CMSC 474, Introduction to Game Theory

Coalition Game Theory

Mohammad T. Hajiaghayi
University of Maryland
Coalitional Games with Transferable Utility

- Given a set of agents, a coalitional game defines how well each group (or coalition) of agents can do for itself—its payoff
 - Not concerned with
 - how the agents make individual choices within a coalition,
 - how they coordinate, or
 - any other such detail
- Transferable utility assumption: the payoffs to a coalition may be freely redistributed among its members
 - Satisfied whenever there is a universal currency that is used for exchange in the system
 - Implies that each coalition can be assigned a single value as its payoff
Coalitional Games with Transferable Utility

- A coalitional game with transferable utility is a pair $G = (N, v)$, where
 - $N = \{1, 2, \ldots, n\}$ is a finite set of players
 - $(v: 2^N \rightarrow \mathbb{R})$ associates with each coalition $S \subseteq N$ a real-valued payoff $v(S)$, that the coalition members can distribute among themselves
- v is the characteristic function
 - We assume $v(\emptyset) = 0$
- A coalition’s payoff is also called its worth
- Coalitional game theory is normally used to answer two questions:
 1. Which coalition will form?
 2. How should that coalition divide its payoff among its members?
- The answer to (1) is often “the grand coalition” (all of the agents)
 - But this answer can depend on making the right choice about (2)
Example: A Voting Game

- Consider a parliament that contains 100 representatives from four political parties:
 - A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)
- They’re going to vote on whether to pass a $100 million spending bill (and how much of it should be controlled by each party)
- Need a majority (≥ 51 votes) to pass legislation
 - If the bill doesn’t pass, then every party gets 0
- More generally, a voting game would include
 - a set of agents N
 - a set of winning coalitions $W \subseteq 2^N$
 - In the example, all coalitions that have enough votes to pass the bill
 - $v(S) = 1$ for each coalition $S \in W$
 - Or equivalently, we could use $v(S) = $100 million
 - $v(S) = 0$ for each coalition $S \notin W$
Superadditive Games

- A coalitional game $G = (N, v)$ is **superadditive** if the union of two disjoint coalitions is worth at least the sum of its members’ worths

 - for all $S, T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \geq v(S) + v(T)$

- The voting-game example is superadditive

 - If $S \cap T = \emptyset$, $v(S) = 0$, and $v(T) = 0$, then $v(S \cup T) \geq 0$

 - If $S \cap T = \emptyset$ and $v(S) = 1$, then $v(T) = 0$ and $v(S \cup T) = 1$

 - Hence $v(S \cup T) \geq v(S) + v(T)$

- If G is superadditive, the grand coalition always has the highest possible payoff

 - For any $S \neq N$, $v(N) \geq v(S) + v(N-S) \geq v(S)$

- $G = (N, v)$ is **additive** (or **inessential**) if

 - For $S, T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$
Interference

- The book says that for superadditive games, coalitions can always work together without interfering with one another
 - In the spending-bill example, I think this ignores the question of how much of the bill should be controlled by each party
 - So what does “interfering” mean?

- $G = (N,v)$ is additive (or inessential) if there is no interference (either positive or negative) among disjoint coalitions
 - if $S, T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$
Constant-Sum Games

- G is **constant-sum** if the worth of the grand coalition equals the sum of the worths of any two coalitions that partition N
 - $v(S) + v(N - S) = v(N)$, for every $S \subseteq N$

- Every additive game is constant-sum
 - additive $\Rightarrow v(S) + v(N - S) = v(S \cup (N - S)) = v(N)$

- But not every constant-sum game is additive
 - Example is a good exercise
Convex Games

- **G** is **convex (supermodular)** if for all $S, T \subseteq N$,
 - $v(S \cup T) + v(S \cap T) \geq v(S) + v(T)$

- It can be shown the above definition is equivalent to for all i in N and for all $S \subseteq T \subseteq N-\{i\}$,
 - $v(T \cup \{i\}) - v(T) \geq v(S \cup \{i\}) - v(S)$
 - Prove it as an exercise

- Recall the definition of a superadditive game:
 - for all $S, T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \geq v(S) + v(T)$

- It follows immediately that every super-additive game is a convex game
Simple Coalitional Games

- A game $G = (N, v)$ is **simple** for every coalition S,
 - either $v(S) = 1$ (i.e., S wins) or $v(S) = 0$ (i.e., S loses)
 - Used to model voting situations (e.g., the example earlier)

- Often add a requirement that if S wins, all supersets of S would also win:
 - if $v(S) = 1$, then for all $T \supseteq S$, $v(T) = 1$

- This doesn’t quite imply superadditivity
 - Consider a voting game G in which 50% of the votes is sufficient to pass a bill
 - Two coalitions S and T, each is exactly 50% N
 - $v(S) = 1$ and $v(T) = 1$
 - But $v(S \cup T) \neq 2$
Proper-Simple Games

- G is a **proper simple game** if it is both simple and constant-sum
 - If S is a winning coalition, then $N - S$ is a losing coalition
 - $v(S) + v(N - S) = 1$, so if $v(S) = 1$ then $v(N - S) = 0$

- Relations among the classes of games:
 - \{Additive games\} \subseteq \{Super-additive games\} \subseteq \{Convex games\}
 - \{Additive games\} \subseteq \{Constant-sum game\}
 - \{Proper-simple games\} \subseteq \{Constant-sum games\}
 - \{Proper-simple games\} \subseteq \{Simple game\}
Analyzing Coalitional Games

- Main question in coalitional game theory
 - How to divide the payoff to the grand coalition?

- Why focus on the grand coalition?
 - Many widely studied games are super-additive
 - Expect the grand coalition to form because it has the highest payoff
 - Agents may be required to join
 - E.g., public projects often legally bound to include all participants

- Given a coalitional game $G = (N, v)$, where $N = \{1, \ldots, n\}$
 - We’ll want to look at the agents’ shares in the grand coalition’s payoff
 - The book writes this as (Ψ) $\psi(N, v) = x = (x_1, \ldots, x_n)$, where $\psi_i(N, v) = x_i$ is the agent’s payoff
 - We won’t use the ψ notation much
 - Can be useful for talking about several different coalitional games at once, but we usually won’t be doing that
Terminology

- **Feasible payoff set**

 \[\text{Feasible payoff set} = \{ \text{all payoff profiles that don’t distribute more than the worth of the grand coalition} \} = \{(x_1, \ldots, x_n) \mid x_1 + x_2 + \ldots + x_n \leq v(N) \} \]

- **Pre-imputation set**

 \[\text{Pre-imputation set} = \{ \text{feasible payoff profiles that are efficient, i.e., distribute the entire worth of the grand coalition} \} = \{(x_1, \ldots, x_n) \mid x_1 + x_2 + \ldots + x_n = v(N) \} \]

- **Imputation set**

 \[\text{Imputation set} = \{ \text{payoffs in P in which each agent gets at least what he/she would get by going alone (i.e., forming a singleton coalition)} \} = \{(x_1, \ldots, x_n) \in P : \forall i \in N, x_i \geq v(\{i\}) \} \]
Fairness, Symmetry

- What is a **fair** division of the payoffs?
 - Three axioms describing fairness
 - *Symmetry, dummy player*, and *additivity* axioms

- Definition: agents *i* and *j* are **interchangeable** if they always contribute the same amount to every coalition of the other agents
 - i.e., for every *S* that contains neither *i* nor *j*, \(v(S \cup \{i\}) = v(S \cup \{j\}) \)

- **Symmetry axiom**: in a fair division of the payoffs, interchangeable agents should receive the same payments, i.e.,
 - if *i* and *j* are interchangeable and \((x_1, \ldots, x_n)\) is the payoff profile, then \(x_i = x_j\)
Dummy Players

- Agent i is a **dummy player** if i’s contributes to any coalition is exactly the amount i can achieve alone
 - i.e., for all S s.t. $i \notin S$, $v(S \cup \{i\}) = v(S) + v(\{i\})$

- **Dummy player axiom**: in a fair distribution of payoffs, dummy players should receive payment equal to the amount they achieve on their own
 - i.e., if i is a dummy player and (x_1, \ldots, x_n) is the payoff profile, then $x_i = v(\{i\})$
Additivity

- Let $G_1 = (N, v_1)$ and $G_2 = (N, v_2)$ be two coalitional games with the same agents.

- Consider the combined game $G = (N, v_1 + v_2)$, where
 \[(v_1 + v_2)(S) = v_1(S) + v_2(S)\]

- **Additivity axiom**: in a fair distribution of payoffs for G, the agents should get the sum of what they would get in the two separate games.
 \[\psi_i(N, v_1 + v_2) = \psi_i(N, v_1) + \psi_i(N, v_2)\]