CMSCA427

Parametric curves:
Hermite, Catmull-Rom,
Bezier

Modeling

* Creating 3D objects

* How to construct complicated
surfaces?

e Goal

» Specify objects with few control
points

* Resulting object should be
visually pleasing (smooth)

e Start with curves, then
generalize to surfaces

Usefulness of curves

e Surface of revolution

Ly

Usefulness of curves

» Extruded/swept surfaces

Usefulness of curves

e Animation

* Provide a “track” for objects

e Use as camera path

Usefulness of curves

* Generalize to surface patches using “grids of curves”,
next class

How to represent curves

 Specify every point along curve?
e Hard to get precise, smooth results
* Too much data, too hard to work with

* |dea: specify curves using small numbers of control
points

* Mathematics: use polynomials to represent curves

o |50.120)

Interpolating polynomial curves

http://en.wikipedia.org/wiki/Polynomial interpolation

* Curve goes through all control points

* Seems most intuitive

 Surprisingly, not usually the best choice
* Hard to predict behavior

* Overshoots, wiggles
* Hard to get “nice-looking” curves

Approximating polynomial curves

* Curve is “influenced” by control points

Control

/ point

* Various types & techniques based on polynomial
functions

» Bézier curves, B-splines, NURBS
* Focus on Bézier curves

Mathematical definition

* A vector valued function of one variable x(¢)
* Given t, compute a 3D point x=(x,),z)
* May interpret as three functions x(¢), y(¢), z(¢)
* “Moving a point along the curve”

e x()

‘X x(0.0) x(0.5) x(1.0)

Tangent vector

* Derivative dx

X(t) = = (@), 5/(2), 2(1)

e A vector that .
* Length of x’(¢¥) corresponds to speed

y \ x ’(0.0) x ’(0.5) x’(1.0)

Piecewise polynomial curves

* Model complex shapes by sequence
e Use polyline to store control points

® 00 || A - None None "

@1/}?1‘\@*J[§J foreground =

+ Display.. ¥

12

Continuity

* How piecewise curves join
* Ck continuity — kth derivatives match

* Gk continuity — kth - -
derivatives are e D

proportional
" - CO Continuity
- /_L/- {pasitional)

- -
m " C1 Continuity
- //

(tangential)

- - C2 Continuity
= ~ v {curvature)

Hermite curves

* Cubic curve (here 2D)

x(t) = at3 + bt?* + ct + d
y(t) =et’ + ft°+ gt +h
* Interpolates end points PO and P1

* Matches tangent at endpoints TO and T1
* (also dP0O and dP1 in these notes).

P1 = (x1,y1)
T1=<dx1,dy1>
/ P0=(x0,y0)

T0=<dx0,dy0>

Computing coefficients a, b, c and d

* Derivative of x(t)

x'(t) = 3at? + 2bt + ¢
* Sett =0 and 1 for endpoints
* Four constraints
x(0) =d
x'(0)=c
x(1)=a+b+c+d
x'(1)=3a+2b+c

Solve for a,b,cand d

e Solve fora,b,cand d
d = x0

c = dx0
b=-3x04+ 3x1— 2dx0 — dx1

a=2x0—2x1+ dx0 + dx1

Matrix version

* Constraints
x(0) =d

x'(0) =c
x(1)=a+b+c+d
x'(1)=3a+2b+c

e Give
0 0 0 1lra - x0 -
1 1 1 111b _ | x1
0O 0 1 0]]¢ dx0
3 2 1 o]ldl Llgxi-

Solve matrix version: basis matrix

e Since we have MA = G
e We can solve with 4 = M~1G
 And get Hermite basis matrix M1

2 =2 1 1 |rx0-
-3 3 -2 —-1|]x1
0 0 1 0 dx0
1 0 0 0 1ldxl-

R

Vector version

* To include x, y and z, rewrite with vectors PO,
P1 and tangents TO and T1

2 =2 1 1 |[PO;

@
b| _|-3 3 -2 -1f|P1
C 0 0 1 0 TO
d. 1 0 0 0 |JLlr1-

e Coefficients a, b, c and d are now vectors

Full polynomial version

* Rewrite polynomial as dot product

o
P@) =1 ¢ ¢ 11|P

d.

2 -2 1 1

-3 3 -2 -1

Blending functions

* Instead of polynomial in t, look at curve as
weighted sum of PO, P1, TO and T1

e x(t) = (2x0 — 2x1 + dx0 + dx1)t3
+(=3x0 + 3x1 — 2dx0 — dx1)t?
+(dx0)t

+x0

Blending functions

* Instead of polynomial in t, look at curve as
weighted sum of PO, P1, TO and T1

e x(t) =

e (2t3 —3t* + 1)x0
e +(=2¢t3 + 3t%)x1

e +(t3 —2t% 4+ t)dx0
o +(t3 — t?)dx1

Blending functions

h00(t) = (2t3 — 3t + 1)
_ hO1(t) = (=2t° + 3t?)
h10(t) = (t3 — 2t% + t)
h11(t) = (t3 —t2) -

0.8 —

0.6 —

hoo
h10
hol
h1ll

0.4 —

0.2 —

0

-0.2 —

Computing Hermite tangents

* Have P(-1), PO, P1 and P2 as input
* Compute tangent with H matrix

x071 [1 0 0 O]r%Xo
x11_10 1 0 O X1
dx0 -1 1 0 O0]|*-1

Ldx1- 0 0 —1 1]tx2d

Combine with Hermite basis

* Unify notation

* Final matrix

a1 I3 =3 =1 1]y
bl _|-5 4 2 -1
C 1 0 -1 0
d. 1 0 0 0 |t

a1 [2 =2 1 1 1
b| _[-3 3 -2 -1
c 0 0 1 0
d. 1 0 0 0

Catmull-Rom curves

* Hermite - problem with C1 continuity

Catmull-Rom curves

* Catmull-Rom - make tangent symmetric
* Define by two adjacent points
* Here T3 = P4-P2

Catmull-Rom curves

* Need to change H matrix

e 14 traditional for C-R curves

0
x1
dx0’

dx1’

1 0 0 0
01 0 0
1/2 0 —1/2 0

—1/2 0 0 1/2]L

Catmull-Rom curves

* Which gives

R

R

2 =2 1 1]]
-3 3 -2 -1

0O 0 1 0

1 0 0 O
2 -2 —-05 0.5]

—-35 3 1 -05

0.5 0 05 0

1 0 0 O

1
0

1/2 0 —1/2 0

xO

X1
X—1

| Xy

0 0 O
1 0 0

Il-1/2 0o 0o 1/2fL

Bézier curves

http://en.wikipedia.org/wiki/B%C3%A9zier curve

e A particularly intuitive way to define control points for
polynomial curves

* Developed for CAD (computer aided design) and
manufacturing

* Before games, before movies, CAD was the big application
for CG

* Pierre Bézier (1962), design of auto bodies for Peugeot,

http://en.wikipedia.org/wiki/Pierre B%C3%A9zier

e Paul de Casteljau (1959), for Citroen

Bézier curves

* Higher order extension of linear interpolation
* Control points py, pys, ---

WP

P

Po

Linear Quadratic Cubic

Bézier curves

* Intuitive control over curve given control points

* Endpoints are interpolated,
intermediate points are .
approximated f

e Convex Hull property
* Variation-diminishing property

Cubic Bezier curve

* Cubic polynomials, most common case

e Defined by 4 control points

* Two interpolated endpoints

 Two midpoints control the tangent at the endpoints

Al
-’ ~
-’ ~.
#’ ~
~.
-, ~
-’ ~
~
-, ~
-’ ~,
-’ ~
-’ ~.
L ~.
~
-, ~
~.
‘\\ L]
~.,
~
~.
~
~.
~
~
~
~
~.
~
~

.
\\

~
®
’

/
/
/
/
/
/
/
/
/

7
’
s
-’

P;

Bezier Curve formulation

* Three alternatives, analogous to linear case
1. Weighted average of control points

2. Cubic polynomial function of ¢

3. Matrix form

* Algorithmic construction
* de Casteljau algorithm

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's algorithm

* A recursive series of linear interpolations
* Works for any order, not only cubic

* Not terribly efficient to evaluate
* Other forms more commonly used

 Why study it?
* Intuition about the geometry
e Useful for subdivision (later today)

de Casteljau Algorithm

* Given the control points
* Avalue of ¢
* Here =0.25

~
~
~
~.
~
~
~
~
.,
~

SS
~
S
~

~
~.
~
~
~,
~
.,
~

P;

~
~.
~
~
~,
~
..
~

de Casteljau Algorithm

q, ()= Lerp(t,po ’pl)
q,(t) = Lerp(t,p,.p,)
q,(t) = Lerp(t,p,.p;)

P;

de Casteljau Algorithm

r,(t) = Lerp(t.q,(1).q, (1))
r,(t) = Lerp(t.q,(1).q,())

/‘\
bd
7
7
7
P .
T -
- RSN
0. N
- -~ N ~
_____ c S N
ﬁ‘\
Y

de Casteljau Algorithm

x(t) = Lerp(t,r,(1).r,(1))

de Casteljau algorithm

* Applets

* http://www?2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html

P;

* http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html

40

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

oP, oP,
t=0 OP1 .PO t=0 0P2
Linear Quadratic
Py oP, P oP,
oP,
P t=0 oP, Po t=0 oP,
Cubic Quartic

41

Recursive linear interpolation

P

P,

P;

P,y

Py
P,
P,

Recursive linear interpolation

Recursive linear interpolation

q, = Lerp(t,po,pl) EO
q, = Lerp(t,pl,pz) 1
q, = Lerp(t,p,.p;)

Ih = Lerp(taQanl)

I =L€I’p(t,q1,q2) P>

P;

Recursive linear interpolation

q, = Lerp(t,po,pl) EO
q, = Lerp(t,pl,pz) 1
q, = Lerp(t,p,.p;)

Ih = Lerp(taQanl)

=5 *>70°
X erp(t r() rl)rl — Lerp(t,qlan)

P,

P;

Expand the LERPs

q, ()= Lerp(t,po,pl)= (1 - t)po + 1P,
q,(?) = Lerp(t,pl,p2)= (1 - t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 — t)pz +1P;

Expand the LERPs

q, ()= Lerp(t,po,pl)= (1 - t)po + 1P,
q,(?) = Lerp(t,pl,p2)= (1 - t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 — t)pz +1P;

r, (1) = Lerp(t,q,(t),q,(?))
r,(1) = Lerp(1.q,(1).q, (1))

Expand the LERPs

q, ()= Lerp(t,po,pl)= (1 - t)po + 1P,
q,(?) = Lerp(t,pl,p2)= (1 - t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 — t)pz +1P;

r,(t) = Lerp(t,9,(1).q,())= (1=t (1= t)p, + 10,)+t (1-1)p, +1p,)
5,(1) = Lerp(.q,(1),q, ()= (1=)(1-1)p, +1p,)+ 1 ((1-1)p, +1p,)

Expand the LERPs

q, ()= Lerp(t,po,pl)= (1 - t)po + 1P,
q,(?) = Lerp(t,pl,p2)= (1 - t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 — t)pz +1P;

r,(t) = Lerp(t,9,(1).q,())= (1=t (1= t)p, + 10,)+t (1-1)p, +1p,)
5,(1) = Lerp(.q,(1),q, ()= (1=)(1-1)p, +1p,)+ 1 ((1-1)p, +1p,)

x(t) = Lerp(,5,(t),r,(t))

Expand the LERPs

q, ()= Lerp(t,po,pl)= (1 - t)po + 1P,
q,(?) = Lerp(t,pl,p2)= (1 - t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 — t)pz +1P;

r,(t) = Lerp(t,9,(1).q,())= (1=t (1= t)p, + 10,)+t (1-1)p, +1p,)
5,(1) = Lerp(.q,(1),q, ()= (1=)(1-1)p, +1p,)+ 1 ((1-1)p, +1p,)

x(t) = Lerp(,5,(t),r,(t))
=(1- t)((l —t)(A-1)p, +p,)+t ((1-1)p, + tpz))
+t((1 —t)(A-1)p, +1p,)+t ((1-1)p, + tp3))

Weighted average of control points
* Regroup

x()=(1-0) (-)= 1)p, +m,)+ (1-1)p, + p,))
+1 ((1 —e)((1—-1)p, +mp,)+1((1-1)p, + tp3))

Weighted average of control points
* Regroup

x()=(1-0) (-)= 1)p, +m,)+ (1-1)p, + p,))
+1 ((1 —e)((1—-1)p, +mp,)+1((1-1)p, + tp3))

x(t)=(1-1)p, +3(1—1) tp, +3(1—1)’p, + 'p,

Weighted average of control points
* Regroup

x()=(1-0) (-)= 1)p, +m,)+ (1-1)p, + p,))
+1 ((1 —e)((1—-1)p, +mp,)+1((1-1)p, + tpS))

x(t)=(1-1)p, +3(1—1) tp, +3(1—1)’p, + 'p,

BOJSt) Bl,st)

X(1) = (—t3 + 317 -3t + 1>p0 + (3t3 — 61" + 3t>p1

+(—3t3 + 3t2)p2 + (t3)p3
\ 2

B;Et) Bs (1)

Bernstein polynomials

Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein _polynomial

x(t)= B,(t)p, + B, (t)p, + B, (¢)p, + B,(¢)p,

Bernstein Cubic Polynomials

The cubic Bernstein polynomials : T
3 2 N
By(t)=—1"+3=3t+1 o8| \
B, (t)z 3t° —61° + 3t HE R“x.,& B,(1) B/(1) B,(t) B,
.
_ 3 2] ‘\‘\ - -
82 (t) - _3t + 3t 0 4: #xe;\—': —-—-.____:}:: T 'h«,_m\
.3 \\"x;f_,f"; HH "‘\,H\
B3 (t) _ t |:|2' Jr.—""lJ ._/,f' "x_‘x _M‘Hx .“'\."
|/ e > TN
> B(=1 [e N
o 0.2 04 , 06 0.8

* Partition of unity, at each ¢ always add to 1
* Endpoint interpolation, B,and B; goto 1

o4

General Bernstein polynomials

By(t)=-t+1
B/(t)=t

General Bernstein polynomials

By(t)=—t+1 Bi(t)=t>-2t+1
B/(t)=t B (t)=-2t"+2t
B:(t)=¢

56

General Bernstein polynomials

By(t)=-t+1 Bi(t)=t>-2t+1 Bj(t)=—t+3t>-3t+1

B/(t)=t B (t)=-2t"+2t B’ (t)=3t" -6t +3t
B:(t)=¢ B (t)=-3t+3¢t
Bi(1)="r

o7

General Bernstein polynomials

By(t)=—t+1 Bi(t)=t>-2t+1
B/(t)=t B (t)=-2t"+2t
B:(t)=¢

Ordern: B! ()= @ (=) (1) @ - i!(n”;i)!

Bi(t)=—1+3t> -3t +1
B’ (t)=3t" -6t +3t

B (t)=-3t"+3t
Bi(1)="r

\\
"
b

!

ZBi”(t)zl

Partition of unity, endpoint interpolation

58

General Bézier curves

* nth-order Bernstein polynomials form nth-order
Bézier curves

* Bézier curves are weighted sum of control points
using nth-order Bernstein polynomials

Bernstein polynomials . (n) i
of order n: B (t):kiJ (1-1)"(r)

Bézier curve of order n: x(t)= Zn:Bi” (1)p,
i=0

Bézier curve properties

e Convex hull property
* Variation diminishing property

* Affine invariance

Convex hull, convex combination

* Convex hull of a set of points

* Smallest polyhedral volume such that
(i) all points are in it
(ii) line connecting any two points in the volume lies completely
inside it (or on its boundary)

* Convex combination of the points

* Weighted average of the points, where weights all between 0 and
I, sumuptol

* Any convex combination always lies within the convex hull

Convex hull

61

Convex hull property

e Bézier curve is a convex combination of the control
points
* Bernstein polynomials add to 1 at each value of ¢

* Curve is always inside the convex hull of control points
* Makes curve predictable

* Allows efficient culling, intersection testing, adaptive
tessellation

62

Variation diminishing property

* If the curve is in a plane, this means no straight line
intersects a Bézier curve more times than it intersects
the curve's control polyline

e “Curve is not more wiggly than control polyline”

Yellow line: 7 intersections with control polyline
3 intersections with curve 63

Affine invariance

* Two ways to transform Bézier curves

1. Transform the control points, then compute resulting
point on curve

2. Compute point on curve, then transform it

 Either way, get the same transform point!

e Curve is defined via affine combination of points (convex
combination is special case of an affine combination)

* Invariant under affine transformations
e Convex hull property always remains

Cubic polynomial form

Start with Bernstein form:

X(1) = (—t3 +3t7 -3t + 1)pO + (3;3 — 61> + 3t)p1 n (—31‘3 4+ 372)p2 N (t3)p3

Cubic polynomial form

Start with Bernstein form:

X(1) = (—t3 +3t7 -3t + 1)pO + (3;3 — 61> + 3t)p1 n (—31‘3 4+ 372)p2 N (t3)p3

Regroup into coefficients of 7 :

x(t)=(-p, +3p, - 3p, +p,)’ +(3p, —6p, +3p,)t* +(-3p, +3p,)t + (p, 1

Cubic polynomial form

Start with Bernstein form:

x(r)= (=12 +3r* = 3t + 1)p, + (37 = 612 + 3¢)p, + (=3¢° + 3¢ Jp, + (> Jp,

Regroup into coefficients of ¢ :

x(1)=(-p, +3p, - 3p, +p,)’ +(3p, — 6p, +3p,)’ +(-3p, +3p,)t +(p,)1

a=(-p,+3p, - 3p, +p;)
b= (31)0 —6p, + 3p2)
= (—3p0 + 3p1)

d= (p())
* Good tor tast evaluation, precompute constant
coefficients (a,b.c.,d)

x(t)=at’+bt’ +ct+d

Cubic polynomial form

Start with Bernstein form:

X(1) = (—t3 + 3t =3t + l)po + (3t3 — 6t + 3,f)p1 n (_3t3 + 342)p2 N (t3)p3

Regroup into coefficients of ¢ :

x()=(-p, +3p, - 3p, +p,)’ + (3p, — 6p, +3p,)t* +(-3p, +3p,)t + (p,)1

a=(-p,+3p,—3p, +p;)
b= (31)0 —6p, + 31)2)
Cc= (—3pO + 3p1)

d=(p,)

* Good for fast evaluation, precompute constant
coefficients (a.b,c,d)

* Not much geometric intuition

x(f)=at’ +bt* +cr +d

Cubic matrix form

3
X(l‘)=[p0 Pr P p3] 3 3 0
0

- J o]
e ~ ——

GBez BBez T
* Can construct other cubic curves by just using different

basis matrix B

* Hermite, Catmull-Rom, B-Spline, ...

Cubic matrix form

e 3 parallel equations, in x, y and z:

Xx(t):[pOx Py Pax p3x]

Xy(t):[poy Py Pay p3y:|

x."=[ps. P. Pr Ps]

S O W

Matrix form

* Bundle into a single matrix
I-1 3 =3 1]#
pOx plx p2x p3x 3 _6
XW)=|Poy Py P Pyl 5 5
p()z plz pZZ p3z 1 O

X(1) =G, B, T
x(1)=CT

e Efficient evaluation

* Precompute C
* Take advantage of existing 4x4 matrix hardware support

Drawing Bézier curves

* Generally no low-level support for drawing smooth
curves

* |.e., GPU draws only straight line segments

* Need to break curves into line segments or
individual pixels

* Approximating curves as series of line segments
called tessellation

* Tessellation algorithms
e Uniform sampling
* Adaptive sampling
* Recursive subdivision

Uniform sampling

e Approximate curve with N-1 straight segments
* N chosen in advance

* Evaluate i
x, = x(t,) where 1, = I fori =0,1,...,N
3 .2 .
—al bl iectlia
» Connectth™i =& TP T C0
* Too few points? x(£)

* Bad approximation
e “Curve” is faceted

* Too many points?
* Slow to draw too many line segments
* Segments may draw on top of each other

Adaptive Sampling

* Use only as many line segments as you need
* Fewer segments where curve is mostly flat
* More segments where curve bends
* Segments never smaller than a pixel

 VVarious schemes for sampling,
checking results, deciding whether
to sample more

x(?)

Recursive Subdivision

* Any cubic (or k-th order) curve segment can be
expressed as a cubic (or £-th order) Bézier curve

“Any piece of a cubic (or £-th order) curve is itself a
cubic (or £-th order) curve”

* Therefore, any B€zier curve can be subdivided into
smaller Bézier curves

de Casteljau subdivision

e de Casteljau construction points
are the control points of two Bézier
SUb-SegmentS (po,qo,ro,X) and (X9r19q29p3) Ps

Adaptive subdivision algorithm

1. Use de Casteljau construction to split Bézier segment
in middle (~=0.5)

2. For each half
 |f “flat enough”: draw line segment
e Else: recurse from 1. for each half

* Curve is flat enough if hull is flat enough

* Test how far away midpoints are from straight segment
connecting start and end
* If about a pixel, then hull is flat enough

Today

Curves

* Introduction

* Polynomial curves

* Bézier curves

* Drawing Bézier curves
* Piecewise curves

More control points

* Cubic Bézier curve limited to 4 control points
e Cubic curve can only have one inflection
* Need more control points for more complex curves

* k-1 order Bézier curve with &k control points

End control segments
control end-tangents

* Hard to control and hard to work with
* Intermediate points don’t have obvious effect on shape

* Changing any control point changes the whole curve

* Want local support
e Each control point only influences nearby portion of curve

Piecewise curves (splines)

* Sequence of simple (low-order) curves, end-to-end

* Piecewise polynomial curve, or splines
http://en.wikipedia.org/wiki/Spline (mathematics)

e Sequence of line segments
* Piecewise linear curve (linear or first-order spline)

e

e Sequence of cubic curve segments
* Piecewise cubic curve, here piecewise Bézier (cubic spline)

80

Piecewise cubic Bezier curve

e Given 3N +1 points p,,p,---,Psy
e Define N Bézier segments:

X, (1) = B,(t)p, + B,()p, + B,(t)p, + B;(1)p;

Xy_1(8)=By(t)Psy_5+ B (O)Psy_, + B,(H)Psy_, + B5(1)Psy

81

Piecewise cubic Bezier curve

* Global parameter u, 0<=u<=3N

x,(Lu), 0<u<3
Tu-1), 3<u<é6
X(u)=<:X1(3u) N
Xy (Gu—(N-1), 3N-3<u<3N

x(u)=x,(3u—i), wherei=|1u
/x(8.75)

N

—

u=0 o
x(3.5)

u=12

82

Continuity

Want smooth curves

CO continuity
* No gaps
* Segments match at the endpoints

C! continuity: first derivative is well defined
* No corners
* Tangents/normals are C° continuous (no jumps)

C? continuity: second derivative is well defined
* Tangents/normals are C! continuous
* Important for high quality reflections on surfaces

Co continuit/.-\ Cy & C continuity

=) - =

Cy & C; & C, continuity

‘.

83

Piecewise cubic Bezier curve

* CY continuous by construction

* C! continuous at segment

endpoints ps; if p3; - Ps3i.; = P3iv1 - P3;i
* C%is harder to get

C% continuous C! continuous

Piecewise cubic Bezier curves

e Used often in 2D drawing programs

* [nconveniences

 Must have 4 or 7or 10 or 13 or ... (1 plus a multiple of 3)
control points

* Some points interpolate (endpoints), others
approximate (handles)

* Need to impose constraints on control points to obtain
C! continuity
* C?continuity more difficult

e Solutions

* User interface using “Bézier handles”
* Generalization to B-splines, next time

Bézier handles

* Segment end points (interpolating) presented as curve
control points

* Midpoints (approximating points) presented as
“handles”

* Can have option to enforce C! continuity

Free

_ ‘ o
‘jAligﬂed

[www.blender.org] Adobe Illustrator 86

