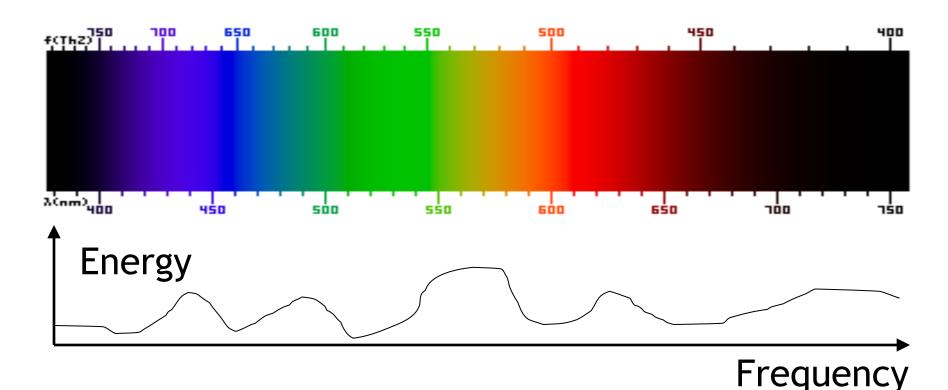
$$\left[W\cdot sr^{-1}\cdot m^{-2}\right]$$

Radiance


- Think of light consisting of photon particles, each traveling along a ray
- Radiance is photon "ray density"
 - Number of photons per area per solid angle

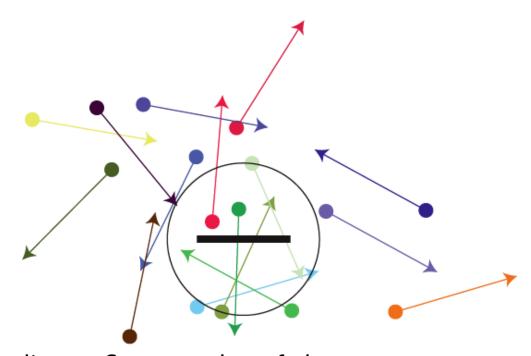
"Number of photons passing through small cylinder, as cylinder becomes infinitely thin"

Pinhole camera


• Records radiance on projection screen

http://en.wikipedia.org/wiki/Pinhole_camera

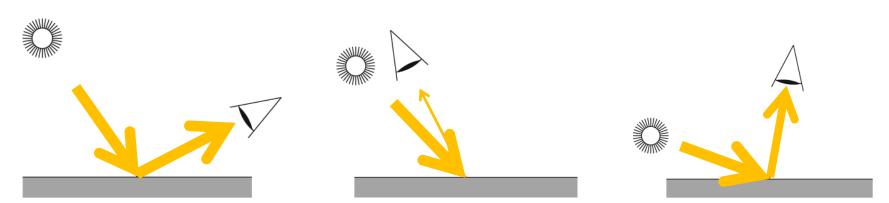
Radiance


- Spectral radiance: energy at each wavelength/frequency (count only photons of given wavelength)
- Usually, work with radiance for three discrete wavelengths
 - Corresponding to R,G,B primaries

Irradiance

- Energy per area: "energy going through a small area, divided by size of area"
- "Radiance summed up over all directions"
- Units

$$[W \cdot m^{-2}]$$


Irradiance: Count number of photons per area, in the limit as area becomes infinitely small

Local shading

- Goal: model reflection of light at surfaces
- Bidirectional reflectance distribution function (BRDF)

http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

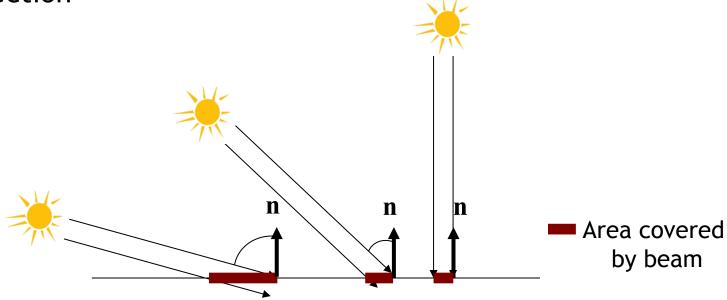
- "Given light direction, viewing direction, obtain fraction of light reflected towards the viewer"
- For any pair of light/viewing directions!
- For different wavelenghts (or R, G, B) separately

"For each pair of light/view direction, BRDF gives fraction of reflected light"

BRDFs

- BRDF describes appearance of material
 - Color
 - Diffuse
 - Glossy
 - Mirror
 - Etc.
- BRDF can be different at each point on surface
 - Spatially varying BRDF (SVBRDF)
 - Textures

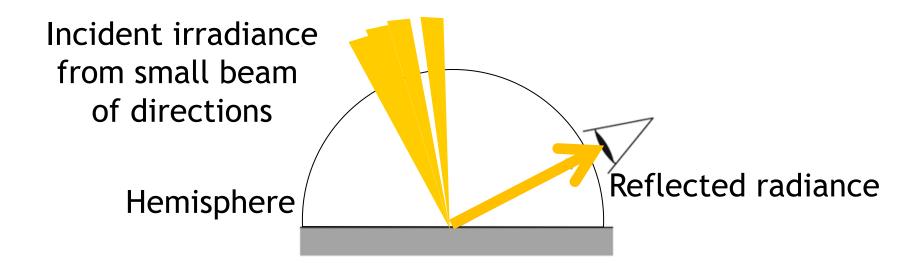
Technical definition


- Given incident and outgoing directions
- BRDF is fraction of "radiance reflected in outgoing direction" over "incident irradiance arriving from narrow beam of directions"
- Units $\left[W\cdot sr^{-1}\cdot m^{-2}\right]/\left[W\cdot m^{-2}\right]=sr^{-1}$

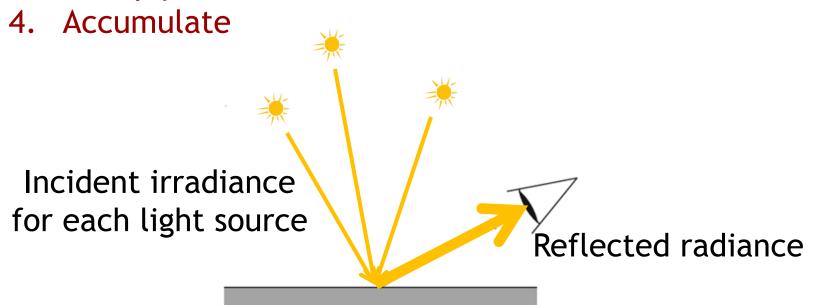
Incident irradiance from small beam of directions

Reflected radiance

Irradiance from a narrow beam


- Narrow beam of parallel rays shining on a surface
 - Area covered by beam varies with the angle between the beam and the normal ${\bf n}$
 - The larger the area, the less incident light per area
- Irradiance (incident light per unit area) is proportional to the cosine of the angle between the surface normal n and the light rays
- Equivalently, irradiance contributed by beam is radiance of beam times cosine of angle between normal n and beam direction

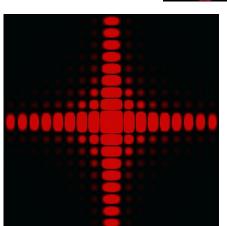
Shading with BRDFs


- Given radiance arriving from each direction, outgoing direction
- For all incoming directions over the hemisphere
 - Compute irradiance from incoming beam
 - 2. Evaluate BRDF with incoming beam direction, outgoing direction
 - 3. Multiply irradiance and BRDF value
 - 4. Accumulate
- Mathematically, a hemispherical integral ("shading integral")

 https://en.wikipedia.org/wiki/Rendering_equation

Shading with BRDFs

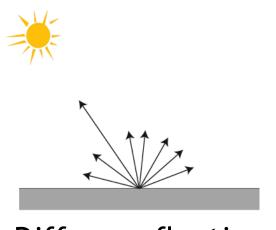
- If only discrete number of small light sources taken into account, need minor modification of algorithm
- For each light source
 - 1. Compute irradiance arriving from light source
 - 2. Evaluate BRDF with direction to light source, outgoing direction
 - 3. Multiply irradiance and BRDF value

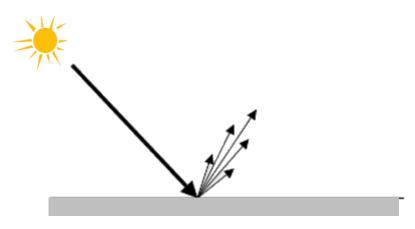

Limitations of BRDF model

Cannot model

- Fluorescence
- Subsurface and volume scattering
- Polarization

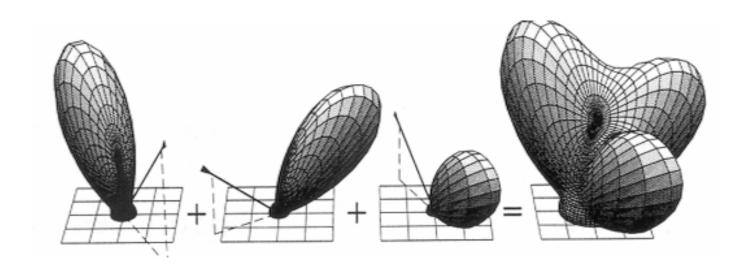
Interference/diffraction



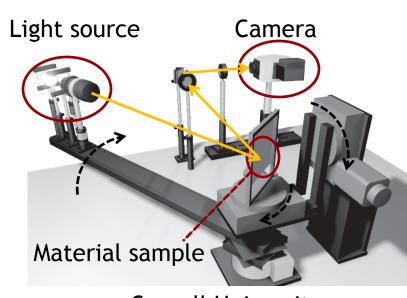

Visualizing BRDFs

- Given viewing or light direction, plot BRDF value over sphere of directions
- Illustration in "flatland" (1D slices of 2D BRDFs)

Diffuse reflection



Glossy reflection


Visualizing BRDFs

 Can add up several BRDFs to obtain more complicated ones

BRDF representation

- How to define and store BRDFs that represent physical materials?
- Physical measurements
 - Gonioreflectometer: robot with light source and camera
 - Measures reflection for each light/camera direction
 - Store measurements in table
- Too much data for interactive application
 - 4 degrees of freedom!

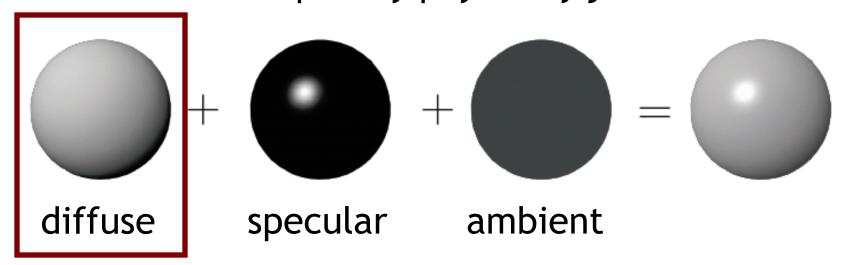
Cornell University
Gonioreflectometer

BRDF representation

- Analytical models
 - Try to describe phyiscal properties of materials using mathematical expressions
- Many models proposed in graphics

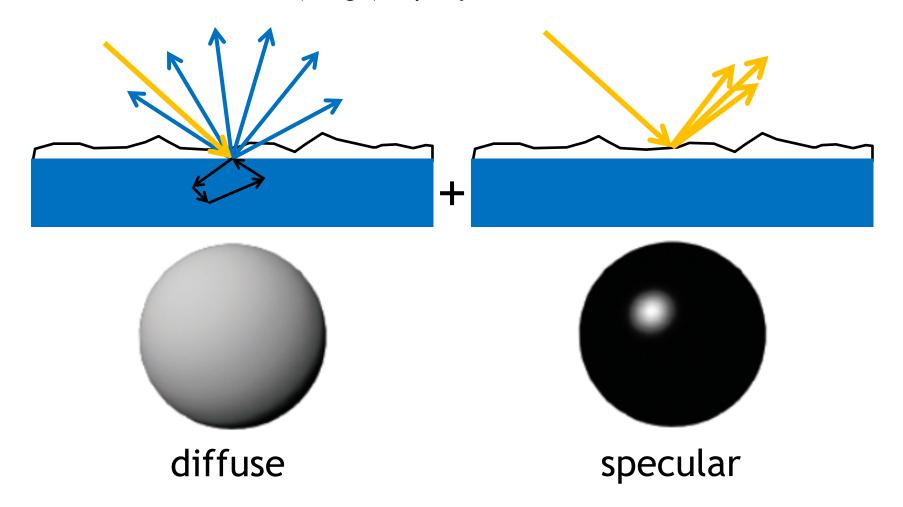
http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function http://en.wikipedia.org/wiki/Cook-Torrance http://en.wikipedia.org/wiki/Oren-Nayar_diffuse_model

 Will restrict ourselves to simple models here


Today

Shading

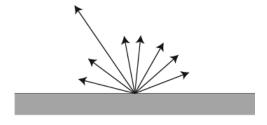
- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies


Simplified model

- BRDF is sum of diffuse, specular, and ambient components
 - Covers a large class of real surfaces
 - Each is simple analytical function
- Incident light from discrete set of light sources (discrete set of directions)
- Model is not completely physically justified!

Simplified physical model

- Approximate model for two-layer materials
- Subsurface scattering leading to diffuse reflection on bottom layer
- Mirror reflection on (rough) top layer



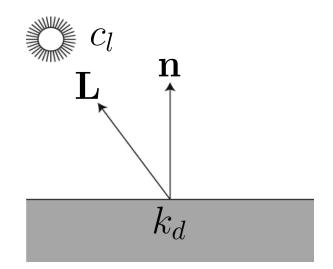
- Ideal diffuse material reflects light equally in all directions
 - Also called Lambertian surfaces


http://en.wikipedia.org/wiki/Lambert's cosine law

- View-independent
 - Surface looks the same independent of viewing direction
- Matte, not shiny materials
 - Paper
 - Unfinished wood
 - Unpolished stone

Diffuse reflection

- "Radiance reflected by a diffuse ("Lambertian") surface is constant over all directions"
- Hm, why do we see brightness variations over diffuse surfaces?



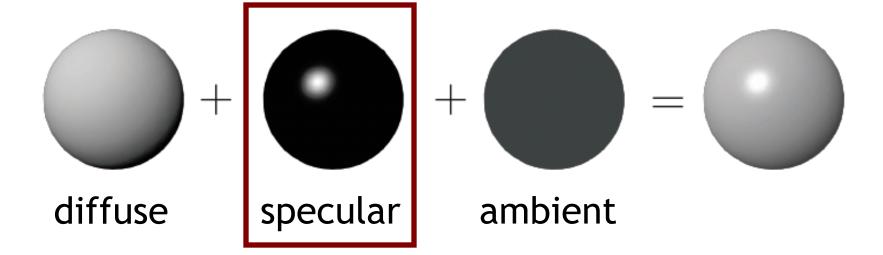
- Given
 - Light color (radiance) c_l
 - Unit surface normal n
 - One light source, unit light direction ${f L}$
 - Material diffuse reflectance (material color) k_d
- Diffuse reflection c_d

$$c_d = c_l(\mathbf{n} \cdot \mathbf{L})k_d$$

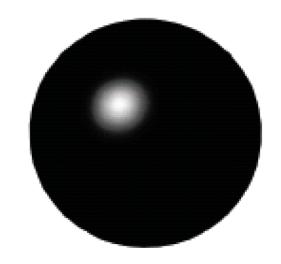
Cosine between normal and light,

converts radiance to incident irradiance

Notes on
$$c_d = c_l(\mathbf{n} \cdot \mathbf{L})k_d$$


- Parameters k_d , c_l are r,g,b vectors
- c_l: radiance of light source
- $c_l(\mathbf{n} \cdot \mathbf{L})$: irradiance on surface
- k_d is diffuse BRDF, a constant!
- Compute r,g,b values of reflected color c_d separately

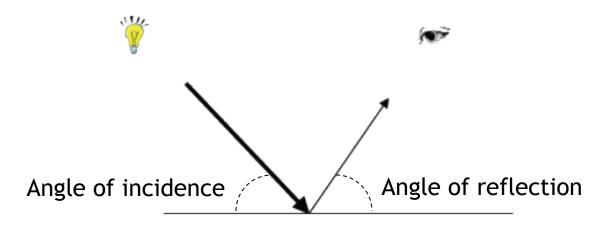
- Provides visual cues
 - Surface curvature
 - Depth variation


Lambertian (diffuse) sphere under different lighting directions

Simplified model

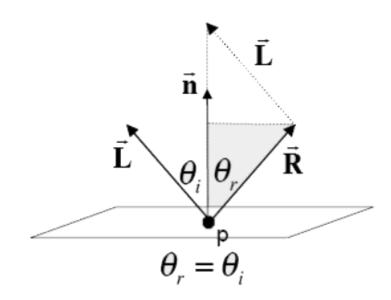
Specular reflection

- Shiny or glossy surfaces
 - Polished metal
 - Glossy car finish
 - Plastics
- Specular highlight
 - Blurred reflection of the light source
 - Position of highlight depends on viewing direction


Sphere with specular highlight

Shiny or glossy materials

Specular reflection


- Ideal specular reflection is mirror reflection
 - Perfectly smooth surface
 - Incoming light ray is bounced in single direction
 - Angle of incidence equals angle of reflection

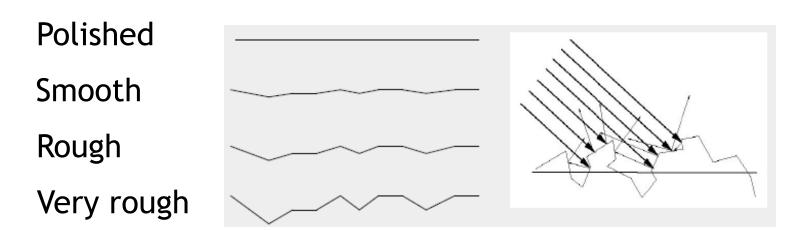
Law of reflection

- "Angle of incidence equals angle of reflection" applied to 3D vectors L and R
- Equation expresses constraints:
 - Normal, incident, and reflected direction all in same plane (L+R is a point along the normal)
 - 2. Angle of incidence θ_i = angle of reflection θ_r

$$\vec{\mathbf{R}} + \vec{\mathbf{L}} = 2\cos\theta \ \vec{\mathbf{n}} = 2(\vec{\mathbf{L}} \cdot \vec{\mathbf{n}})\vec{\mathbf{n}}$$
$$\vec{\mathbf{R}} = 2(\vec{\mathbf{L}} \cdot \vec{\mathbf{n}})\vec{\mathbf{n}} - \vec{\mathbf{L}}$$

Glossy materials

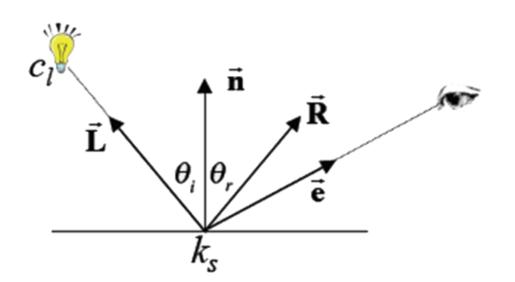
- Many materials not quite perfect mirrors
- Glossy materials have blurry reflection of light source



Glossy teapot with highlights from many light sources

Physical model

- Assume surface composed of small mirrors with random orientation (microfacets)
- Smooth surfaces
 - Microfacet normals close to surface normal
 - Sharp highlights
- Rough surfaces
 - Microfacet normals vary strongly
 - Leads to blurry highlight

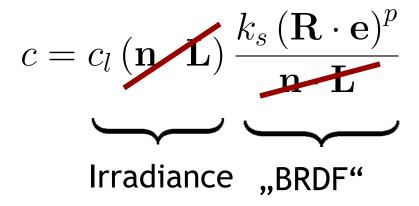

Physical model

- Expect most light to be reflected in mirror direction
- Because of microfacets, some light is reflected slightly off ideal reflection direction
- Reflection
 - Brightest when view vector is aligned with reflection
 - Decreases as angle between view vector and reflection direction increases

Phong model

http://en.wikipedia.org/wiki/Phong_shading

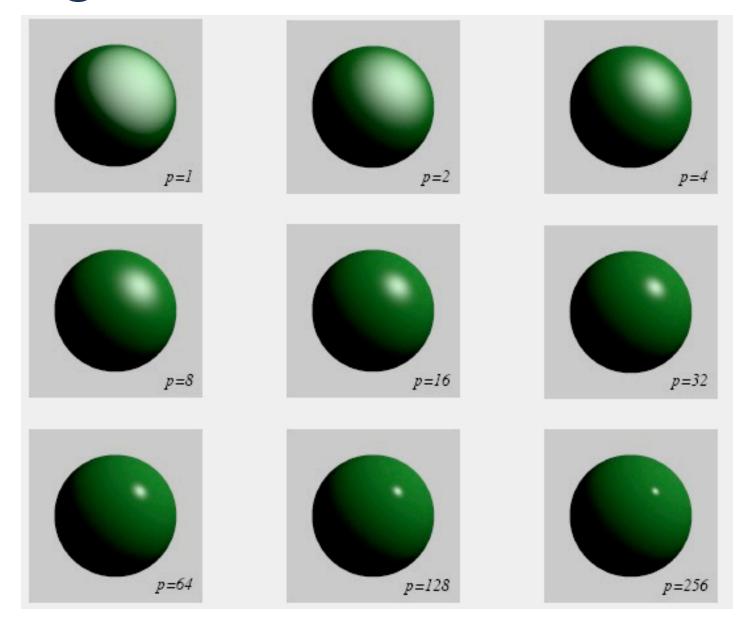
- Simple "implementation" of the physical model
- Radiance of light source c_l
- Specular reflectance coefficient k_s
- Phong exponent p
 - Higher p, smaller (sharper) highlight



Reflected radiance

$$c = c_l k_s \left(\mathbf{R} \cdot \mathbf{e} \right)^p$$

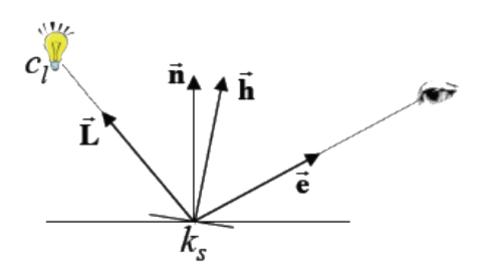
Note


• Technically, Phong "BRDF" is

 Phong model is not usually considered a BRDF, because it violates energy conservation

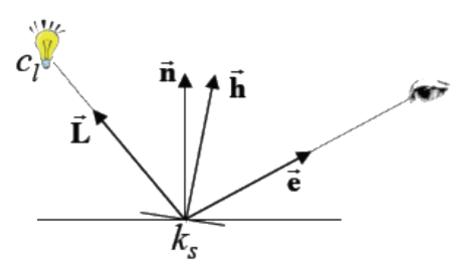
http://en.wikipedia.org/wiki/Bidirectional reflectance distribution function#Physically based BRDFs

Phong model



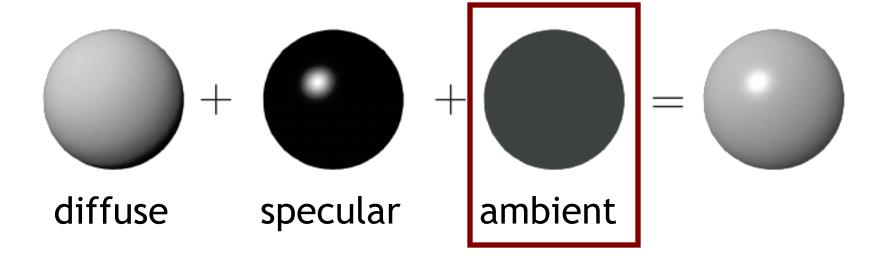
Blinn model (Jim Blinn, 1977)

- Alternative to Phong model
- Define unit halfway vector


$$\mathbf{h} = rac{\mathbf{L} + \mathbf{e}}{\|\mathbf{L} + \mathbf{e}\|}$$

 Halfway vector represents normal of microfacet that would lead to mirror reflection to the eye

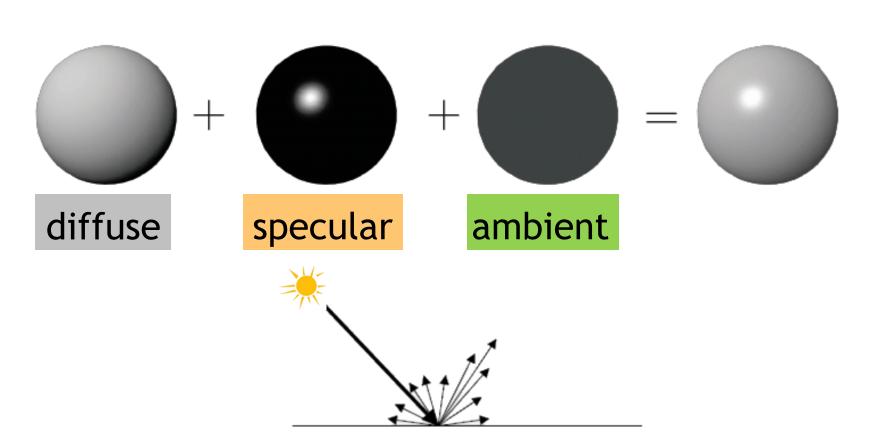
Blinn model


- The larger the angle between microfacet orientation and normal, the less likely
- Use cosine of angle between them
- Shininess parameter s
- Very similar to Phong

Reflected radiance

$$c = c_l k_s \left(\mathbf{h} \cdot \mathbf{n} \right)^s$$

Simplified model


Ambient light

- In real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
 - Add constant ambient light at each point $\,k_a c_a\,$
 - Ambient light c_a
 - Ambient reflection coefficient k_a
- Areas with no direct illumination are not completely dark

Complete model

Blinn model with several light sources i

$$c = \sum_{i} c_{l_i} \left(k_d \left(\mathbf{L}_i \cdot \mathbf{n} \right) + k_s \left(\mathbf{h}_i \cdot \mathbf{n} \right)^s \right) + k_a c_a$$

Notes

$$c = \sum_{i} c_{l_i} \left(k_d \left(\mathbf{L}_i \cdot \mathbf{n} \right) + k_s \left(\mathbf{h}_i \cdot \mathbf{n} \right)^s \right) + k_a c_a$$

- All colors, reflection coefficients have separate values for R,G,B
- Usually, ambient = diffuse coefficient
- For metals, specular = diffuse coefficient
 - Highlight is color of material
- For plastics, specular coefficient = (x,x,x)
 - Highlight is color of light

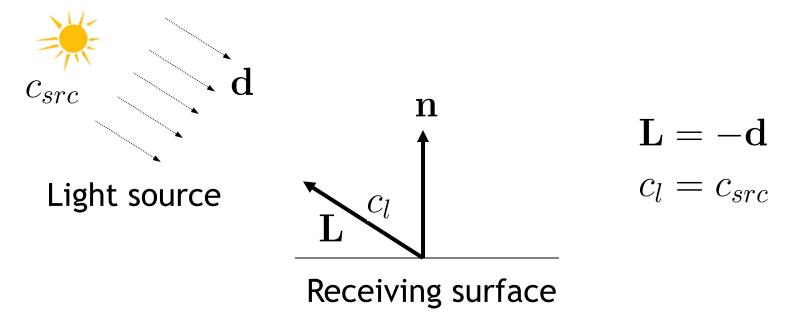
Today

Shading

- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Light sources

- Light sources can have complex properties
 - Geometric area over which light is produced
 - Anisotropy in direction
 - Variation in color
 - Reflective surfaces act as light sources

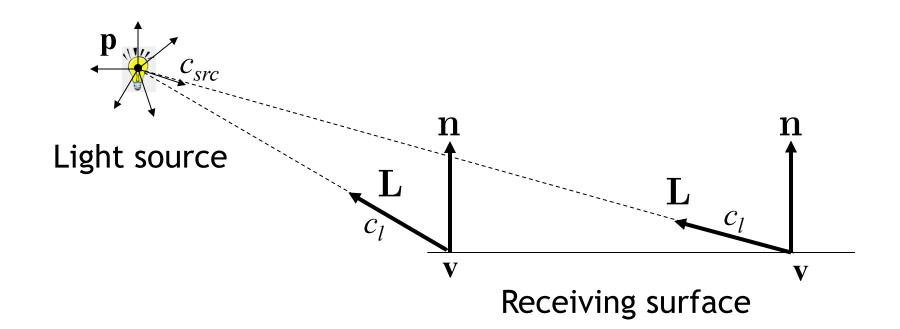

 Interactive rendering is based on simple, standard light sources

Light sources

- At each point on surfaces need to know
 - Direction of incoming light (the L vector)
 - Radiance of incoming light (the c_I values)
- Standard, simplified light sources
 - Directional: from a specific direction
 - Point light source: from a specific point
 - Spotlight: from a specific point with intensity that depends on the direction
- No model for light sources with an area!

Directional light

- Light from a distant source
 - Light rays are parallel
 - Direction and radiance same everywhere in 3D scene
 - As if the source were infinitely far away
 - Good approximation to sunlight
- Specified by a unit length direction vector, and a color

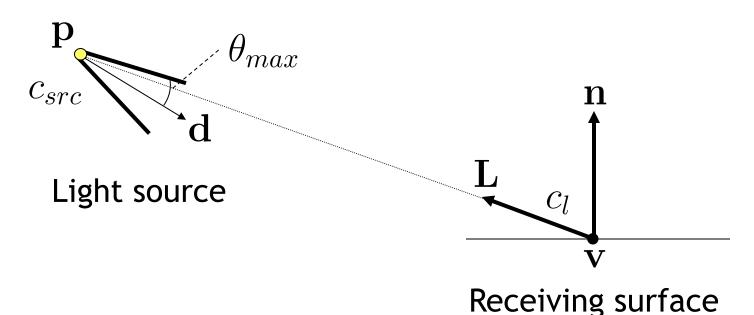


Point lights

- Simple model for light bulbs
- Infinitesimal point that radiates light in all directions equally
 - Light vector varies across the surface
 - Radiance drops off proportionally to the inverse square of the distance from the light
 - Intuition for inverse square falloff?
- Not physically plausible!

Point lights

Incident light direction
$$\mathbf{L} = rac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|}$$
 Radiance $c_l = rac{c_{src}}{\|\mathbf{p} - \mathbf{v}\|^2}$

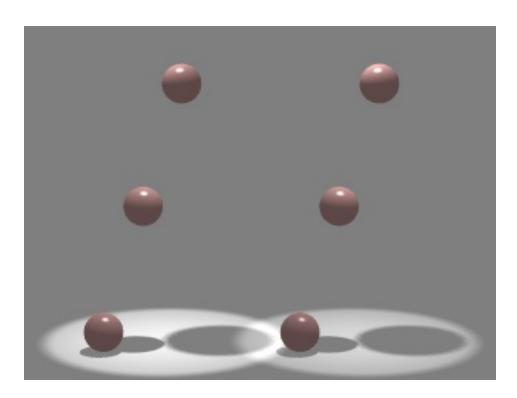

Spotlights

Like point source, but radiance depends on direction

Parameters

- Position, the location of the source
- Spot direction, the center axis of the light
- Falloff parameters
 - how broad the beam is (cone angle θ_{max})
 - how light tapers off at edges of he beam (cosine exponent f)

Spotlights


$$\mathbf{L} = \frac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|}$$

$$c_l = \begin{cases} 0 & \text{if } -\mathbf{L} \cdot \mathbf{d} \leq \cos(\theta_{max}) \\ c_{src} (-\mathbf{L} \cdot \mathbf{d})^f & \text{otherwise} \end{cases}$$

Spotlights

Photograph of spotlight

Spotlights in OpenGL

Today

Shading

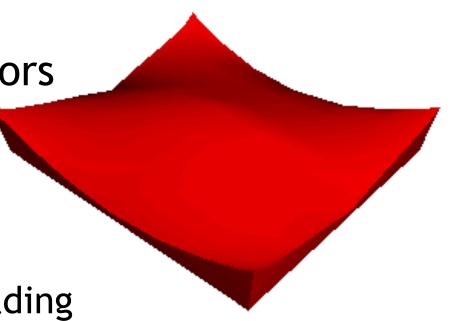
- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Per-triangle, -vertex, -pixel shading

 May compute shading Scene data operations Vertex processing, Once per triangle Modeling and - Once per vertex viewing transformation - Once per pixel Projection Rasterization, visibility, (shading) **Image**

Per-triangle shading

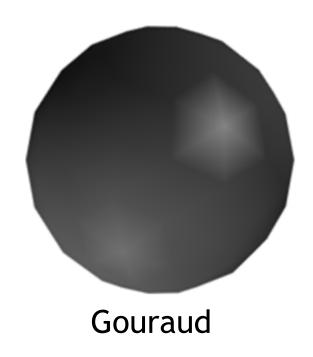
Known as flat shading

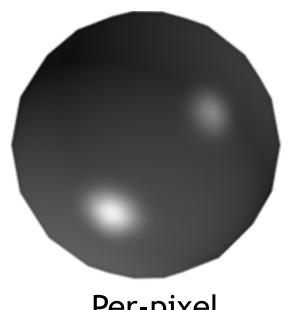

 Evaluate shading once per triangle using pertriangle normal

- Advantages
 - Fast
- Disadvantages
 - Faceted appearance

Per-vertex shading

- Known as Gouraud shading (Henri Gouraud 1971)
- Per-vertex normals
- Interpolate vertex colors across triangles
- Advantages
 - Fast
 - Smoother than flat shading
- Disadvantages
 - Problems with small highlights




Per-pixel shading

- Also known as Phong interpolation (not to be confused with Phong illumination model)
 - Rasterizer interpolates normals across triangles
 - Illumination model evaluated at each pixel
 - Implemented using programmable shaders (next week)
- Advantages
 - Higher quality than Gouraud shading
- Disadvantages
 - Much slower, but no problem for today's GPUs

Gouraud vs. per-pixel shading

- Gouraud has problems with highlights
- Could use more triangles...

Per-pixel, same triangles

What about shadows?

- Standard shading assumes light sources are visible everywhere
 - Does not determine if light is blocked
 - No shadows!
- Shadows require additional work
- Later in the course

What about textures?

- How to combine "colors" stored in textures and lighting computations?
- Interpret textures as shading coefficients
- Usually, texture used as ambient and diffuse reflectance coefficient k_d , k_a
- Textures provide spatially varying BRDFs
 - Each point on surface has different BRDF parameters, different appearance

Summary

- Local illumination (single bounce) is computed using BRDF
- BRDF captures appearance of a material
 - Amount of reflected light for each pair of light/viewing directions
- Simplified model for BRDF consists of diffuse + Phong/Blinn + ambient
 - Lambert's law for diffuse surfaces
 - Microfacet model for specular part
 - Ambient to approximate multiple bounces
- Light source models
 - Directional
 - Point, spot, inverse square fall-off
- Different shading strategies
 - Per triangle, Gouraud, per pixel