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Abstract— Subsurface scattering is a complex physical process, which, in many cases, significantly affects the appearance of
certain materials. In the pursuit of generating ever more realistic scenes, it is a phenomenon which must be incorporated into
rendering frameworks. However, the complexity of the physical process which causes subsurface scattering has a tremendous effect
on rendering time. Though such rendering costs are acceptable in many settings, they are far to high for any process which requires
interactive visualization.
In this paper, we propose a very simple approximation of subsurface scattering which requires a pre-computation step but incurs
absolutely no runtime overhead. We illustrate the basic model used to derive our results, as well as a spectral mesh processing
framework which generalizes our model while producing images of higher visual fidelity. This makes it possible to incorporate sub-
surface scattering effects into real-time visualizations where performance is the primary goal. We hypothesize that the complexity of
the underlying physical process of subsurface scattering results in both highly apparent and subtle effects. Accepting the assumption
that the realism of our subsurface scattering effect is secondary in importance to the speed at which it can be displayed, we make
sacrifices in the physical realism of our approximation for the sake of speed. The results, however, maintain the overall landmark
effects of subsurface scattering and provide the ability to produce visually compelling results with no runtime overhead.

Index Terms—Subsurface scattering, real-time, spectral filtering, graph Laplacian

1 INTRODUCTION

There is a fundamental dichotomy in computer graphics between phys-
ical accuracy and interactivity. The greater the degree to which reality
is approximated in the process of rendering, the more computation
that rendering necessarily requires. Even the generality of the ren-
dering equation makes the simplification of geometric optics, sacrific-
ing some expressibility for the sake of simplicity. The ways in which
this dichotomy has most frequently been addressed are through pre-
processing and approximation. Sometimes, it is possible to capture
complex physically based rendering effects through a pre-processing
phase; the results of which can be evaluated, displayed, and possibly
modified in real-time. For example, precomputed radiance transfer
allows for complex lighting effects to be evaluated at runtime, assum-
ing that the geometry and lighting environment, and the manner in
which they may change, are known a priori. Thus, realistic lighting
effects which would be impossible to compute at runtime can still be
displayed at interactive rates. Another facet of precomputed radiance
transfer, however, is that of approximation. In order to allow the pre-
computed results to be evaluated and displayed in real-time, an ap-
propriate representation for these results, such as spherical harmonics,
must be utilized. The spherical harmonics basis allows for the efficient
storage and evaluation of many precomputed radiance transfer results.
However, this efficency is achieved at the cost of its low-frequency ap-
proximation of the original lighting signal. The decision as to which
methods to use to simulate complex physical effects in the process
of rendering is often reduced to an application dependent cost-benefit
analysis, where the designer of the application must weigh the level
of accuracy necessary against the level of interactivity required for the
application.

One such computationally expensive rendering effect is subsurface
scattering. Subsurface scattering is a physical property of the interac-
tion of light with different materials. It occurs when light is incident
upon a material with some degree of translucency. Instead of strictly
reflecting off the surface of the material, some amount of light will ac-
tually enter the material, scattering and diffusing as it moves, and will
then exit at points distinct from where it entered. Subsurface scattering

• Robert Patro is with the University of Maryland, College Park, E-mail:
rob@cs.umd.edu.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online 2
November 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

produces visual effects which are significant enough to warrent imple-
mentation in many different visualization applications. When physical
accuracy and realism are the foremost goals, many high fidelity ap-
proximations to subsurface scattering may be used to achieve highly
convincing results, such as [3]. However, even the fastest existing
methods of approximating subsurface scattering result in a decrease in
rendering speeds by a factor of two or more.

Main Results: In this paper, we present an approximation to sub-
surface scattering which allows results generated in a pre-processing
phase to be expressed using the standard local illumination model [1].
Our method computes the effects of subsurface scattering at a given
surface point by incorporating information about the incident light
at neighboring surface points. We present both a naı̈ve implemen-
tation, using a weighted sum of neighboring normals, and a more
refined, spectral mesh processing implementation, which produces
higher quality results by eliminating certain descretization artifacts.
Further, our spectral processing approach allows for the filtering ker-
nel being used to create the subsurface scattering effect to be changed
at a near interactive rate. Both approaches produce a set of filtered
normals, which need only be used in place of the original normals
of the mesh to display the subsurface scattering effect. The fact that
the effect is achieved by using these pre-filtered normals during the
rendering phase, means that no overhead, beyond that of the standard
local illumination model, is incurred. Thus, runtime framerates are not
at all affected, and a coarse, but “free”, approximation of subsurface
scattering is provided.

2 BACKGROUND AND RELATED WORK

2.1 The Rendering Equation, BRDFs and BSSRDFs

The rendering equation is an equation based on the physical properties
of the interaction between light and matter. It is an analytic expression
which represents the ideal lighting model, and is the standard against
which realistic lighting models are compared. The rendering equation
contains a term describing the BRDF (Bidirectional Reflectance Dis-
tribution Function) at each surface point for which it is evaluated. The
BRDF relates the outgoing light at a point on the surface to the light in-
cident at the point and the direction of that incoming light. The BRDF
allows the exitant radiance at a given surface point x to be expressed
as:

dLo(x, ~ωo) = F(x, ~ωi → ~ωo)dφi(x, ~ωi) (1)

Where Lo(x, ~ωo) is the exitant radiance at a given surface point x,
in the direction ~ωo, φi(x, ~ωi) is the incident flux at point x in direction



~ωi, and F is the BRDF which relates incoming light direction to outgo-
ing light direction. In the rendering equation, the BRDF is integrated
along with a number of other terms over all incoming light directions,
and the results can produce very realistic renderings of a wide vari-
ety of materials. However, despite its generality, the BRDF is unable
to properly model a number of different materials due to the restric-
tions inherent in the basic assumption that the exitant light at a surface
point is dependent only upon light incident at that point. Though this
is the case for perfectly opaque materials, it is not true of translucent
materials.

In translucent materials, the exitant light at a given surface point
is dependent upon the light incident at that point, its direction, and
the light incident on the surrounding area. The BSSRDF (Bidirec-
tional Subsurface Scattering Reflectance Distribution Function) takes
all of these parameters into consideration when computing the radi-
ance transfer at a surface point, and is thus capable of modeling the
appearance of materials for which the BRDF is insufficient. The BSS-
RDF is commonly fomulated as follows [3]:

dLo(x, ~ωo) = S(xi, ~ωi;x, ~ωo)dφi(xi, ~ωi) (2)
Where the variables that appear are the same as in equation 1, ex-

cept that now, F is replaced with S, the BSSRDF, which relates the
exitant radiance at a surface point x to the incident radiance at points
xi distinct from x. When the BSSRDF is used in the rendering equa-
tion, in addition to being integrated over all incoming light directions
like the BRDF, it is also integrated over a given area, so that the con-
tribution of the incident light at an area around the evaluation point is
considered.

Clearly, the evaluation of a double integral at each surface point
that would be required to compute the exitant radiance with the above
equations is not a real-time friendly operation. Hence, a number of ap-
proximations have been proposed to speed up the computation of sub-
surface scattering effects. For example, in [3] Jensen et. al. propose
an approximation of subsurface scattering effects based on a dipole
diffusion model. This results in a tremendous increase in speed over
the evaluation of the BSSRDF versus Monte Carlo integration (about
two orders of magnitude) with little percieveable loss in quality. Going
even further, in [4] Lensch et. al.decopuled the subsurface scattering
effects into local and global impulse responses which are precomputed
and combined at runtime to achieve almost interactive frame rates.
Hao et. al., in [1], introduce a simpler subsurface scattering model
based on the observation that the visual results of subsurface scatter-
ing are dominated by local effects due to the exponential falloff of
light as it is scattered in the modeled material. They use a precom-
putation step which calculates the multiple scattering effects between
a surface point and it’s neighbors (using the dipole diffusion approx-
imation). They then combine this infomation with the transmission
and reflection at each surface point at runtime and achieve frame rates
with subsurface scattering as high as 30-50% of that without subsur-
face scattering. This work was the first to make subsurface scattering
effects tenable in realtime, but the extra information carried along with
each vertex in a mesh was significant. Hao et. al. address this stor-
age overhead in [2], while maintaining the same level of performance.
Carr et. al. [6] use a hierarchical texture atlas of surface patches along
with precomputed radiosity and scattered irradiance maps to allow for
evaluation of subsurface scattering effects on the GPU. They achieve
real-time rendering speeds for small meshes, but do not mention the
effect their three pass approach has on actual rendering speed.

3 OUR APPROACH

Inspired by the method of Hao et al. [2], we wish to approximate sub-
surface scattering effects in a local illumination model. However, we
wish to simplify the subsurface scattering approximation even more,
possibly sacrificing some degree of visual realism to achieve signifi-
cantly faster frame rates. We first present the simple approximation
we use, and explain how a naı̈ve implementation might proceed. Then
we present how a spectral mesh processing framework may be used to
achieve higher fidelity results and allow for modification of the sub-
surface scattering properties at near interactive rates.

3.1 Weighted Neighbor Contributions

The most basic feature of subsurface scattering, and that which repre-
sents the majority of its apparent effect, is that some portion of the light
incident at a surface point will actually enter the material, scattering
and diffusing as it travels. As a result, the illumination exiting from a
given surface point will be dependent upon the light which is incident
upon, and diffuses from, its neighboring points. The absorbtion and
diffusion of the light as it passes through the material means that the
active neighborhood which contributes to the exitant radiance from a
surface point will be relatively small. Particularly, we note that most
methods which exists for calculating subsurface scattering effects use
the dipole diffusion equation to model light falloff. This equation is
dominated by a term which induces exponential falloff as a function
of distance.

In a simple local illumination model, the lighting at a surface point
is trivially related to the surface normal at that point. If we wish to
crudely approximate subsurface scattering in such a local illumination
model, we must express the dependency of the lighting at a surface
point on the incident lighting at surrounding surface points, which is,
in turn, directly related to the surface normals of those surrounding
points. Thus, in such a model, we can express the relationship be-
tween the illumination of a surface point and the incident radiance at
the points in its effective scattering neighborhood as a weighted sum
of the normals of those points, if we choose the weights in an intel-
ligent fashion. Assume we wish to modify the normal at a point, vi,
to account for the incident light at its neighboring points. Let the ef-
fective scattering neighborhood of vi be N(vi) = {v j|dist(vi,v j) < d},
for some small distance d. Further, let nvi denote the (original) surface
normal at vi. Then, the subsurface scattering normal at vi, denoted
ssnvi , is computed as:

ssnvi = αni + ∑
n j∈N(vi)

n j ∗ e−(σtr∗dist(vi,v j)) (3)

Where α < 1.0 is some value which designates how much of the
lighting at vi is determined by nvi versus the neighboring normals, and
σtr is the effective transport coefficient, which represents the degree
to which light is impeeded as it moves through the material. Both
the choice of α and the choice of σtr affect the amount of subsurface
scattering.

Now, when rendering the model, if the normal of a given surface
point (nvi ) is replaced by the subsurface scattering normal (ssnvi ) as
calculated in equation 3, then the illumination displayed at vi will be
dependent upon the light incident in its effective scattering neighbor-
hood. The subsurface scattered normal which is computed, is effec-
tive both in standard local illumination models such as Blinn-Phong
using point light sources (as used in OpenGL), as well as when ap-
proximating more complicated lighting environments through the use
of methods such as irradiance maps [7].

Though this approximation is very simple, it captures the most pre-
velant features of subsurface scattering. Considering that no runtime
overhead is incurred, the effects it produces are relatively convincing
and such an approximation could prove useful in application domains
where speed is essential (such as games). While this method is fairly
effective, the computations involved produce some “descretization”
artifacts as seen in figure 2. These artifacts occur when the mesh is
coarsely or unevenly sampled (as are many meshes used in real-time
applications), and result from triangles where the normals vary signif-
icantly among the vertices. Further, the only physically interpretable
parameter in our approximation is σtr, the effective transport coeffi-
cient. Thus, to achieve the desired appearence, the user must re-run the
preprocessing step, modifying α , σtr, and d to suit their specific needs.
To overcome these issues, we present a spectral processing framework
that provides an alternate method of computing these subsurface scat-
tering normals, which does not suffer from these shortcomings.



(a) Lit by a diffuse irradiance map (b) Subsurface scattering normals
generated using the geometric
space filter

(c) Subsurface scattering normals
generated using the frequency
space filter

Fig. 1. The Stanford Armadillo in a modified pose

3.2 Spectral Processing Framework and Low-Pass Fre-
quency Filter

If we view the normals associated with each vertex in our mesh as
a signal on the surface of the mesh, and we have an acceptable set
of basis functions on which to represent this signal, then we can use
techniques from signal processing to achieve an effect very similar to
that detailed above. To achieve this goal, we first need to determine
an appropriate set of basis functions onto which we will project our
normals. We chose the eigenfunctions of the graph Laplacian as de-
fined by the Laplace-Beltrami operator as presented in [5]. These
eigenfunctions provide an ideal basis because they combine informa-
tion which is inherent in both the geometry and topology of the mesh,
and, given the formulation below, they form and orthogonal basis, so
projection of the signal onto this basis becomes trivial.

First, we compute the graph Laplacian matrix, L , defined by:

Li j =
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0, otherwise

(4)

Where β and β ′ refer to the angles opposite the edge shared by vi

and v j , and Ωi, is 1
3 of the sum of the areas of the faces incident at

vertex vi and similarly for Ω j . The resultant matrix will be both sparse
and symmetric. Further, since L will be a positive semi-definite ma-
trix, its eigenvectors will be orthogonal. Next, we compute some num-
ber, m, of the eigenvalues and eigenvectors of L with m << n (where
n is the number of vertices in our target mesh). Though there are n
total eigenpairs, only signals on the mesh upto a certain frequency,
ωcuto f f , are represented in the spectral transform. We approximate
this ωcuto f f with ωm, ten times the average edge length, as suggested
in [8]. Thus, we compute only the eigenpairs, (λk, ~vk) where λk < ω2

m
(as an eigenvalue, λk corresponds to the frequency ωk =

√

(λk)). We
then use these m eigenvectors as the basis functions φ1,φ2, . . . ,φm onto
which we will project our normal vectors. The projection of the normal
n j = (nx

j,n
y
j,n

z
j) onto each of our m basis functions is simply computed

as follows:

ηx
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m

∑
j=1

nx
jφi( j) (5)

ηy
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m
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j=1

ny
jφi( j) (6)

ηz
i =

m

∑
j=1

nz
jφi( j) (7)

This projections takes our normals from the standard geometric
space to the spectral, or harmonic, space. Once we have obtained our
spectral coefficients ηx

1 ,ηx
1 , . . . ,ηx

m and similarly for y and z, we can
apply our low pass spectral filter. Our filter F(ω) assigns a weight to
each frequency ω in the spectral domain. For a low pass filter the value
of F(ω) will be close to 1 when ω is low and F(ω) will fall off to 0
as ω increases. In our experiments we used the normal distribution as
our F(ω), varying the standard deviation to effect the rate of falloff.
Since each of the basis functions onto which we have projected the
normals is orthognal, we can apply the filter when reconstructing our
normals, transforming them back from frequency to geometric space
as follows:

n′xj = ∑
i

F(ωi)ηx
i φi( j) (8)

n′yj = ∑
i

F(ωi)η
y
i φi( j) (9)

n′zj = ∑
i

F(ωi)ηz
i φi( j) (10)

Where, for a given ηi, the corresponding frequency, ωi is given by√
(λi)−

√
(λ1)√

(λm)−
√

(λ1)
, the normalized eigenvalue of the eigenfunction φi. Our,

reconstructed normal is now n′ = (n′x,n′y,n′z) and it is analogous to
our subsurface scattered normal from the previous section. The fre-
quency space convolution of the filtering kernel F(ω) with the pro-
jected normal signal mimics the filtering of the intensity of the lighting
signal in geometric space.

It should be noted that the very high detail components of the nor-
mal signal, those which have corresponding frequencies greater than
ωm, are not considered above in the creation of the subsurface scat-
tered normal. It is, however, possible to apply the filter, F(ω), to the
high frequency signals as described in [8]. To do this, we explicitlly
store the difference of each each surface normal from the unfiltered
reconstruction of that normal. That is, assume we reconstruct the nor-
mal, n′, as given above from equations 8 9 and 10, and we use the con-
stant frequency space filter F(ω) = 1. Such a formulation represents



the most exact reconstruction possible. Therefore, the difference of the
reconstructed normal from the original normal is given by ∆n = n−n′.
This difference, ∆n, is precisely the detail of the normal which was not
represented in the spectral transform. We may now apply our convo-
lution filter F(ω) to ∆n. This high detail signal exists in the frequency
space, occupying the bands from ωm to ωM (where ωM is the Nyquist
frequency of the mesh). Thus, though we cannot futher separate this
∆n into multiple frequency space bands, we can filter the signal as a
whole by the average value of F(ω) on the interval [ωm,ωM ]. This
average, γ , is given by the following equation:

γ =
1

ωM −ωm

∫ ωM

ωm

F(ω)dω (11)

Then, instead of simply n′ = (n′x,n′y,n′z) , our reconstructed nor-
mal becomes n′′ = n′ +(γ ∗∆n).

By using this framework to compute our subsurface scattered nor-
mals, we avoid the pitfalls of the previous method. First, the “de-
scretization” artifacts, highlighted figure 2, which are introduced by
the previous method are avoided when using this method. This is due
to the fact that the projection of the normal signal onto our chosen ba-
sis functions induces an implicit resampling of the signal. This results
in the higher overall visual fidelity of the rendering and a more con-
vincing subsurface scattering effect. Second, since the reconstruction
of the normal from the frequency space coefficients is simply a sum of
products, it is fast to compute, and is likely amenable to a GPU based
implementation. Thus, if the frequency space coefficients are stored,
then a new filtering kernel may be applied at runtime, and the resultant
subsurface scattering normals can be computed and displayed. This
allows the degree of the subsurface scattering effect to be adjusted to
the user’s taste.

(a) Normals
generated by
geometry space
filter

(b) Normals
generated by
frequency space
filter

Fig. 2. Artifacts introduced into the subsurface scattering approximation
by the naı̈ve implementation are avoided using the spectral processing
method

4 CONCLUSION AND FUTURE WORK

We have presented a simple approximation which simulates the most
basic features of subsurface scattering, and which represents the ma-
jority of its apparent effect. Our method relies on the results from
a preprocessing stage, but once these results are available, it can be
rendered without incurring any runtime overhead. We have described
a naı̈ve approach which can be implemented in an extremely simple
and straighforward manner, but which suffers from two main setbacks.
First, the naı̈ve approach produces “descretization” artifacts during
rendering which are the result of high variability in sampling density
across the mesh. Second, since our approximation has only a sin-
gle physically interpretable parameter, the costly preprocessing step
may need to be run many times before the other, non physically inter-
pretable parameters can be set in a fashion that produces the level of
subsurface scattering desired by the user. To address these shortcom-
ings, we have presented a spectral processing framework based on [5]

and [8] which allows for a more general and expressive method of
computing the subsurface scattered normals. This framework does not
suffer from the “descretization” artifacts of the naı̈ve approach. Fur-
ther, for the simple cost of explicitly storing the spectral coefficients of
the normals, the user can test the effects of different frequency space
filters quickly at runtime. This allows the user to much more quickly
converge upon the appearence they want for their model, because they
need not run the expensive preprocessing phase each time they want to
approximate a different degree of subsurface scattering on the mesh.
Because this method of approximating subsurface scattering effects
has no associated overhead during runtime, we forsee its use in appli-
cations where subsurface scattering is desired as a visual effect, but
where performance is the primary goal (applications such as video
games). Despite the simplicity of our approximation, we believe it
produces relatively convincing results and is suitable for many real-
time visualization needs.

Currently, our method suffers from an inability to bleed subsurface
scattering effects across shadow boundaries. We envision a few possi-
ble solutions, and intend to address this issue in our future work. Fur-
ther, as mentioned in 3.2, although application of the frequency space
filter is already fairly fast, we believe it would be sped up significantly
if implemented on the GPU instead of on the CPU as is currently done.
This would allow the filter to be modified at interactive rates, even for
extremely large models.
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(a) Lit by diffuse irradiance map (b) Subsurface scattering normals
generated using the geometric
space filter

(c) Subsurface scattering normals
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Fig. 3. A mesh of a monk


