CMSC427
Parametric curves:
Hermite, Catmull-Rom,
Bezier

Modeling

- Creating 3D objects
- How to construct complicated surfaces?
- Goal
 - Specify objects with few control points
 - Resulting object should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces

• Surface of revolution

Extruded/swept surfaces

- Animation
 - Provide a "track" for objects
 - Use as camera path

 Generalize to surface patches using "grids of curves", next class

How to represent curves

- Specify every point along curve?
 - Hard to get precise, smooth results
 - Too much data, too hard to work with
- Idea: specify curves using small numbers of control points
- Mathematics: use polynomials to represent curves

Interpolating polynomial curves

http://en.wikipedia.org/wiki/Polynomial_interpolation

- Curve goes through all control points
- Seems most intuitive
- Surprisingly, not usually the best choice
 - Hard to predict behavior
 - Overshoots, wiggles
 - Hard to get "nice-looking" curves

Approximating polynomial curves

Curve is "influenced" by control points

- Various types & techniques based on polynomial functions
 - Bézier curves, B-splines, NURBS
- Focus on Bézier curves

Mathematical definition

- A vector valued function of one variable $\mathbf{x}(t)$
 - Given t, compute a 3D point $\mathbf{x} = (x, y, z)$
 - May interpret as three functions x(t), y(t), z(t)
 - "Moving a point along the curve"

Tangent vector

- Derivative $\mathbf{x}'(t) = \frac{d\mathbf{x}}{dt} = (x'(t), y'(t), z'(t))_{\text{nent}}$
- Length of $\mathbf{x}'(t)$ corresponds to speed

Piecewise polynomial curves

- Model complex shapes by sequence
- Use polyline to store control points

Continuity

- How piecewise curves join
- Ck continuity kth derivatives match
- Gk continuity kth derivatives are proportional

Hermite curves

• Cubic curve (here 2D)

$$x(t) = at^3 + bt^2 + ct + d$$

 $y(t) = et^3 + ft^2 + gt + h$

- Interpolates end points P0 and P1
- Matches tangent at endpoints T0 and T1
 - (also dP0 and dP1 in these notes).

Computing coefficients a, b, c and d

• Derivative of x(t)

$$x'(t) = 3at^2 + 2bt + c$$

- Set t = 0 and 1 for endpoints
- Four constraints

$$x(0) = d$$

$$x'(0) = c$$

$$x(1) = a + b + c + d$$

$$x'(1) = 3a + 2b + c$$

Solve for a, b, c and d

• Solve for a, b, c and d

$$d = x0$$

$$c = dx0$$

$$b = -3x0 + 3x1 - 2dx0 - dx1$$

$$a = 2x0 - 2x1 + dx0 + dx1$$

Matrix version

Constraints

$$x(0) = d$$

$$x'(0) = c$$

$$x(1) = a + b + c + d$$

$$x'(1) = 3a + 2b + c$$

• Give

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x0 \\ x1 \\ dx0 \\ dx1 \end{bmatrix}$$

Solve matrix version: basis matrix

- Since we have MA = G
- We can solve with $A = M^{-1}G$
- And get Hermite basis matrix M^{-1}

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x0 \\ x1 \\ dx0 \\ dx1 \end{bmatrix}$$

Vector version

To include x, y and z, rewrite with vectors P0,
 P1 and tangents T0 and T1

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P0} \\ \mathbf{P1} \\ \mathbf{T0} \\ \mathbf{T1} \end{bmatrix}$$

Coefficients a, b, c and d are now vectors

Full polynomial version

Rewrite polynomial as dot product

$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c} \\ \boldsymbol{d} \end{bmatrix}$$

$$= \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P0} \\ \mathbf{P1} \\ \mathbf{T0} \\ \mathbf{T1} \end{bmatrix}$$

Blending functions

• Instead of polynomial in t, look at curve as weighted sum of P0, P1, T0 and T1

•
$$x(t) = (2x0 - 2x1 + dx0 + dx1)t^3$$

•

$$+(-3x0+3x1-2dx0-dx1)t^2$$

•

$$+(dx0)t$$

•

$$+x0$$

Blending functions

• Instead of polynomial in t, look at curve as weighted sum of P0, P1, T0 and T1

•
$$x(t) =$$

•
$$(2t^3 - 3t^2 + 1)x0$$

$$\cdot + (-2t^3 + 3t^2)x1$$

•
$$+(t^3-2t^2+t)dx0$$

•
$$+(t^3-t^2)dx1$$

Blending functions

$$h00(t) = (2t^{3} - 3t^{2} + 1)$$

$$h01(t) = (-2t^{3} + 3t^{2})$$

$$h10(t) = (t^{3} - 2t^{2} + t)$$

$$h11(t) = (t^{3} - t^{2})$$
0.8
0.6
0.4
0.2
0.9
0.9
0.9

Computing Hermite tangents

- Have P(-1), P0, P1 and P2 as input
- Compute tangent with H matrix

$$\begin{bmatrix} x0\\ x1\\ dx0\\ dx1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_0\\ x_1\\ x_{-1}\\ x_2 \end{bmatrix}$$

Combine with Hermite basis

Unify notation

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_{-1} \\ x_2 \end{bmatrix}$$

Final matrix

$$\cdot \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 3 & -3 & -1 & 1 \\ -5 & 4 & 2 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_{-1} \\ x_2 \end{bmatrix}$$

• Hermite – problem with C1 continuity

- Catmull-Rom make tangent symmetric
- Define by two adjacent points
- Here T3 = P4-P2

- Need to change H matrix
- ½ traditional for C-R curves

$$\begin{bmatrix} x0 \\ x1 \\ dx0' \\ dx1' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/2 & 0 & -1/2 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_{-1} \\ x_2 \end{bmatrix}$$

Which gives

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/2 & 0 & -1/2 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_{-1} \\ x_2 \end{bmatrix}$$

• Or
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & -2 & -0.5 & 0.5 \\ -3.5 & 3 & 1 & -0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_{-1} \\ x_2 \end{bmatrix}$$

Bézier curves

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

- A particularly intuitive way to define control points for polynomial curves
- Developed for CAD (computer aided design) and manufacturing
 - Before games, before movies, CAD was the big application for CG
- Pierre Bézier (1962), design of auto bodies for Peugeot, http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier
- Paul de Casteljau (1959), for Citroen

Bézier curves

- Higher order extension of linear interpolation
- Control points $p_0, p_1, ...$

Bézier curves

- Intuitive control over curve given control points
 - Endpoints are interpolated, intermediate points are approximated
 - Convex Hull property
 - Variation-diminishing property

Cubic Bézier curve

- Cubic polynomials, most common case
- Defined by 4 control points
- Two interpolated endpoints
- Two midpoints control the tangent at the endpoints

Bézier Curve formulation

- Three alternatives, analogous to linear case
- 1. Weighted average of control points
- 2. Cubic polynomial function of *t*
- 3. Matrix form
- Algorithmic construction
 - de Casteljau algorithm

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's algorithm

- A recursive series of linear interpolations
 - Works for any order, not only cubic
- Not terribly efficient to evaluate
 - Other forms more commonly used
- Why study it?
 - Intuition about the geometry
 - Useful for subdivision (later today)

de Casteljau Algorithm

- Given the control points
- A value of *t*
- Here $t \approx 0.25$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1})$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2})$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3})$$

Applets

- http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
- http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

 $\mathbf{p_1}$ $\mathbf{p_2}$

 $\mathbf{p_3}$

 $\mathbf{p_4}$

 \mathbf{p}_0

 \mathbf{p}_1

 \mathbf{p}_2 \mathbf{p}_3

$$\mathbf{q}_0 = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) \mathbf{p}_0$$

$$\mathbf{q}_1 = Lerp(t, \mathbf{p}_1, \mathbf{p}_2) \mathbf{p}_1$$

$$\mathbf{q}_2 = Lerp(t, \mathbf{p}_2, \mathbf{p}_3) \mathbf{p}_2$$

$$\mathbf{p}_3$$

$$\mathbf{r}_{0} = Lerp(t, \mathbf{q}_{0}, \mathbf{q}_{1}) \mathbf{q}_{0} = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) \mathbf{p}_{0}$$

$$\mathbf{r}_{1} = Lerp(t, \mathbf{q}_{1}, \mathbf{q}_{2}) \mathbf{q}_{1} = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) \mathbf{p}_{1}$$

$$\mathbf{q}_{2} = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}) \mathbf{p}_{2}$$

$$\mathbf{p}_{3}$$

$$\mathbf{x} = Lerp(t, \mathbf{r}_0, \mathbf{r}_1) \mathbf{r}_0 = Lerp(t, \mathbf{q}_0, \mathbf{q}_1) \mathbf{q}_0 = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) \mathbf{p}_0$$

$$\mathbf{r}_1 = Lerp(t, \mathbf{q}_1, \mathbf{q}_2) \mathbf{q}_1 = Lerp(t, \mathbf{p}_1, \mathbf{p}_2) \mathbf{p}_1$$

$$\mathbf{q}_2 = Lerp(t, \mathbf{p}_2, \mathbf{p}_3) \mathbf{p}_2$$

$$\mathbf{p}_3$$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) = (1 - t)\mathbf{p}_{0} + t\mathbf{p}_{1}$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) = (1 - t)\mathbf{p}_{1} + t\mathbf{p}_{2}$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3}) = (1 - t)\mathbf{p}_{2} + t\mathbf{p}_{3}$$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) = (1 - t)\mathbf{p}_{0} + t\mathbf{p}_{1}$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) = (1 - t)\mathbf{p}_{1} + t\mathbf{p}_{2}$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3}) = (1 - t)\mathbf{p}_{2} + t\mathbf{p}_{3}$$

$$\mathbf{r}_{0}(t) = Lerp(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t))$$
$$\mathbf{r}_{1}(t) = Lerp(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t))$$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) = (1 - t)\mathbf{p}_{0} + t\mathbf{p}_{1}$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) = (1 - t)\mathbf{p}_{1} + t\mathbf{p}_{2}$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3}) = (1 - t)\mathbf{p}_{2} + t\mathbf{p}_{3}$$

$$\mathbf{r}_{0}(t) = Lerp(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)) = (1-t)((1-t)\mathbf{p}_{0} + t\mathbf{p}_{1}) + t((1-t)\mathbf{p}_{1} + t\mathbf{p}_{2})$$

$$\mathbf{r}_{1}(t) = Lerp(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)) = (1-t)((1-t)\mathbf{p}_{1} + t\mathbf{p}_{2}) + t((1-t)\mathbf{p}_{2} + t\mathbf{p}_{3})$$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) = (1 - t)\mathbf{p}_{0} + t\mathbf{p}_{1}$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) = (1 - t)\mathbf{p}_{1} + t\mathbf{p}_{2}$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3}) = (1 - t)\mathbf{p}_{2} + t\mathbf{p}_{3}$$

$$\mathbf{r}_{0}(t) = Lerp(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)) = (1-t)((1-t)\mathbf{p}_{0} + t\mathbf{p}_{1}) + t((1-t)\mathbf{p}_{1} + t\mathbf{p}_{2})$$

$$\mathbf{r}_{1}(t) = Lerp(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)) = (1-t)((1-t)\mathbf{p}_{1} + t\mathbf{p}_{2}) + t((1-t)\mathbf{p}_{2} + t\mathbf{p}_{3})$$

$$\mathbf{x}(t) = Lerp(t, \mathbf{r}_0(t), \mathbf{r}_1(t))$$

$$\mathbf{q}_{0}(t) = Lerp(t, \mathbf{p}_{0}, \mathbf{p}_{1}) = (1 - t)\mathbf{p}_{0} + t\mathbf{p}_{1}$$

$$\mathbf{q}_{1}(t) = Lerp(t, \mathbf{p}_{1}, \mathbf{p}_{2}) = (1 - t)\mathbf{p}_{1} + t\mathbf{p}_{2}$$

$$\mathbf{q}_{2}(t) = Lerp(t, \mathbf{p}_{2}, \mathbf{p}_{3}) = (1 - t)\mathbf{p}_{2} + t\mathbf{p}_{3}$$

$$\mathbf{r}_0(t) = Lerp(t, \mathbf{q}_0(t), \mathbf{q}_1(t)) = (1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2)$$

$$\mathbf{r}_1(t) = Lerp(t, \mathbf{q}_1(t), \mathbf{q}_2(t)) = (1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3)$$

$$\mathbf{x}(t) = Lerp(t, \mathbf{r}_0(t), \mathbf{r}_1(t))$$

$$= (1-t)((1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2))$$

$$+t((1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3))$$

Weighted average of control points

Regroup

$$\mathbf{x}(t) = (1-t)((1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2))$$
$$+t((1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3))$$

Weighted average of control points

Regroup

$$\mathbf{x}(t) = (1-t)((1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2))$$
$$+t((1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3))$$

$$\mathbf{x}(t) = (1-t)^3 \mathbf{p}_0 + 3(1-t)^2 t \mathbf{p}_1 + 3(1-t)t^2 \mathbf{p}_2 + t^3 \mathbf{p}_3$$

Weighted average of control points

Regroup

$$\mathbf{x}(t) = (1-t)((1-t)((1-t)\mathbf{p}_0 + t\mathbf{p}_1) + t((1-t)\mathbf{p}_1 + t\mathbf{p}_2))$$
$$+t((1-t)((1-t)\mathbf{p}_1 + t\mathbf{p}_2) + t((1-t)\mathbf{p}_2 + t\mathbf{p}_3))$$

$$\mathbf{x}(t) = (1-t)^3 \mathbf{p}_0 + 3(1-t)^2 t \mathbf{p}_1 + 3(1-t)t^2 \mathbf{p}_2 + t^3 \mathbf{p}_3$$

$$\mathbf{x}(t) = (-t^{3} + 3t^{2} - 3t + 1)\mathbf{p}_{0} + (3t^{3} - 6t^{2} + 3t)\mathbf{p}_{1}$$

$$+ (-3t^{3} + 3t^{2})\mathbf{p}_{2} + (t^{3})\mathbf{p}_{3}$$

$$\xrightarrow{B_{2}(t)} B_{3}(t)$$

Bernstein polynomials

Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein_polynomial

$$\mathbf{x}(t) = B_0(t)\mathbf{p}_0 + B_1(t)\mathbf{p}_1 + B_2(t)\mathbf{p}_2 + B_3(t)\mathbf{p}_3$$

The cubic *Bernstein polynomials*:

$$B_{0}(t) = -t^{3} + 3t^{2} - 3t + 1$$

$$B_{1}(t) = 3t^{3} - 6t^{2} + 3t$$

$$B_{2}(t) = -3t^{3} + 3t^{2}$$

$$B_{3}(t) = t^{3}$$

$$\sum B_{i}(t) = 1$$

Bernstein Cubic Polynomials

- Partition of unity, at each t always add to 1
- Endpoint interpolation, B_0 and B_3 go to 1

$$B_0^1(t) = -t + 1$$

$$B_1^1(t) = t$$

$$B_0^1(t) = -t + 1$$
 $B_0^2(t) = t^2 - 2t + 1$
 $B_1^1(t) = t$ $B_1^2(t) = -2t^2 + 2t$
 $B_2^2(t) = t^2$

$$B_0^1(t) = -t + 1$$

$$B_1^1(t) = t$$

$$B_0^2(t) = t^2 - 2t + 1$$

 $B_1^2(t) = -2t^2 + 2t$
 $B_2^2(t) = t^2$

$$B_0^1(t) = -t + 1$$
 $B_0^2(t) = t^2 - 2t + 1$
 $B_1^1(t) = t$ $B_1^2(t) = -2t^2 + 2t$
 $B_2^2(t) = t^2$

$$B_0^3(t) = -t^3 + 3t^2 - 3t + 1$$

$$B_1^3(t) = 3t^3 - 6t^2 + 3t$$

$$B_2^3(t) = -3t^3 + 3t^2$$

$$B_3^3(t) = t^3$$

Order
$$n$$
: $B_i^n(t) = \binom{n}{i} (1-t)^{n-i} (t)^i$ $\binom{n}{i} = \frac{n!}{i!(n-i)!}$

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

$$\sum B_i^n(t) = 1$$

Partition of unity, endpoint interpolation

General Bézier curves

- nth-order Bernstein polynomials form nth-order Bézier curves
- Bézier curves are weighted sum of control points using *n*th-order Bernstein polynomials

Bernstein polynomials of order n:

$$B_i^n(t) = \binom{n}{i} (1-t)^{n-i} (t)^i$$

Bézier curve of order n:

$$\mathbf{x}(t) = \sum_{i=0}^{n} B_i^n(t) \mathbf{p}_i$$

Bézier curve properties

- Convex hull property
- Variation diminishing property
- Affine invariance

Convex hull, convex combination

- Convex hull of a set of points
 - Smallest polyhedral volume such that

 (i) all points are in it
 (ii) line connecting any two points in the volume lies completely inside it (or on its boundary)
- Convex combination of the points
 - Weighted average of the points, where weights all between 0 and 1, sum up to 1
- Any convex combination always lies within the convex hull

Convex hull property

- Bézier curve is a convex combination of the control points
 - Bernstein polynomials add to 1 at each value of t
- Curve is always inside the convex hull of control points
- Makes curve predictable
- Allows efficient culling, intersection testing, adaptive tessellation

Variation diminishing property

- If the curve is in a plane, this means no straight line intersects a Bézier curve more times than it intersects the curve's control polyline
- "Curve is not more wiggly than control polyline"

Yellow line: 7 intersections with control polyline 3 intersections with curve

Affine invariance

- Two ways to transform Bézier curves
 - 1. Transform the control points, then compute resulting point on curve
 - 2. Compute point on curve, then transform it
- Either way, get the same transform point!
 - Curve is defined via affine combination of points (convex combination is special case of an affine combination)
 - Invariant under affine transformations
 - Convex hull property always remains

Start with Bernstein form:

$$\mathbf{x}(t) = (-t^3 + 3t^2 - 3t + 1)\mathbf{p}_0 + (3t^3 - 6t^2 + 3t)\mathbf{p}_1 + (-3t^3 + 3t^2)\mathbf{p}_2 + (t^3)\mathbf{p}_3$$

Start with Bernstein form:

$$\mathbf{x}(t) = (-t^3 + 3t^2 - 3t + 1)\mathbf{p}_0 + (3t^3 - 6t^2 + 3t)\mathbf{p}_1 + (-3t^3 + 3t^2)\mathbf{p}_2 + (t^3)\mathbf{p}_3$$

Regroup into coefficients of t:

$$\mathbf{x}(t) = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t^3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t^2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

Start with Bernstein form:

$$\mathbf{x}(t) = (-t^3 + 3t^2 - 3t + 1)\mathbf{p}_0 + (3t^3 - 6t^2 + 3t)\mathbf{p}_1 + (-3t^3 + 3t^2)\mathbf{p}_2 + (t^3)\mathbf{p}_3$$

Regroup into coefficients of t:

$$\mathbf{x}(t) = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t^3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t^2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

$$\mathbf{a} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)$$

$$\mathbf{b} = (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)$$

$$\mathbf{c} = (-3\mathbf{p}_0 + 3\mathbf{p}_1)$$

$$\mathbf{d} = (\mathbf{p}_0)$$

• Good for fast evaluation, precompute constant coefficients (a,b,c,d)

Start with Bernstein form:

$$\mathbf{x}(t) = (-t^3 + 3t^2 - 3t + 1)\mathbf{p}_0 + (3t^3 - 6t^2 + 3t)\mathbf{p}_1 + (-3t^3 + 3t^2)\mathbf{p}_2 + (t^3)\mathbf{p}_3$$

Regroup into coefficients of *t*:

$$\mathbf{x}(t) = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t^3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t^2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

$$\mathbf{a} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)$$

$$\mathbf{b} = (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)$$

$$\mathbf{c} = (-3\mathbf{p}_0 + 3\mathbf{p}_1)$$

$$\mathbf{d} = (\mathbf{p}_0)$$

- Good for fast evaluation, precompute constant coefficients (a,b,c,d)
- Not much geometric intuition

Cubic matrix form

$$\mathbf{x}(t) = \begin{bmatrix} \vec{\mathbf{a}} & \vec{\mathbf{b}} & \vec{\mathbf{c}} & \mathbf{d} \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \qquad \begin{aligned} \vec{\mathbf{a}} &= (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3) \\ \vec{\mathbf{b}} &= (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2) \\ \vec{\mathbf{c}} &= (-3\mathbf{p}_0 + 3\mathbf{p}_1) \\ \mathbf{d} &= (\mathbf{p}_0) \end{aligned}$$

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$

$$\mathbf{G}_{Bez}$$

- ullet Can construct other cubic curves by just using different basis matrix $oldsymbol{B}$
- Hermite, Catmull-Rom, B-Spline, ...

Cubic matrix form

• 3 parallel equations, in x, y and z:

$$\mathbf{x}_{x}(t) = \begin{bmatrix} p_{0x} & p_{1x} & p_{2x} & p_{3x} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}$$

$$\mathbf{x}_{y}(t) = \begin{bmatrix} p_{0y} & p_{1y} & p_{2y} & p_{3y} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}$$

$$\mathbf{x}_{z}(t) = \begin{bmatrix} p_{0z} & p_{1z} & p_{2z} & p_{3z} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}$$

Matrix form

Bundle into a single matrix

$$\mathbf{x}(t) = \begin{bmatrix} p_{0x} & p_{1x} & p_{2x} & p_{3x} \\ p_{0y} & p_{1y} & p_{2y} & p_{3y} \\ p_{0z} & p_{1z} & p_{2z} & p_{3z} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$

$$\mathbf{x}(t) = \mathbf{G}_{Bez} \mathbf{B}_{Bez} \mathbf{T}$$
$$\mathbf{x}(t) = \mathbf{C} \mathbf{T}$$

- Efficient evaluation
 - Precompute C
 - Take advantage of existing 4x4 matrix hardware support

Drawing Bézier curves

- Generally no low-level support for drawing smooth curves
 - I.e., GPU draws only straight line segments
- Need to break curves into line segments or individual pixels
- Approximating curves as series of line segments called tessellation
- Tessellation algorithms
 - Uniform sampling
 - Adaptive sampling
 - Recursive subdivision

Uniform sampling

- Approximate curve with N-1 straight segments
 - N chosen in advance
 - Evaluate $\mathbf{x}_i = \mathbf{x}(t_i)$ where $t_i = \frac{i}{N}$ for i = 0, 1, ..., N
 - Connect th $\mathbf{x}_i = \mathbf{a} \frac{i^3}{N^3} + \mathbf{b} \frac{i^2}{N^2} + \mathbf{c} \frac{i}{N} + \mathbf{d}$
- Too few points?
 - Bad approximation
 - "Curve" is faceted
- Too many points?
 - Slow to draw too many line segments
 - Segments may draw on top of each other

Adaptive Sampling

- Use only as many line segments as you need
 - Fewer segments where curve is mostly flat
 - More segments where curve bends
 - Segments never smaller than a pixel
- Various schemes for sampling, checking results, deciding whether to sample more

Recursive Subdivision

• Any cubic (or k-th order) curve segment can be expressed as a cubic (or k-th order) Bézier curve

"Any piece of a cubic (or k-th order) curve is itself a cubic (or k-th order) curve"

 Therefore, any Bézier curve can be subdivided into smaller Bézier curves

de Casteljau subdivision

Adaptive subdivision algorithm

- 1. Use de Casteljau construction to split Bézier segment in middle (t=0.5)
- 2. For each half
 - If "flat enough": draw line segment
 - Else: recurse from 1. for each half
- Curve is flat enough if hull is flat enough
- Test how far away midpoints are from straight segment connecting start and end
 - If about a pixel, then hull is flat enough

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

More control points

- Cubic Bézier curve limited to 4 control points
 - Cubic curve can only have one inflection
 - Need more control points for more complex curves
- k-1 order Bézier curve with k control points

- Hard to control and hard to work with
 - Intermediate points don't have obvious effect on shape
 - Changing any control point changes the whole curve
- Want local support
 - Each control point only influences nearby portion of curve

Piecewise curves (splines)

- Sequence of simple (low-order) curves, end-to-end
 - Piecewise polynomial curve, or splines http://en.wikipedia.org/wiki/Spline_(mathematics)
- Sequence of line segments
 - Piecewise linear curve (linear or first-order spline)

- Sequence of cubic curve segments
 - Piecewise cubic curve, here piecewise Bézier (cubic spline)

Piecewise cubic Bézier curve

- Given 3N + 1 points $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{3N}$
- Define N Bézier segments:

$$\mathbf{x}_{0}(t) = B_{0}(t)\mathbf{p}_{0} + B_{1}(t)\mathbf{p}_{1} + B_{2}(t)\mathbf{p}_{2} + B_{3}(t)\mathbf{p}_{3}$$

$$\mathbf{x}_{1}(t) = B_{0}(t)\mathbf{p}_{3} + B_{1}(t)\mathbf{p}_{4} + B_{2}(t)\mathbf{p}_{5} + B_{3}(t)\mathbf{p}_{6}$$

$$\vdots$$

$$\mathbf{x}_{N-1}(t) = B_0(t)\mathbf{p}_{3N-3} + B_1(t)\mathbf{p}_{3N-2} + B_2(t)\mathbf{p}_{3N-1} + B_3(t)\mathbf{p}_{3N}$$

Piecewise cubic Bézier curve

• Global parameter u, $0 \le u \le 3N$

$$\mathbf{x}(u) = \begin{cases} \mathbf{x}_{0}(\frac{1}{3}u), & 0 \le u \le 3\\ \mathbf{x}_{1}(\frac{1}{3}u - 1), & 3 \le u \le 6\\ \vdots & \vdots\\ \mathbf{x}_{N-1}(\frac{1}{3}u - (N-1)), & 3N - 3 \le u \le 3N \end{cases}$$

$$\mathbf{x}(u) = \mathbf{x}_i \left(\frac{1}{3}u - i\right)$$
, where $i = \left\lfloor \frac{1}{3}u \right\rfloor$

Continuity

- Want smooth curves
- C⁰ continuity
 - No gaps
 - Segments match at the endpoints
- C¹ continuity: first derivative is well defined
 - No corners
 - Tangents/normals are C⁰ continuous (no jumps)
- C² continuity: second derivative is well defined
 - Tangents/normals are C¹ continuous
 - Important for high quality reflections on surfaces

Piecewise cubic Bézier curve

- C⁰ continuous by construction
- C^1 continuous at segment endpoints \mathbf{p}_{3i} if \mathbf{p}_{3i} \mathbf{p}_{3i-1} = \mathbf{p}_{3i+1} \mathbf{p}_{3i}
- C² is harder to get

C⁰ continuous

C¹ continuous

Piecewise cubic Bézier curves

- Used often in 2D drawing programs
- Inconveniences
 - Must have 4 or 7 or 10 or 13 or ... (1 plus a multiple of 3) control points
 - Some points interpolate (endpoints), others approximate (handles)
 - Need to impose constraints on control points to obtain C^1 continuity
 - C² continuity more difficult
- Solutions
 - User interface using "Bézier handles"
 - Generalization to B-splines, next time

Bézier handles

- Segment end points (interpolating) presented as curve control points
- Midpoints (approximating points) presented as "handles"
- Can have option to enforce C¹ continuity

[www.blender.org]