CMSC427
Parametric surfaces
(and alternatives)

Generating surfaces

* From equations
* From data
* From curves

* Extrusion I/ = L‘ W
e Straight -
* Along path
e Lathing (rotation) f.

* Lofting

Path

2D Profile

Resulting
Extrude Along
Path 3D Object

Constructive Solid Geometry (CSG)

* Alternative/supplement to parametric shapes

* Vocabulary:
» Basic set of shapes (sphere, box, cylinder, etc)

Set operations on shapes

Union

Intersection

Difference

- ®
/ v\

* Tinkercad . 0 ’ /~!;\
)

* Demo / n\\

Constructive Solid Geometry (CSG)

 Computer Aided Design (CAD)

* Precise 3D modeling for industrial design

 Less freeform, more control and feedback on shapes

e Often compiled (openScad.org)

cube([2,3,4]);
translate([3,0,0])
{
cube([2,3,4]);
}

color([1,0,0]) cube([2,3,4]);

translate([3,0,0])
color([0,1,0]) cube([2,3,4];

translate([6,0,0])
color([0,0,1]) cube([2,3,4]);

POVRAY

e Stale but interesting ray tracing software
* Scene description language (SDL)
* Pixar’s Renderman

#include "colors.inc"
background { color Cyan }
camera {

location <0, 2, -3>

look_at <0, 1, 2>

}
sphere {

<0, 1, 2>, 2

texture {

pigment { color Yellow }

}
}
light_source {
<2, 4, -3>

color White

}

POVRAY

* Support CSG operations

union {
box { <1, 1, 1>, <2, 2, 2>}
sphere{ <1.5, 1.5, 1.5>, 1 }
}

Piecewise Bezier curves

* Each segment spans four control points
* Each segment contains four Bernstein polynomials
* Each control point belongs to one Bernstein polynomial

//_\\

- :

’ u=12
u=
Bernstein \
polynomials . < ©

P p _\\,-. \\\

| 02 04 , 06 08 ' 1'= u

0 12 7

Curved surfaces

Curves

* Described by a 1D series of control points

* A function x(7)

* Segments joined together to form a longer curve
Surfaces

* Described by a 2D mesh of control points

* Parameters have two dimensions (two dimensional
parameter domain)

* A function x(u,v)
* Patches joined together to form a bigger surface

Parametric surface patch

* x(u,v) describes a point in space for any given (u,v) pair
* u,veachrange fromOto1

* 0

|
u

2D parameter domain

Parametric surface patch

* x(u,v) describes a point in space for any given (u,v) pair
* u,veachrange fromOto1

1

* Parametric curves 2D parameter domain
* For fixed u,, have a v curve x(u,,v)

* For fixed v,, have a u curve x(u,v,)

e For any point on the surface, there is one pair
of parametric curves that go through point

10

Tangents
* The tangent to a parametric curve is also tangent to the
surface

* For any point on the surface, there are a pair of (parametric)
tangent vectors

* Note: not necessarily perpendicular to each other

11

Tangents

Notation
* Tangent along u direction

ox 9,

5 —(u,v) or %X(u v) or Xy (U, V)
* Tangent along v direction

aX(u v) or gx(u v) or Xy(u,v)
ov ov

* Tangents are vector valued functions, i.e., vectors!

Surface normal

* Cross product of the two tangent vectors
Xy (U, V) X X,(u, v)
* Order matters (determines normal orientation)

e Usually, want unit normal
* Need to normalize by dividing through length

13

Bilinear patch

* Control mesh with four points py, Py, P2, P3

* Compute x(u,v) using a two-step construction

Bilinear patch (step 1)

* For a given value of u, evaluate the linear curves on the two
u-direction edges

e Use the same value u for both:

q=Lerp(u,p,,p3)

q;

Ps;

P

qo=Lerp(u,py,py)

Bilinear patch (step 2)

* Consider that q,, q; define a line segment

e Evaluate it using v to get x

X = Lerp(vaq() 7q1)

Py, q;

Bilinear patch

* Combining the steps, we get the full formula

X(u,v) = Lerp(v,Lerp(u,p,,p,),Lerp(u,p,,p;))

Bilinear patch

* Try the other order

e Evaluate first in the v direction

l.0 — Lerp(vap() 9p2) l.1 = Lerp(vaplapg)

Bilinear patch

* Consider that ry, r, define a line segment

e Evaluate it using u to get x

X = Lerp(u,r,,r,)

Bilinear patch

 The full formula for the v direction first:

X(u,v) = Lerp(u,Lerp(v,p,,p,),Lerp(v,p,,P;))

Bilinear patch

* |t works out the same either way!

x(u,v) = Lerp(v,Lerp(u,p,.p,),Lerp(u,p,,p,))
X(u,v) = Lerp(u,Lerp(v,p,,pP,),Lerp(v,p,.P;))

Bilinear patch

e \isualization

22

Bilinear patches

* Weighted sum of control points

x(u,v) = (1-u)(1—v)po+u(l—v)p1+ (1 —u)vps+uvp;
* Bilinear polynomial

x(u,v) = (Po—P1—P2+P3)uv+(P1—Po)u+(P2—Po)v+Po

 Matrix form exists, too

Properties

Interpolates the control points

The boundaries are straight line segments

If all 4 points of the control mesh are co-planar, the patch is flat

If the points are not coplanar, get a curved surface
* saddle shape, AKA hyperbolic paraboloid

The parametric curves are all straight line segments!
* a (doubly) ruled surface: has (two) straight lines through every point

p: p: .

P, /NO 1P,

Bicubic Bézier patch

* Grid of 4x4 control points, p, through p,;

* Four_rows of control points define Bézier curves along u
DosP15P25P3) P4sPs:PesP7> PssP9sP10sP11> P12:P13:P145P15

1 4

* Four columns define Bezier curves along v

; P1sP6:P9osP13> P2oP6sP10sP14> P3sP7:P115P15

25

Bicubic Bézier patch (step |)

e Evaluate four u-direction Bézier curves at u

* Get intermediate points q, q;

q, = Bez(u,py,P:-P2-P3)
q, = Bez(u,p,.Ps.Ps-P7)
q, = Bez(u,pg,Py.Pyo-P;;)
q; = Bez(u,p5,P13:P1s>Pi5)

26

Bicubic Bézier patch (step 2)

* Points q, ... q; define a Bézier curve

e Evaluateitatv

X(M,V) — BeZ(vaqo 7q1 9q2 9q3)

27

Bicubic Bézier patch

e Same result in either order (evaluate u before v or vice versa)

q, = Bez(u,p,,p,,p,,pP;) r, = Bez(v.p,.p,.Ps-Piy)
q, = Bez(u,p,,ps .Pe-P-) I, = Bez(v,p,.Ps.Py-Pi3)
q, = Bez(u,pg,Py-Pyo,Py;) < r, = Bez(v,p,,P¢:P1o-P14)
q, = Bez(u,p,,.Py3:P1asPis) r, = Bez(v.p;,p;.Py1>Pis)
x(u,v) = Bez(v,q,.9,.9,,9;) x(u,v) = Bez(u,r,,r,,I,,I;)

28

Tensor product formulation

* Corresponds to weighted average formulation

e Construct two-dimensional weighting function as
product of two one-dimensional functions

* Bernstein polynomials B, B, as for curves

e Same tensor product construction applies to higher
order Bézier and NURBS surfaces

X(u,v) = 2> Pi,jBi(u)Bj(v)

Bicubic Bezier patch: properties
e Convex hull: any point on the surface will fall within the
convex hull of the control points
* Interpolates 4 corner points
* Approximates other 12 points, which act as “handles”

* The boundaries of the patch are the Bézier curves defined
by the points on the mesh edges

* The parametric curves are all Bé€zier curves

30

Tangents of Bézier patch

* Remember parametric curves x(u,v,), X(u,,v) where v, u, is
fixed

* Tangents to surface = tangents to parametric curves
* Tangents are partial derivatives of x(u,v)

* Normal is cross product of the tangents

31

Tangents of Bézier patch

q, = Bez(u,p,.p,.p,.pP;)
q, = Bez(u,p,.ps.ps.P;)
q, = Bez(u,ps,py.Pyo-Pi1)

q; = Bez(u,p,,P5,P14-P;5)

1)
5(14,1/) = Bez'(v,q,,9,,4,,95)

r, = Bez(v.p,.P,.Ps-P),)
rl = B€Z(V,p1 ’ps 9p9 ’p13)
r, = BeZ(V,p2 'PssPiro ’p14)

r; = Bez(v,p3,P7 Py >p15)
OX

a—u(u,v) = Bez'(u,r,,r,,r,,r;)

32

Tessellating a Bézier patch

* Uniform tessellation is most straightforward
* Evaluate points on uniform grid of u, v coordinates
* Compute tangents at each point, take cross product to get per-

vertex normal
* Draw triangle strips (several choices of direction)

» Adaptive tessellation/
* Potential for “cracks” jispatches on opposite sides of an edge divide

differently
* Tricky to get right, but can be done

Piecewise Bezier surface

* Lay out grid of adjacent meshes of control points

* For C°continuity, must share points on the edge

» Each edge of a Bézier patch is a Bézier curve based only
on the edge mesh points

* So if adjacent meshes share edge points, the patches
will line up exactly

* But we have a crease...

Grid of control points Piecewise Bézier surface

34

C! continuity

* Want parametric curves that cross each edge to
have C! continuity

* Handles must be equal-and-opposite across edge

CO continuous C! continuous

[http://www.spiritone.com/~english/cyclopedia/patches.html]

35

Modeling with Bézier patches

* Original Utah teapot specified as

Bezier Patches
http://en.wikipedia.org/wiki/Utah_teapot

e/

I
4

e L
/[AR A7 T BT VN
/7 / f/ \\ \\ \\ /{/ / f/ & \\ \\ \}\ ,,j-—ﬁ
T 1 T THEWw T 1 -
ol T o Uy
\\ // / ANEAY \\ 'If ./,/

36

Subdivision surfaces

e Goal

* Create smooth surfaces from small number of control
points, like splines

* More flexibility for the topology of the control points
(not restricted to quadrilateral grid)

* |dea
 Start with initial coarse polygon mesh

* Create smooth surface recursively by
1. Splitting (subdividing) mesh into finer polygons
2. Smoothing the vertices of the polygons
3. Repeat from 1.

Subdivision surfaces

http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark subdivision_surface

-»@ -»@-»

Input mesh Subdivision Subdivision
& smoothing & smoothing

Limit surface

Subdivision
& smoothing

38

Loop subdivision

* Subdivision
 Split each triangle into four

* Smoothing
* New vertex positions as weighted average of neighbors

e Different cases Loop

http://en.wikipedia.org/wiki/Loop_subdivision_surface

1/8 B
P Cases for f3:

/8 Number of

neighbors n

http://graphics.stanford.edu/~mdfisher/subdivision.html 39

Subdividing sphere

* Divide triangle ABC into four new triangles

* Extend rays to sphere surface to compute new
vertices

40

Subdivision surfaces

Arbitrary mesh of control points

Arbitrary topology or connectivity

* Not restricted to quadrilateral
topology

* No global u,v parameters

Work by recursively subdividing mesh
faces

Used in particular for character animation

* One surface rather than collection of
patches

e Can deform geometry without
creating cracks

Subdivision surfaces
41

