
The Security of Aguilar-Melchor and Gaborit’s
Lattice-Based Private Information Retrieval Protocol

Richard Roberts, Dennis Sell, Terry Sun
{ricro,selld,terrysun}@seas.upenn.edu

March 30, 2015

Abstract

The lattice-based Private Information Retrieval (PIR) protocol by Aguilar-Melchor
and Gaborit [4] provides an alternative to the number-theoretic schemes protocols for
single-server computational PIR that came before it. With slightly greater communi-
cation costs, their scheme improves the computational performance by two orders of
magnitude. However, this scheme has not been reduced to an NP-Hard problem, nor
have lattice attack techniques been successful in attacking this protocol. Thus, little is
known about the security of this protocol. In this paper, we first provide a summary
of the scheme, its background, and its security analysis presented by the original au-
thors. We then build upon their work in an attempt to determine security properties
of the scheme.

1 Introduction
Private Information Retrieval (PIR) schemes are methods of accessing information from a
database while at the same time hiding from the server which element is being accessed.
There exist both single-server and multi-server PIR schemes, which fall generally into
two camps: computational PIR, based on the assumption that a polynomially-bounded
adversarial database cannot decipher the query that it’s presented with, and information-
theoretic PIR, which posits that it is impossible to calculate (given infinite resources) the
targeted information.

More formally, we define single-server PIR as follows:

Definition 1.1. Single-Server PIR Problem: There is a server which possesses a database
M composed of n elements. A requester wishes to access element mi0 from the database.
The requester sends a query V to the server and the server computes a response r which is
returned. The server must not be able to determine the index k given V and the requester
must be able to determine the value of mk from r.

The scheme proposed by Aguilar-Melchor and Gaborit, which we will refer to as the
Aguilar-Melchor Gaborit Scheme, is a single-server scheme and is an example of compu-
tational PIR.

A very simple (the "trivial scheme") single-server PIR protocol is to simply have the
server return the entirety of the database at every request. This is information theoretically

1

secure, but it requires a large amount of communication to be sent upon every request.
In an attempt to reduce communication requirements, computation-based proposals have
been suggested. Lipmaa [3] and Gentry and Ramzan [1] provide two such schemes against
which Aguilar-Melchor and Gaborit compare their protocol. These schemes— along with
most if not all others—are based on number-theoretic cryptographic primitives, and are
among the most practical of these. Compared to the trivial solution, these schemes greatly
reduce the the amount of communication needed but at great computational cost.

The Aguilar-Melchor Gaborit Scheme is a a proposed alternative scheme which pro-
vides middle ground between the computation-heavy number theoretic schemes and the
communication-heavy information-theoretic solutions. This scheme, the authors hope, will
provide a more practical PIR protocol, aiming for moderate computation, communication,
and time costs. However, little is known about the security of this scheme. In the original
paper, the authors discussed the connection between the security of this scheme and an
NP-Hard problem, but could not show a reduction. The paper also discussed reasons why
lattice attacks were unlikely to work, yet the security of the scheme is not well understood,
prompting further research into the matter.

Our goals for this paper were to attempt to make progress on any of the following
regarding the security of the Aguilar-Melchor Gaborit Scheme:

1. Prove the NP-Hardness of the computational problem behind their scheme.

2. Apply lattice attacks and techniques from related work to break or weaken the
scheme.

3. Consider the proposed parameters of the scheme, and attempt to see if any opti-
mizations can be performed or show that the proposed parameters are insufficient
for security.

Note that, as with the knapsack-based cryptosystems, we can both reduce the scheme
in question to a hard problem, which proves that in the worst case the underlying problem
is difficult, and yet also devise a lattice-based attack, which demonstrates that the problem
is not as difficult in the average case.

We will organize our paper as follows. In Section 3, we will discuss the scheme proposed
by Aguilar-Melchor and Gaborit, with an emphasis on query formation. Then we will
discuss in Section 4 the lattice-based problems upon which the protocol is based, the
Hidden Lattice Problem and the similar Differential Hidden Lattice Problem, and their
relation to known hard problems. In Section 2, we introduce related work which will be
of relevance for analyzing the security of this scheme. Finally, we discuss our attempts to
determine security properties of the scheme in Section 5.

2 Related Work
We looked to relevant research for help in analyzing the security of the Aguilar-Melchor
Gaborit Scheme. The first source we examined was Nguyen and Stern’s overview of the
use of lattices in cryptology [6] which summarizes the algorithmic and theoretic work
surrounding lattices, the use of lattices to break cryptographic schemes, and the attempted
use of lattices to construct cryptographic schemes. This paper provided useful breadth
and understanding of lattice topics mentioned briefly in class, and gave us a good starting

2

point for this project. However, as we delved deeper into the PIR scheme at hand, we
realized that it was less possibly relevant than we originally believed.

Additionally, we examined the attack on the Goldreich-Goldwasser-Halevi public key
system [5] as the attack also involves analyzing noise and using lattice attacks. The attack
was performed by first noting that the nature of the noise ensured that information was
leaked about the message vector m. This was mainly due to the fact that the noise was
of the form {±σ}n for some selected σ. This allows one to find the value of m mod 2σ.
From here, one can utilize this information to convert the problem of finding the message
to a relatively easy instance of the Closest Vector Problem (CVP).

3 Aguilar-Melchor Gaborit Scheme
This scheme is composed of three separate protocols:

• Query Formation: a requester computes the query to be sent to the database, ob-
fuscating the target in the process

• Server Response: the computation done by the database, which must correctly en-
code the elements of the database such that the server cannot determine what the
target of the query was but the requester will be able to reverse the obfuscation)

• Information Extraction: the requester’s final stage, wherein the server response is
decoded into the desired database element by using information known only to the
requester

3.1 A High-Level Discussion
The security of the scheme is dependent on the server being unable to distinguish the
target element given generated query, so the focus of our cryptanalysis will lie with the
results of the first protocol (Query Formation), as the query comprises the information
that the server has access to. The main importance of the other two protocols is in proving
the correctness of the scheme itself, which is shown in the original paper (and discussed
here)–after all, if the requester cannot decipher the server’s response, the scheme is as
good as useless.

The heart of this protocol lies in the addition of controlled noise in the form of randomly
generated "soft noise" matrices (with elements in {±1}) and a single "hard noise" matrix (a
soft noise matrix, with elements along the diagonal multiplied by q). The scheme proposes
that a hard noise matrix (indicating the target of the query) is indistinguishable from a set
of soft noise matrices after a series of obfuscastion techniques corresponding to randomly
generated elements. The server, which does not have this private information, is unable
to discover the target of the query. However, the requester is able to use the knowledge of
its randomly chosen matrices—as well as the property that q � 1—to decipher the server
response and recover the desired information.

To generate a query, the requester produces an ordered set of n matrices (one for each
element in the database), of dimension N × 2N . These matrices share a common basis M
of some lattice, and each have a controlled amount of noise added to the right-hand half of
the matrix (ie. a noise matrix Di∆ is added to a matrix M ′i by computing M ′i + [0|Di∆]).
n− 1 of these matrices have a small amount of noise added ("soft noise matrix", or SDM)

3

and the final matrix, which is the target of the query and corresponds to the i0th element,
has a larger amount of noise added ("hard noise matrix", or HDM). Then, a common,
random permutation is applied to each matrix to form the final set of matrices sent in the
query.

3.2 The Protocols
The scheme contains some global integer parameters. The database is formed of n l-bit
elements, and we denote with i0 the element in the database which we wish to query for.

Each element in the database will further be split into N sub-elements during the server
response. (Note that the dimension of the lattice is 2N .) Each sub-element is an integer
can be represented in l0 bits, where l0 = dlog(n×N)e+ 1.

Below, we present the three protocols defined in the Aguilar-Melchor Gaborit Scheme.

3.2.1 Query Formation

1. Fix query parameters q = 2l0 , and p some prime such that p > 23l0 .

2. Generate two N ×N matrices in Z/pZ, A and B, such that A is invertible. Create
the N × 2N matrix M = [A|B]

3. Generate the N × N scrambling matrix ∆ ∈ Z/pZ as a random diagonal matrix.
This will be applied to both the hard and soft noise matrices to obfuscate them and
disguise which type of noise belongs to each matrix.

4. For each i ∈ {1, . . . , n}, generate a random N ×N matrix Pi ∈ Z/pZ and compute
the matrix M ′′i = PiM = [Ai|Bi]

5. For each M ′′i = [Ai|Bi], compute M ′i by adding to Bi some scrambled noise matrix
Di∆. Di is hard noise for the target of the query and soft noise otherwise.

• For each i ∈ {1, . . . , n} \ i0 (that is, for every element other than the query
target), generate an N × N soft noise matrix Di over {−1, 1}. Compute the
softly disturbed matrix (SDM) by adding Di∆ to the right half of the matrix
M ′′i . Thus, let M ′i = M ′′i + [0|Di∆] = [Ai|Bi +Di∆].

• For i0, the target of the query, generate the hard disturbed matrix Di0 by gen-
erating a soft noise matrix and replacing each element along the diagonal with
q. Then compute the hard disturbed matrix (HDM) M ′i0 = M ′′i0 + [0|Di0∆] =
[Ai|Bi +Di∆]

6. Choose a random column permutation P(·) and apply it to each matrix, ie., for each
i ∈ {1, . . . , n}, compute Mi = P(M ′i).

7. Send the ordered set {M1, . . . ,Mn} as the query to the database.

We believe that the security of this scheme lies in its random generation. Because
of the scrambling matrix ∆, there is no easily discernable linear relationship between
soft and hard noise matrices that are used to create noise in the query. The random
permutation, along with multiplication of the original basis M with randomly generated
invertible Pi, renders the server unable to distinguish which columns of the matrix were
disturbed with noise (this is similar to the Hidden Lattice Problem, which is further
discussed in Section 4.1.

4

3.2.2 Server Response

The server receives the set {M1, . . . ,Mn} and constructs the response vector V of length
2N .

1. Split each database element mi into a vector of N l0-bit integers, {mi1, . . . ,miN}.

2. For each vector mi, construct the response vi =

N∑
j=1

mijMij . Each jth element in

the vector mi is multiplied by the jth row of the matrix Mi in the query vector.

3. Construct V by summing each element vector, V =

N∑
j=1

vj .

3.2.3 Information Extraction

Upon recieving the server response V , the requester is then able to extract the hard noise
and determine the element of interest mk. This can be done using the values of P, ∆, A,
B, and q decided on in the query formation.

1. Compute the non-permuted noisy vector V ′ = P−1(V).

2. Retrieve S = VD−VUA−1B, the scrambled noise, VU and VD being the undisturbed
and disturbed halves of V .

3. Compute the unscrambled noise: E = S∆−1.

4. For each ej in E = [e1, · · · eN], round ej to the nearest multiple of q giving us values
E′ = [e′1, · · · e′N].

5. For each j ∈ {1, · · · , N}, compute mi0j = e′jq
−1.

3.3 Correctness
This PIR scheme is built upon the fact that the hard noise is extractable from the server
response. As the authors note, each element ej will have the value

ej = mkjq +
∑

i∈{1···n}\i0

N∑
k=1

mi0k (Di)jk

It is important to note that each element l0-bit integer mij is clearly bounded by 2l0 ,
and each element in any soft noise matrix is ±1. Additionally, the choice of a value for
l0 implies that 2l0−1 > n ·N . Hence the absolute value of the summation on the right is
upper bounded by

∑
i∈{1···n}\i0

N∑
l=1

2l0 (Di)jk ≤ n ·N · 2
l0 < 2l0−1 · 2l0 = 22l0−1 = q/2

Hence, the soft noise is less than half of q, so rounding to the nearest value of q will
result in themi0jq. This value is less than p, which allows the final step of the last protocol
to extract mi0j , e′jq−1 = mi0jqq

−1 = mi0j , proving the correctness of this scheme.

5

Figure 1: Performance Analysis

3.4 Performance
Fig. 1 is taken directly from Aguilar-Melchor and Gaborit’s original paper [4]. The com-
parison is based on the query and download for a 3Mb file from a database with 1000
elements.

One of the major advantages of this PIR scheme over previously existing schemes is its
performance. Aguilar-Melchor and Gaborit compare their PIR scheme to two previously
existing single-server PIR schemes (Limpaa’s and Gentry and Ramzan’s) with regard to
generated query size, query generation time, and server download time. While the Aguilar-
Melchor Gaborit Scheme must transmit a relatively much greater amount of data during
its protocols in order to complete a query (resulting in a larger and slower query), the
computational performance of the server response protocol mean that this scheme might
actually be practical, spending a total of just 15 minutes on the transfer rather than more
than a 17 hours.

It is also clear that computation is the bottleneck in all of the above schemes. The
bandwidth usage never reaches above 1.2% in even the Aguilar-Melchor Gaborit Scheme,
showing that the communication overhead is low compared to modern available speeds.
Additionally, the use of recursion (that is, dividing a single database server into smaller,
virtual servers; instead of sending a single query with the index of the targeted element, the
requester sends multiple queries, which indicate the indices of the desired virtual server,
then finally the local element in the smaller server) in the Aguilar-Melchor Gaborit Scheme
reduces the size of its query significantly, while not changing the download time.

Aguilar-Melchor and Gaborit do not include server response computation time or re-
sponse size, and do not specify what is included in the server’s "Download time".

4 Equivalent Security Problems
The original paper on the Aguilar-Melchor Gaborit Scheme introduces two lattice-based
problems: the Hidden Lattice Problem (HLP) and the Differential Hidden Lattice Problem
(DHLP). These problems are defined to investigate the structural security of the Aguilar-
Melchor Gaborit Scheme; by comparing the problems to each other, to the Aguilar-Melchor
Gaborit Scheme, and to a known NP-Complete problem, the authors provide some measure
of assurance that an intelligent, computationally-bounded adversary will be unable to
obtain undesired information about a client’s queries to the database. Below we restate
the two problems from the original paper (with minor alterations for improved clarity)
and demonstrate how they relate to the Aguilar-Melchor Gaborit Scheme.

6

4.1 Hidden Lattice Problem
Construction:

1. Define a vector space V of dimension k and of length n (such that n > k) over a
finite field GF (p).

2. Construct r random basis for V , denoted as {V1, · · · , Vr}. Denote the jth column of
Vi as Vi,j .

3. Select some subset of columns S′ such that S′ contains k linearly independent vectors
for every basis Vi. 1 Choose a nonempty subset of size w values from the set of
columns not in S′, {1, · · · , r} − S′. Denote this set as S = {s1, · · · , sw}.

4. ∀i ∈ {1, · · · , r},∀s ∈ S: Let qi,s be a random element in GF (p). Construct a column
Ci,s from elements in {qi,s,−qi,s}. Define Ci as the set of columns for i.

5. Randomly select some i0 ∈ {i, · · · , r} and some qhard ∈ GF (p) where 1� qhard � p.

6. For every g ∈ {1, · · · , w}, multiply the gth coordinate of Ci0,g by qhard.

7. Let U be the set of basis equal to V . Add the values of each Ci,s to Ui,s.

Problem: Given U , determine S; that is, given the set of disturbed basis, determine
which set of columns have been disturbed by the addition of noise.

Relationship between HLP and AMG scheme: The Aguilar-Melchor Gaborit
Scheme is an instance of the Hidden Lattice Problem with the following parameters. The
dimension of V equals the number of disturbed columns, which equals the number of
bitstrings that each element in the database is separated into (k = w = N). The size of
V is equal to two times the number of sub-elements that each element in the database is
divided into upon Server Response (n = 2N). qhard = q, the global hard noise parameter.
Ci0 represents the hard noise matrix after multiplying it by the scrambling matrix (Di0∆).
Every other Ci represents the columns of a soft noise matrix after multiplying by the
scrambling matrix (Di∆). The random selection of columns in S for the HLP is similar
to the permutation of columns in the original scheme. Thus an algorithm that is capable
of solving the Hidden Lattice Problem is also capable of determining which columns were
disturbed among the query matrices.

Theorem 1. If an adversary knows the columns with noise, then they can determine
which matrix among the query set is the HDM.

Recall that M = [A|B] and for all 0 < i < n, Mi = PiM = [PiA|PiB] + [0|Di∆]. We
omit the permutation, which is negated by the adversary’s knowledge of the hidden lattice.
Suppose the adversary knows which columns have noise added (without loss of generality,
say these are the first N columns).

The following two algorithms shows how to recover the values of all Di∆ given an
adversary that has solved the HLP. It comes from a generalization of Lemma 1 and analysis
that follows, taken from the Aguilar-Melchor and Gaborit’s paper of interest.

1We assume such a selection of columns exists without loss of generality. If such a grouping of columns
did not exist we could rearrange the columns of each basis Vi during generation until a sufficient selection
of columns existed.

7

Algorithm 1. Solving for One Column (In the Noise Matrices)

for i← 1 to n do
for j ← (i+ 1) to n do

First, using Lemma 1 introduced in Aguilar-Melchor and Gaborit’s paper, the
adversary can compute PjP

−1
i . Since we know that the first N columns are unmodified,

we can determine through inspection the values of PiA and PjA. Then simply evaluate
PjA(PiA)−1 = PjAPiA

−1A−1 = PjP
−1
i .

The adversary then computes Sij = PjP
−1
i Mi −Mj = PjP

−1
i (PiM + Di∆) −

(PjM +Dj∆) = [0|PjP
−1
i Di∆]− [0|Dj∆].

Create a set of N linear equations by using the elements of the (unknown) cth
columns of Di∆ and Dj∆ and the (known) cth column of Sij .

end for
end for
At the end, there should exist nN equations and nN unknowns. This can be solved in
O((nN)3) time, obtaining the values of the cth columns of all Di∆.

Algorithm 2. Solving for All Disturbed Matrices

for c← 1 to 2N do
Use Alg. 1 to solve for the values of the cth column of Di∆.

end for

At this stage, the adversary has the complete values of Di∆ for all i ∈ {1, . . . , n}. Since
all added soft noise is of the form {−1,+1}, all SDMs are easily relatable to ∆. There
should be only a single matrix in the set for the query that differs from this pattern, which
will be distinguishable from the HDM.

It is not necessary for the hard noise values (originally manifested as q along the
diagonal of the HDM) to lie in a particular pattern in the matrix, as the HDM will be
the only matrix which contains elements not in ∆. Thus, it is unnecessary for an attacker
to exactly reverse the permutation; it is enough to find the disturbed columns in order to
distinguish the index of the HDM.

This algorithm (which the authors admit is naive in construction) will run in time
O((n3N4). The inner loop (pairwise equation generation for each of n matrices) is domi-
nated by the O((nN)3) matrix inversion used to solve the system of equations, and must
be repeated for each of 2N columsn in the lattice.

An adversary that is able to distinguish the unmodified columns of the basis that make
up a query would prove the Aguilar-Melchor Gaborit Scheme insecure, but showing that an
adversary is unable to do so is insufficient for proving the security of the scheme. To break
the Aguilar-Melchor Gaborit Scheme, an adversary need only distinguish which of the basis
corresponds to i0 (that is, the one basis that corresponds to the element in the database
that the client is requesting in a given query). This is equivalent to distinguishing which
basis has been disturbed with a hard noise matrix from those disturbed with soft noise
matrices. Aguilar-Melchor and Gaborit introduce a more specific problem, the Differential
Hidden Lattice Problem, to represent this concept.

8

4.2 Differential Hidden Lattice Problem
Construction:

1. Define a a vector space V of dimension k and of length n (such that n > k) over a
finite field GF (p)..

2. Construct r random basis for V , denoted as {V1, · · · , Vr}. Denote the jth column of
Vi as Vi,j .

3. Define T1 and T2 to be two subsets of {1, · · · , r} such that T1 6= T2

4. Select some subset of columns S′ such that S′ contains k linearly independent vectors
for every basis Vi. Choose a nonempty subset of size w values from the set of columns
not in S′, {1, · · · , r} − S′. Denote this set as S = {s1, · · · , sw}.

5. ∀i ∈ {1, · · · , r},∀s ∈ S: Let qi,s be a random element in GF (p). Construct a column
Ci,s from elements in {qi,s,−qi,s}. Define Ci as the set of columns for i.

6. Randomly select some d ∈ {1, 2} and some qhard ∈ GF (p) where 1 << qhard << p.
Let T = Td.

7. For every g ∈ {1, · · · , w}and every f ∈ T , multiply the gth coordinate of Cf,g by
qhard.

8. Let U be the set of basis equal to V . Add the values of each Ci,s to Ui,s.

Problem: Given T1, T2, and U , determine the value of d. That is, given two possible
sets of basis and the set of disturbed basis, distinguish which of the two sets of basis was
given the addition of hard noise.

Relationship between DHLP and AMG scheme: The relationship between
DHLP and the AMG scheme is similar to the relationship between HLP and the AMG
sceme in terms of equivalent parameters. DHLP provides two possible subsets of basis that
are disturbed with hard noise and requires an adversary to distinguish which one was used
to generate a set of disturbed basis. The Aguilar-Melchor Gaborit Scheme corresponds to
a similar case where only one basis is disturbed. Thus if an adversary were able to solve
DHLP they would be able to distinguish which basis was disturbed with hard noise and
determine which element in the database a client was asking for, breaking the security of
Aguilar-Melchor Gaborit Scheme.

Relationship between HLP and DHLP: As Aguilar-Melchor and Gaborit claim,
HLP is at least as hard as DHLP. An adversary capable of solving HLP is also capable of
solving DHLP. As shown Theorem 1 an adversary capable of solving HLP is able to obtain
every matrix Di∆, and can then determine which of these matrices have been disturbed
by the multiplication of qhard.

5 Security Analysis
Here, we attempt to build upon the authors’ analysis of the security of their scheme.
Our main goals in this section are to reduce an NP-Hard problem to the computational
problems underlying the security of the Aguilar-Melchor Gaborit Scheme or to show that

9

it can be attacked through methods such as lattices. We have not been successful in doing
either, but we will give an overview of our attempts to do so through analyzing related
work in the areas of coding theory, noise, and lattice attacks.

5.1 Reduction to a Hard Problem
Aguilar-Melchor and Gaborit state that the Hidden Lattice Problem is "very likely hard"
by observing its similarities to the Code Puncture Search Problem (CPSP), a variant of the
known NP-Complete Punctured Code Problem. We take Aguilar-Melchor and Gaborit’s
justification a step further by providing a reduction between CPSP and HLP by showing
that an instance of CPSP is actually a special case of HLP, and a black box solution of
HLP can thus be used to solve CPSP. Below is the definition of CPSP as defined in [4]:

Code Puncture Search Problem: Let H be a k×m matrix of rank k and M be a
disturbed k × (m+ s) matrix obtained by multiplying H by a random non-singular k × k
matrix T and by adding to it s random columns in between the m columns of H. Deduce
from these two matreices (H and M) which are the s random columns of M .

An instance of CPSP is an instance of HLP: 2 Let r in HLP (the number of basis
to be disturbed) be equal to 1. If |V | = r = 1, we know that i0 = 1 as there is only one
matrix available to recieve the addition of hard noise columns (columns disturbed by the
multiplication of q and one element in each column). Let q be smaller than every element
in M , and p be a prime number sufficiently large such that no element ever exceeds p.
Consider the first random column added to M , s = [s1|s2| · · · |sk]. Construct the vector
s′ = [s1− q|s2− 1| · · · |sk− 1]. This gives s = s′+ [q|1| · · · |1]. s corresponds to a disturbed
column in the result of HLP, where rj = 1 for the soft noise addition and q = q for the
hard noise addition. This generalizes; all columns randomly added in the instance of the
CPSP can be interpreted as columns of the HLP after being disturbed by soft noise equal
to 1 and a hard noise coordinate equal to some value q.

HLP is NP-Hard. Assume that an algorithm that solves the Hidden Lattice Problem
in polynomial time exists. Provide this algorithm an instance M of the Code Puncture
Search Problem as input. As we have demonstrated above, M can be interpreted as an
instance of HLP where the randomly added columns ofM correspond to disturbed columns
in the HLP. Running the HLP algorithm returns this set of columns, which can then be
returned as the solution to CPSP. We have successfully solved CPSP in polynomial time.
However, CPSP is proven to be NP-complete. Thus HLP is NP-Hard, as it is at least as
hard as CPSP.

HLP is verifiable in polynomial time. Theorem 1 in Section 4.1 demonstrates
how an adversary with knowledge of the location of permuted columns can construct the
matrices Di∆ for all i in polynomial time. A verifier runs this and verifies that, for all but
one Di∆, each column is composed of the same element (positive or negative), and that
for one Di0∆ all but one element of each column are are same (again positive or negative),
and that the differing element differs from the rest of the elements of the column by some
factor q.

Note that in Section 4.1 we show the Aguilar-Melchor Gaborit Scheme is a special case
of HLP. It is possible that this special case can be solved more efficiently. However, we
believe it to be unlikely, and that any break in the security of the Aguilar-Melchor Gaborit

2In the course of our research this was one of the proposed reductions. As a group we aren’t currently
sure of its correctness, but it’s what we’ve got.

10

Scheme is unlikely to come from the discovery of the permutation at the end of Protocol 1.
This result also says nothing of the hardness of the Differential Hidden Lattice Problem;
we showed that HLP is at least as hard as DHLP but have not proven the other direction.
The hardness of DHLP is, as far as these authors are aware, still an open question.

5.2 Lattice-Based Attacks
We begin this section by giving an overview of lattice and their use in breaking crypto-
graphic schemes before summarizing the authors’ remarks on why lattice attacks do not
appear to be of use on their PIR scheme. Then we will introduce related work and explain
our own attempts to break this scheme.

Remember that the Aguilar-Melchor Gaborit Scheme is broken if and only if we can
determine which of the matrices is the hard-noise matrix among the query consisting of
n N × 2N matrices {M1, · · · ,Mn}. As shown in section 3, this problem is equivalent to
determining which of the columns in the matrices of the query contain noise and which
are unmodified.

While breaking this scheme is quite likely hard in the worst case, it may be breakable
in practice by lattice attacks. Lattices are discrete sub-groups of Rn - or in this example
GF (p)n. The lattice problems of Shortest Vector Problem (SVP) and Closest Vector
Problem (CVP) are known to be hard, but can often be solved relatively efficiently using
the LLL algorithm. One can utilize these properties to use lattice attacks to solve similar
hard problems. A lattice attack consists of finding an analogy between the solution to the
problem we are attempting to solve and a closest or shortest vector problem over a lattice.
After determining the basis of the lattice, the LLL algorithm can be utilized to solve the
problem in a reasonable amount of time.

There is a seemingly similar problem which can be attacked using lattices. Note that
these matrixes are over GF (p) for some prime p.

Theorem 2. Let M be a N × 2N matrix. Let M ′ = HM + R where H is an invertible
N ×N matrix and R is a N × 2N matrix with N columns containing 0’s and N columns
of noise of the form {±1}N . Given M and M ′, one can determine which columns of M ′
contain noise.

Without going into the low-level details, the lattice method used to determine the noisy
columns in M ′ works by finding the noise in a single row of M ′. The noise in any row
will consist of a vector of length 2N with N 0’s and N elements ±1. This is a fairly short
vector, and an analogy can be made between the problem of finding this noise vector and
the SVP problem in a properly chosen lattice. Given the noise in a row, the columns of
noise are clearly the indices of non-zero elements of the row.

However, there are several notable differences concerning the noise introduced to these
columns and the hard and soft noise introduced into the matrices in the query formation
of the scheme in question. The noise in a row of any Mi in the query will consist of N
0’s and N random non-zero elements in GF (p) thanks to the noise-scarmbling matrix ∆.
he chance of the noise being a shortest vector is negligible. Additionally, in the above
example, the hidden lattice and the disturbed lattice are presented. When trying to break
a query, we only have access to various disturbed lattices constructed from the same hidden
lattice. This certainly means that breaking the scheme in question will require a different
approach (although whether it will be harder is easier is unclear).

11

Finally, our results from comparing the security scheme to the related work described
above also failed. Notably, our examination of the breaking of the GGH scheme [5] also
relied on the predictable structure of the added noise. The noise values are randomly
chosen in the scheme in question, so once again we doubt this attack will be of help.

Given the examples above, it would intuitively seem that this scheme is safe from
lattice attacks and is secure. However, an important thing to note in this example is the
relatively small dimention of the lattice. The dimension is 2N for a chosen parameter
N . The authors recommend the value N = 50 as it would require a brute force approach
to require over 2100 calculations. Still, such a low dimension seems succeptable when
compared to the much larger dimensions used in many other Lattice based schemes. For
example, Goldreich, Goldwasser, and Halevi [2] only claimed that their attacks on their
system would be beyond a possibility of attack at dimension 300. At dimension 100, their
scheme was breakable with non-negligble probability. This cryptosystem and others will
require more analysis, but for now, the choosing of a parameterN = 50 and thus dimension
100 seems suspicious.

5.3 Parameter Analysis
It is entirely possible to create a scheme which is theoretically secure while being vul-
nerable to brute-force attacks due to small parameters used in computation. This may
render the scheme unusable if, for example, using larger parameters result in unreasonably
long (but still polynomial) computation times to generate queries or responses. It is al-
ways important to keep in mind a practical application of the scheme rather than simply
theoretical bounds.

The paper suggests the following values for parameters:

• N : number of sub-elements each database element is split into. Suggested: N = 50

• l0: number of bits each sub-element contains. Suggested: l0 = 20. From this,
q = 22l0 = 240. This allows for a value of n up to 2l0−1/N ≈ 1× 104.

An analysis of possible lattice-based attacks to characterize solutions is discussed above
(Section 5.2). Another attack is a brute force attack on the Hidden Lattice Problem; that
is, the server can guess a subset of N columns that it believes are added noise columns.
If the server correctly identifies the noise columns in the query, it can compute a basis of
the Hidden Lattice Problem.

There are
(
2N
N

)
subsets to choose from. For the suggested N = 50, there exist a total

of
(
100
50

)
≈ 1 × 1029 subsets. Theorem 1 uses a brute force algorithm (Alg. 2) in order to

solve for the values of Di∆, which takes time O(n3N4) in order to do the full computation
for a given subset.

One might expect to guess, on average, about 50% of the subsets before hitting the
correct choice. This gives you just 5× 1028. Even assuming that each subset guess would
take only a millisecond to compute, this would take a little over the age of the universe to
brute force (unless I did something totally embarassingly wrong with that math).

However, in many cases, it won’t be necessary to compute the values of the entirety
of each Di∆ matrix to rule out a subset from being a solution of HLP. As an adversary
computes each column of values across the n noise matrices (ie. after applying Alg. 1 for
a given column), the expected form is n− 1 matrices with integers equal to ±x (for some

12

x ∈ GF (p), and one matrix with an integer equal to qx mod p. Any column that does not
follow this pattern immediately removes the current subset from being a possible solution
of HLP. Assuming (without proof, because I don’t know how to prove this) it is a rare
occurrence for any invalid subset to follow this pattern (and doubly so for it to occur more
than once), this reduces the naive runtime approximately by a factor of 2N—a hopeful
but ultimately fruitless gain given the rest of the runtime—yielding an overall runtime
of O((nN)3) per attempt. Unfortunately, that doesn’t make much of an impact on this
dumb attack. To paraphrase the authors (albeit on a slightly different topic), this isn’t
quite an attack but perhaps something that might play a part in one.

6 Further Work
There is still much work to be done regarding this scheme. Much is left unsaid about its
security. We have proposed a reduction from Hidden Lattice Problem to a known NP-
Complete problem and determined that it appears hard to determine permutation of the
columns in the query matrices, but have not yet classified the hardness of the Differential
Hidden Lattice Problem. Proving that DHLP is hard would be necessary in demonstrating
that Aguilar-Melchor Gaborit Scheme is provably secure (and proving DHLP to be easy
would break the scheme completely).

It is unknown as of yet if lattice attacks are plausible. As posited by the authors, it
is difficult to characterize some relationship between hard noise and soft noise matrices,
which are key in attempting to break this cryptosystem. The addition of randomizing
noise in addition to structured, controlled noise renders many previously-used paradigms
incompatible with this scheme.

Investigation into the suggested parameters showed that they are secure against brute
force attacks, yet there is always the chance that an adversary more clever than us will
devise some way of showing that they are insufficient. It may come in the form of a
lattice-based attack, or simply take advantage of some quirk of the PIR scheme.

References
[1] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with

constant communication rate. In In Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming, pages 803–815. Springer-Verlag, 2005.

[2] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. pages 112–131. Springer-Verlag, 1996.

[3] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In In
Proceedings of the 8th International Conference on Information Security, pages 314–
328. Springer-Verlag, 2005.

[4] Carlos Aguilar Melchor and Philippe Gaborit. A lattice-based computationally-efficient
private information retrieval protocol. IACR Cryptology ePrint Archive, 2007:446,
2007.

13

[5] Phong Nguyen. Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from
crypto ’97. In In Proc. of Crypto ’99, volume 1666 of LNCS, pages 288–304. Springer-
Verlag, 1999.

[6] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Revised
Papers from the International Conference on Cryptography and Lattices, CaLC ’01,
pages 146–180, London, UK, UK, 2001. Springer-Verlag.

14

