
CMSC427	
Advanced	shading	–
getting	global	illumination	
by	local	methods

Credit:	slides	Prof.	Zwicker

• Shadows
• Environment	maps
• Reflection	mapping
• Irradiance	environment	maps
• Ambient	occlusion
• Reflection	and	refraction
• Toon	shading

Topics

Why are shadows important?

• Cues	on	scene	lighting

3

Why are shadows important?

• Contact	points
• Depth	cues

4

Why are shadows important?

• Realism

Without self-shadowing Without self-shadowing

5

Terminology

• Umbra:	fully	shadowed	region
• Penumbra:	partially	shadowed	region

(area) light source

receiver
shadow

occluder

umbra

penumbra

6

Hard and soft shadows

• Point	and	directional	lights	lead	to	hard	shadows,	
no	penumbra

• Area	light	sources	lead	to	soft	shadows,	with	
penumbra

point directional area

umbra penumbra
7

Hard and soft shadows

Hard shadow,
point light source

Soft shadow,
area light source

8

Shadows for interactive rendering
• Focus	on	hard	shadows

• Soft	shadows	often	too	hard	to	compute	in	interactive	
graphics

• Two	main	techniques
• Shadow	mapping
• Shadow	volumes

• Many	variations,	subtleties
• Still	active	research	area

9

Shadow mapping
http://en.wikipedia.org/wiki/Shadow_mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Main	idea
• Scene	point	is	lit	by	light	source	if	it	is	visible from	light	
source

• Determine	visibility	from	light	source	by	placing	camera	
at	light	source	position and	rendering	scene

Scene points are lit if
visible from light source

Determine visibility from
light source by placing camera

at light source position
10

Two pass algorithm

First	pass
• Render	scene	by	placing	
camera	at	light	source	
position

• Store	depth	image	(shadow	
map)

Depth image seen
from light source

depth value
in shadow map

Second	pass
• Render	scene	from	
camera	(eye)	position

• At	each	pixel,	compare	
distance	to	light	source	(yellow)	
with	value	in	shadow	map	(red)

• If	yellow	distance	is	larger	than	red,	
we	are	in	shadow

• If	distance	is	smaller
or	equal,	pixel	is	lit

Two pass algorithm

Final image
with shadows

vb is in
shadow pixel seen

from eye vb

depth value
in shadow map

12

Issues

• Limited	field	of	view	of	shadow	map
• Z-fighting
• Sampling	problems

13

Limited field of view

• What	if	a	scene	point	is	
outside	the	field	of	view	of	
the	shadow	map?

field of view
of shadow map

Limited field of view

• What	if	a	scene	point	is	
outside	the	field	of	view	of	
the	shadow	map?

• Use	six	shadow	maps,	
arranged	in	a	cube

• Requires	rendering	pass	for	
each	shadow	map!

shadow
maps

• In	theory,	depth	values	for	
points	visible	from	light	
source	are	equal	in	both	
rendering	passes

• Because	of	limited	
resolution,	depth	of	pixel	
visible	from	camera	could	
be	larger	than	shadow	
map	value

• Need	to	add bias	in	first	
pass	to	make	sure	pixels	
are	lit

z-fighting

Camera image

Shadow map
Image
pixels

Shadow map
pixels Pixel is

considered
in shadow!

Depth
of pixel visible
from camera

Depth of
shadow map

Solution

• Add	bias when	rendering	shadow	map
• Move	geometry	away	from	light	by	small	amount

• Finding	correct	amount	of	bias	is	tricky

Correct bias Not enough bias Too much bias
17

Bias

Correct

Not enough Too much

18

Sampling problems

• Shadow	map	pixel	may	project	to	many	image	
pixels

• Ugly	stair-stepping	artifacts

19

Solutions

• Increase	resolution	of	shadow	map
• Not	always	sufficient

• Split	shadow	map	into	several	slices
• Tweak	projection	for	shadow	map	rendering

• Light	space	perspective	shadow	maps	(LiSPSM)	
http://www.cg.tuwien.ac.at/research/vr/lispsm/

• With	GLSL	source	code!

• Combination	of	splitting	and	LiSPSM
• Basis	for	most	serious	implementations
• List	of	advanced	techniques	see	

http://en.wikipedia.org/wiki/Shadow_mapping

20

LiSPSM

Basic shadow map Light space perspective
shadow map

21

Percentage closer filtering

• Goal:	avoid	stair-stepping	artifacts
• Similar	to	texture	filtering,	but	with	a	twist

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Simple	shadow mapping Percentage closer filtering

22

Percentage closer filtering

• Instead	of	looking	up	one	shadow	map	pixel,	look	up	
several

• Perform	depth	test	for	each	shadow	map	pixel
• Compute	percentage	of	lit	shadow	map	pixels

23

Percentage closer filtering

• Supported	in	hardware	for	small	filters	(2x2	shadow	
map	pixels)

• Can	use	larger	filters	(look	up	more	shadow	map	
pixels)	at	cost	of	performance	penalty

• Fake	soft	shadows
• Larger	filter,
softer	shadow
boundary

24

Shadow volumes

Shadowing
object

Partially
shadowed
object

Light
source

Eye position
(note that
shadows are
independent of
the eye position)

Surface inside
shadow volume
(shadowed)

Surface outside
shadow volume
(illuminated)

Shadow
volume
(infinite extent)

25

In shadow or not

• Test	if	surface	visible	in	given	pixel	is	inside	or	
outside	shadow	volume
1. Allocate	a	counter	per	pixel
2. Cast	a	ray	into	the	scene,	starting	from	eye,	going	
through	given	pixel	

3. Increment	the	counter	when	the	ray	enters	the	shadow	
volume

4.Decrement	the	counter	when	the	ray	leaves	the	shadow	
volume

5.When	we	hit	the	object,	check	the	counter.	
• If	counter	>	0,	in	shadow
• Otherwise,	not	in	shadow

26

In shadow or not

Occluder
Light
source

Eye
position

+1 +2 +2+3

In shadow

+1

27

Implementation in rendering pipeline
• Ray	tracing	not	possible	to	implement	directly
• Use	a	few	tricks...

28

Shadow volume construction

• Need	to	generate	shadow	polygons	to	bound	
shadow	volume

• Extrude	silhouette	edges	from	light	source

Extruded shadow volumes
29

Shadow volume construction

• Needs	to	be	done	on	the	CPU
• Silhouette	edge	detection

• An	edge	is	a	silhouette	if	one	adjacent	triangle	is	front	
facing,	the	other	back	facing	with	respect	to	the	light

• Extrude	polygons	from	silhouette	edges

30

Shadow test without ray tracing

Using	the	stencil	buffer
• A	framebuffer channel	(like	RGB	colors,	depth)	that	
contains	a	per-pixel	counter	(integer	value)

• Available	in	OpenGL
• Stencil	test

• Similar	to	depth	test	(z-buffering)
• Control	whether	a	fragment	is	discarded	or	not
• Stencil	function:	is	evaluated	to	decide	whether	to	
discard	a	fragment

• Stencil	operation:	is	performed	to	update	the	
stencil	buffer	depending	on	the	result	of	the	test

31

Shadow volume algorithms

Z-pass	approach
• Count	leaving/entering	shadow	volume	events	as	
described

• Use	stencil	buffer	to	count	number	of	visible	(i.e.	
not	occluded	from	camera)	front-facing	and	back	
facing	shadow	volume	polygons	for	each	pixel

• If	equal,	pixel	is	not	in	shadow
Z-fail	approach
• Count	number	of	invisible	(i.e.	occluded	from	
camera)	front-facing	and	back-facing	shadow	
volume	polygons	

• If	equal,	pixel	is	not	in	shadow

32

Z-pass approach: details

• Render	scene	with	only	ambient	light
• Update	depth	buffer

• Turn	off	depth	and	color	write,	turn	on	stencil,	keep	the	depth	test	on
• Init	stencil	buffer	to	0
• Draw	shadow	volume	twice	using	face	culling

• 1st	pass:	render	front faces	and	increment stencil	buffer	when	depth	
test	passes

• 2nd	pass:	render	back faces	and	decrement when	depth	test	passes
• At	each	pixel

• Stencil	!=	0,	in	shadow
• Stencil	=	0,	lit

• Render	the	scene	again	with	diffuse	and	specular	lighting
• Write	to	framebuffer	only	pixels	with	stencil	=	0

33

Issues

• Z-pass	fails	if
• Eye	is	in	shadow
• Shadow	polygon	clipped	by	near	clip	plane

34

Shadow volumes

• Pros
• Does	not	require	hardware	support	for	shadow	mapping
• Pixel	accurate	shadows,	no	sampling	issues

• Cons
• More	CPU	intensive	(construction	of	shadow	volume	
polygons)

• Fill-rate	intensive	(need	to	draw	many	shadow	volume	
polygons)

• Expensive	for	complex	geometry
• Tricky	to	handle	all	cases	correctly
• Hard	to	extend	to	soft	shadows

35

Shadow maps

• Pros:
• Little	CPU	overhead
• No	need	to	construct	extra	geometry	to	represent	
shadows

• Hardware	support
• Can	fake	soft	shadows	easily

• Cons:
• Sampling	issues
• Depth	bias	is	not	completely	foolproof

• Shadow	mapping	has	become	more	popular	with	
better	hardware	support

36

Resources

• Overview,	lots	of	links
http://www.realtimerendering.com/

• Basic	shadow	maps
http://en.wikipedia.org/wiki/Shadow_mapping

• Avoiding	sampling	problems	in	shadow	maps
http://www.comp.nus.edu.sg/~tants/tsm/tsm.pdf
http://www.cg.tuwien.ac.at/research/vr/lispsm/

• Faking	soft	shadows	with	shadow	maps
http://people.csail.mit.edu/ericchan/papers/smoothie/

• Alternative:	shadow	volumes
http://en.wikipedia.org/wiki/Shadow_volume

37

More realistic illumination

• In	real	world,	at	each	point	in	scene	light	arrives	
from	all	directions

• Not	just	from	point	light	sources

• Environment	maps
• Store	“omni-directional”	illumination	as	images
• Each	pixel	corresponds	to	light	from	a	certain	direction

38

Capturing environment maps

• “360	degrees”	panoramic	image
• Instead	of	360	degrees	panoramic	
image,	take	picture	of	mirror	ball	
(light	probe)

Light probes
[Paul Debevec, http://www.debevec.org/Probes/] 39

Environment maps as light sources
Simplifying	assumption
• Assume	light	captured	by	environment	map	is	
emitted	infinitely	far	away

• Environment	map	consists	of	directional	light	
sources

• Value	of	environment	map	is	defined	for	each	direction,	
independent	of	position	in	scene

• Use	single	environment	map	as	light	source	at	all	
locations in	the	scene

• Approximation!

40

Environment maps as light sources
• How	do	you	compute	shading	of	a	diffuse	surface	
using	an	environment	map?

• What	is	more	expensive	to	compute,	shading	a	
diffuse	or	a	specular	surface?

41

Environment maps applications

• Use	environment	map	as	“light	source”

Global illumination
[Sloan et al.]

Reflection mapping

42

Sphere & cube maps

• Store	incident	light	on	sphere	or	on	six	faces	of	a	
cube

Spherical map Cube map

Elevation,
azimuthal
angle

Elevation
q const.

North	pole
q=90

South	pole
q=-90

43

Cube maps in OpenGL

Application	setup
• Load,	bind	a	cube	environment	map

glBindTexture(GL_TEXTURE_CUBE_MAP, …);
// the six cube faces
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,…);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X,…);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y,…);
…
glEnable(GL_TEXTURE_CUBE_MAP);

• More	details	
• “OpenGL	Shading	Language”,	Randi	Rost
• “OpenGL	Superbible”,	Sellers	et	al.
• Online	tutorials

44

Cube maps in OpenGL

Look-up
• Given	direction	(x,y,z)
• Largest	coordinate	component	determines	cube	
map	face

• Dividing	by	magnitude	of	largest	component	yields	
coordinates	within	face

• Look-up	function	built	into	GLSL
• Use	(x,y,z) direction	as	texture	coordinates	to		
samplerCube

45

Environment map data

• Also	called	„light	probes“
http://www.debevec.org/Probes/

• Tool	for	high	dynamic	range	data	(HDR)
http://projects.ict.usc.edu/graphics/HDRShop/

• Pre-rendered	light	probes	for	games
http://docs.unity3d.com/Manual/LightProbes.html

Light	probes	(http://www.debevec.org/Probes/) 46

Reflection mapping

• Simulate	mirror	reflection
• Compute	reflection	vector	at	each	pixel	using	view	
direction	and	surface	normal

• Use	reflection	vector	to	look	up	cube	map
• Rendering	cube	map	itself	is	optional

Reflection mapping 47

Reflection mapping in GLSL

Vertex	shader
• Compute	viewing	direction	for	each	vertex
• Reflection	direction

• Use	GLSL	built-in	reflect function

• Pass	reflection	direction	to	fragment	shader
Fragment	shader
• Look-up	cube	map	using	interpolated	reflection	
direction
in float3 refl;
uniform samplerCube envMap;
texture(envMap, refl);

48

Reflection mapping examples

• Approximation,	reflections	are	not	accurate

[NVidia]

49

Shading using environment map

• Assumption:	distant	lighting
• Incident	light	is	a	function	of	direction,	but	not	position

• Realistic	shading	requires
• Take	into	account	light	from	all	directions
• Include	occlusion

Illumination from environment

Same environment map for both points
“Illumination is a function of direction,
but not position”

50

Mathematical model

• Assume	Lambertian	(diffuse)	material,	BRDF	kd
• Ignore	occlusion	for	now

• Illumination	from	point	light	sources

• Illumination	from	environment	map	using	hemispherical	
integral

• Directions	w
• Hemisphere	of	directions	W
• Environment	map,	radiance	from	each	direction	c(w)

51

Irradiance environment maps

• Precompute	irradiance as	a	function	of	normal

• Store	as	irradiance	environment	map

• Shading	computation	at	render	time
• Depends	only	on	normal,	not	position

Environment map Irradiance map
52

Irradiance environment maps

Directional light Environment illumination

Images from http://www.cs.berkeley.edu/~ravir/papers/envmap/ 53

Implementation

• Precompute	irradiance	map	from	environment
• HDRShop	tool,	“diffuse	convolution”

http://projects.ict.usc.edu/graphics/HDRShop/

• At	render	time,	look	up	irradiance	map	using	
surface	normal

• When	object	rotates,	rotate	normal	accordingly

• Can	also	approximate	glossy	reflection
• Blur	environment	map	less	heavily
• Look	up	blurred	environment	map	using	reflection	
vector

54

Today

More	shading
• Environment	maps
• Reflection	mapping
• Irradiance	environment	maps
• Ambient	occlusion
• Reflection	and	refraction
• Toon	shading

55

Including occlusion

• At	each	point,	environment	is	partially	occluded	by	
geometry

• Add	light	only	from	un-occluded	directions

Visualization of un-occluded directions
56

Including occlusion

Visibility	function	Vx(w)
• Binary	function	of	direction	w
• Indicates	if	environment	is	occluded
• Depends	on	position	x

Environment map Visibility functions

Vx0=0

Vx1=0
Vx0=1

Vx1=1

x0

x1

57

Mathematical model

• Diffuse	illumination	with	visibility

• Ambient	occlusion
• “Fraction”	of	environment	that	is	not
occluded	from	a	point	x

• Scalar	value

• Approximation:	diffuse	shading	given	by	irradiance	
weighted	by	ambient	occlusion

Vx=0

Vx=1

58

Ambient occlusion

Ambient	occlusion Diffuse	shading Ambient	occlusion	combined
(using	multiplication)	with
diffuse	shading

http://en.wikipedia.org/wiki/Ambient_occlusion
59

Implementation

• Precomputation (off-line,	before	rendering)
• Compute	ambient	occlusion	on	a	per-vertex	basis
• Using	ray	tracing
• Free	tool	that	saves	meshes	with	per-vertex	ambient	occlusion

http://www.xnormal.net/

• Caution
• Basic	pre-computed	ambient	occlusion	does	not	work	for	
animated	objects

60

Shading integral

• Ambient occlusion with irradiance environment
maps is crude approximation to general shading
integral

• BRDF	for (non-diffuse)	material

Reflected radiance c(wo)

Outgoing direction wo

Incident directions wi

HemisphereW
61

Shading integral

• Accurate evaluation is expensive	to compute
• Requires numerical integration

• Many tricks	for more accurate and general
approximation than ambient occlusion and irradiance
environment maps exist

• Spherical harmonics shading
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf

62

Note

• Visually	interesting	results	using	combination	(sum)	
of	diffuse	shading	with	ambient	occlusion	and	
reflection	mapping	

http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf

Diffuse	shading with
ambient occlusion Reflection mapping Combination (sum)

63

Today

More	shading
• Environment	maps
• Reflection	mapping
• Irradiance	environment	maps
• Ambient	occlusion
• Reflection	and	refraction
• Toon	shading

64

Toon shading

• Simple	cartoon	style	shader
• Emphasize	silhouettes
• Discrete	steps	for	diffuse	shading,	highlights
• Sometimes	called	CEL	shading

http://en.wikipedia.org/wiki/Cel-shaded_animation

Off-line toon shader GLSL toon shader 65

Toon shading

• Silhouette	edge	detection
• Compute	dot	product	of	
viewing	direction	v and	
normal	n

• Use	1D	texture	to	define	edge	ramp
uniform sample1D edgeramp;
e=texture1D(edgeramp,edge);

0

1
edgeramp

edge
66

Toon shading

• Compute	diffuse	and	specular	shading

• Use	1D	textures	diffuseramp, specularramp to	map	
diffuse	and	specular	shading	to	colors

• Final	color
uniform sampler1D diffuseramp;
uniform sampler1D specularramp;
c = e * (texture(diffuse,diffuseramp)+

texture(specular,specularramp));

67

