GRIT: GAN Residuals for Image-to-Image Translation
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Figure 1. We decouple the optimization of reconstruction and adversarial losses by synthesizing an image as a combination of its recon-
struction (low-frequency) and GAN residual (high-frequency) components. The GAN residual adds realistic fine details while avoiding the

pixel-wise penalty imposed by reconstruction losses.

Abstract

Current Image-to-Image translation (121) frameworks
rely heavily on reconstruction losses, where the output
needs to match a given ground truth image. An adversarial
loss is commonly utilized as a secondary loss term, mainly
to add more realism to the output. Compared to uncon-
ditional GANs, 121 translation frameworks have more su-
pervisory signals, but still their output shows more artifacts
and does not reach the same level of realism achieved by un-
conditional GANs. We study the performance gap, in terms
of photo-realism, between 121 translation and unconditional
GAN frameworks. Based on our observations we propose a
modified architecture and training objective to address this
realism gap. Our proposal relaxes the role of reconstruc-
tion losses, to act as regularizers instead of doing all the
heavy lifting which is common in current 121 frameworks.
Furthermore, our proposed formulation decouples the op-
timization of reconstruction and adversarial objectives and
removes pixel-wise constraints on the final output. This al-
lows for a set of stochastic but realistic variations of any
target output image.
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1. Introduction

Generative Adversarial Networks (GANs) have had a
revolutionary impact on generative modeling and image
synthesis. In their unconditional setting [7, 13, 15], GANs
map a source distribution, typically a unit Gaussian, to a tar-
get distribution (e.g., real images). At inference time, ran-
dom images can be synthesized by sampling latent codes
from the source distribution and passing them through a
generator network. To provide user control over the syn-
thesis process, Isola et al. [11] proposed a GAN-based
Image-to-image (I2I) translation framework, which con-
ditions the synthesis process on an input image that de-
scribes certain attributes of the target output. Therefore,
I2I translation learns to map images from a source do-
main A to a target domain B (e.g., semantic maps —
scenes or sketches — photo-realistic images). I2I trans-
lation has since been utilized for many problems in com-
puter vision and graphics, such as inpainting [34], coloriza-
tion [48, 50], super-resolution [20], image de-noising [4],
rendering [27, 28, 37], and many more [5, 41, 51].

While unconditional GANs [14, 17] and class-
conditional GANs [3] have reached unprecedented visual
quality, 121 translation lags behind in quality and realism.
This is despite the fact that it has more inputs and better
supervision during training. For example, Figure 2 con-
trasts StyleGAN [15] (unconditional) and GauGAN [32]



Figure 2. Comparing image realism between unconditional GANs
and I2I translation. Left: Sample output from StyleGAN [15] at
1024 x 1024 resolution. Right: I2I translation outputs from Gau-
GAN [32] at 256 x 256 resolution. Even at a lower resolution, 121
shows more noticeable artifacts compared to unconditional GANSs.

(I2I) which both came out around the same time and from
the same institution. Yet, there is a clear realism gap in favor
of unconditional GANSs.

We are motivated by this realism gap between uncondi-
tional GANs and I2I translation. We investigate the cause
of this performance gap and trace it back to the difference
in the training objective between those two tasks. In un-
conditional GANSs, the generated output is supervised only
by an adversarial loss £,qy, Where a critic/discriminator net-
work learns to score how realistic the output looks. On the
other hand, I2I translation relies on cyclic [54] and cross-
cyclic [10, 23] reconstruction losses between the generated
output and available ground truth images. Thus the training
objective of I2I translation optimizes a weighted combina-
tion of both an adversarial loss, L,4v, and a reconstruction
loss, L. Reconstruction losses enforce a form of pixel-
wise matching between the ground-truth image I? and the
output reconstruction IB. This provides a strong supervi-
sory signal which speeds up convergence significantly when
compared to unconditional GANs. However, we show that
reconstruction losses are at odds with adversarial losses,
which does not lead to a sound optimization objective and
causes visual artifacts in 12I outputs.
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Figure 3. Comparison between different 121 training objectives:
Left is the input semantic layout. The following columns show the
output of networks trained with an L1 loss, VGG-based percep-
tual loss, perceptual+adversarial (GAN) losses respectively. Last
column shows the corresponding ground truth image.
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Figure 3 shows the effect of optimizing different objec-
tives for 121 translation. Optimizing an L1 reconstruction

Figure 4. Examples of multi-modal outputs (generated by our
method) with local stochastic variations that add realism and sat-
isfy the GAN objective. Applying reconstruction losses in tradi-
tional 121 frameworks ignores this type of multi-modality and pe-
nalizes such variations, which misleads I2I training.

alone leads to very blurry outputs. While using a VGG-
based perceptual loss [12] achieves much better results, the
output is not sharp and contains clear grid artifacts. Adding
an adversarial loss brings the output closer to the distribu-
tion of real images, but, in many cases, artifacts can be spot-
ted (e.g., around the hair, teeth and eyes). We hypothesize
that directly optimizing a reconstruction loss on the output
ignores a type of multi-modality in image synthesis, which
leads to visible artifacts. To motivate our hypothesis, Fig-
ure 4 shows how GANs improves realism by simulating fine
details found in real images, like local variations or noise
patterns found in the texture of real materials. There are
infinite realizations of such noise patterns that adds realism
to the output (e.g., skin freckles, pores and wrinkles, and
linings of hair strands). However, applying a reconstruction
loss (L) in traditional 121 frameworks penalizes all these
local variations and promotes a uni-modal solution where
the generated image matches the ground truth down to the
pixel level. This leads to smoothed outputs and other no-
ticeable artifacts that do not show in the unconditional GAN
setup where no reconstruction loss is applied.

In this work, we address this problem and propose a
modified architecture and training objective that relaxes the
role of reconstruction losses to act as regularizers instead
of doing all the heavy lifting which is common in current
121 translation frameworks. Our formulation decouples the
optimization of adversarial and reconstruction losses. This
enables our network to hallucinate local variations to add
realism to the output while avoiding being penalized by
reconstruction losses.

‘We summarize our contributions as follow:

* We study the realism gap between unconditional GANs



and 121 translation, and shed light on an important multi-
modal aspect of image synthesis that we denote as local
spatial variations, which is overlooked and rather penal-
ized in traditional 121 translation formulation.

* Through the proposed approach, we use GAN Residuals
for Image-to-Image Translation (GRIT), and take the first
step towards addressing the multi-modal nature of local
spatial variations in I2I translation. We utilize a modi-
fied architecture and training objective that models and
encourages such multi-modality.

* We provide quantitative and visual evidence on the effec-
tiveness of modeling local spatial variations in I2I transla-
tion, and show that our proposed method improves upon
strong baselines both quantitatively (over multiple met-
rics) and qualitatively.

2. Related work

Since the onset of the GAN era with the seminal work
of Goodfellow et al. [7] there have been multiple works [3,

, 16, 30] to improve the synthesis quality and resolution
of images. Karras et al. [17] improved the quality of [16] by
introducing better normalization and regularization and in
the process reduced image artifacts and made inversion eas-
ier. [14] went a step further to reduce aliasing and also pro-
posed an approach which made representations equivariant
to rotation and translation. While these works try to learn
the manifold of training data to generate samples on it, there
is another synthesis task of Image-to-Image (I2I) transla-
tion which has been vastly explored and involves translat-
ing images from one domain to another. I2I translation can
be broadly grouped into two regimes based on the type of
training data, unpaired data or paired data.

Unpaired Image-to-Image Translation utilizes un-
paired training data which does not have pixel level cor-
respondence between the domains. CycleGAN [53], Dual-
GAN [45] and DiscoGAN [18] proposed one of the first
and most commonly used approaches for this involving
a cyclic loss to impose consistency between forward and
backward translation for the same image. UNIT [25] and
SCAN [24] also utilize the cyclic loss but introduce a shared
latent space and multistage coarse to fine training respec-
tively. TransGaGa [43] extends the cyclic loss to large do-
main gaps by disentangling features into appearance and
geometry latent space. On the uni-directional (non-cyclic
loss) end, approaches like DistanceGAN [2] train by main-
taining distance between pairs of samples. GcGAN [6] en-
forces constraints on geometric transformations preserving
image semantics. CUT [31] proposes a multi-layer patch
based contrastive learning approach while MUNIT [10] and
DRIT [22] disentangle representations into style and con-
tent. [33] also uses disentanglement but into texture and

structure. More recently MSPC [44] proposes a maximum
spatial perturbation consistency based regularization.

Paired Image-to-Image Translation uses paired data
making it possible to enforce pixel level correspondence.
One of the first works in this direction, Pix2Pix [11]
proposed an L1 reconstruction based loss with a patch
discriminator. Later, Pix2PixHD [39] improved it with
higher resolution generation using coarse to fine genera-
tor and multi-scale discriminator. SPADE [32] proposed
spatially-adaptive normalization layer as vanilla normaliza-
tion washes away semantic information. SEAN [55] went a
step further and proposed semantic region-adaptive normal-
ization layer to control style of each semantic region sepa-
rately. CoCosNet [47] jointly learns the cross domain corre-
spondence and image translation, where both tasks facilitate
each other and thus can be learned with weak supervision.
Later CoCosNetv2 [52] mitigated the quadratic complexity
issue in CoCosNet and enabled high-resolution correspon-
dence using PatchMatch [1]. Recently DINO [38] proposed
an energy based cyclic framework to utilize the conditional
input. While MoNCE [46], presents a re-weighted patch
based constrastive learning framework. Unlike these works
in our approach we disentangle the reconstruction and ad-
versarial (GAN) loss. Additionally, we also propose archi-
tecture modifications which enable us to perform this dis-
entanglement by separating the reconstruction supervised
output and the residual and in the process make better use
of per-pixel spatial noise to learn more realistic and diverse
I2I translations.

3. Approach

The goal of reconstruction losses is to guide a gener-
ated output IB to resemble a target ground truth image 5.
While this is a desired behavior for 121 translation, a nega-
tive side effect is that a reconstruction loss will also penalize
high frequency deviations between 15 and IZ. Therefore,
this formulation ignores the multi-modal nature of synthe-
sizing fine-grain texture patterns, where there are infinitely
many realizations of local high-frequency details (e.g., skin
texture or the location of hair strands as shown in Figure 4).
Penalizing such local variations and promoting a uni-modal
solution thus causes artifacts and contributes to the realism
gap between unconditional GANs and I2I translation.

Through our approach GRIT, we make a first step to-
wards addressing this overlooked multi-modal aspect of im-
age synthesis, and propose to decouple the optimization of
reconstruction and adversarial losses. We present our for-
mulation in Section 3.1 and discuss the associated changes
to the loss function in Section 3.2. Finally, Section 3.3 dis-
cusses how to explicitly model multi-modal local variations
for I2I translation.
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Figure 5. Left: : Overview of GRIT. Our network generates the output as the composition of a reconstruction component I}EC and a
GAN-residual component IB,. An L1 reconstruction loss is applied only to the reconstruction component, while the GAN residual is
supervised only through an adversarial loss £,4y. Right: The generator’s upsampling block. We feed the encoded style latent z* through
AdalN layers, and we also add random spatial noise maps controlled by learnable weights W to the feature maps.

3.1. Formulation

We propose to generate an image IPB as the composition
of two components: a reconstruction component ffc, and
an adversarial GAN-residual component ffs. During train-
ing, this decoupling of ffc and frﬁ allows the reconstruction
component fr]fc to focus on reconstructing low-frequency
details of the target real image 17, while the GAN-residual
component I B hallucinates high-frequency details that adds
realism to the synthesized image IB. The final output is

generated as:

" :C(ffwjri); freBuIAreBs :G(IA’ZS) (1)
where G(., .) is a generator network that maps an input im-
age I along with a style latent code 2° to its low- and high-
frequency components freBC, frg, and C(., .) is a composition
operator that combines both output components. We im-
plement C as a simple addition. We also investigated im-
plementing it as a small CNN head that fuses 15, I but
found that simply adding the two images works better in our
case and is more stable to train. Figure 5 gives an overview
of our architecture. We implement the generator network
as a U-Net [35] architecture that consists of a content en-
coder £ and a decoder D. The decoder network outputs
both ffc, freBs We further discuss the decoder architecture in
Section 3.3. To model style multi-modality, we follow the
literature [29, 32, 54] by utilizing a style encoder E° that
learns to capture the style of an input image into a latent
style code z°, which is fed to the generator G via AdaIN
layers [9] to specify the style of the output IB. Next, we
discuss our modification to the loss function to encourage
the decomposition of I into its reconstruction and GAN-

residual components.

3.2. Loss function

The standard loss function of GAN-based I2I transla-
tion networks consists of a weighted sum of a pixel-wise
reconstruction loss £, and a discriminator-based adversar-
ial loss L,qy. Minimizing this loss function does not take
into account possible local variations, as it promotes pixel-
wise matching between the output IB and the ground truth
I3, and thus only accepts one solution and penalizes any
high-frequency variations. To allow such local variations,
we aim to only reconstruct the low-frequency components
of a ground truth image IZ, where low-frequency compo-
nents capture the general content and style of the target
output. On the other hand, we want the generator to have
the freedom to add fine-grain details, represented by high-
frequency components, that make the output photo-realistic.
We achieve this by modifying the loss function to apply the
reconstruction loss L. only to the reconstruction compo-
nent 1B, while the adversarial loss Lagy is applied to the

rec?

final output /% = C(I2,, IB). Thus, our modified training

rec’ -res

objective is given by:

min £(IP, 18,18 = Laay(IP, IP) + AeeLrec (IE., I7)

(@)
With such modification, the reconstruction loss L. does
not backpropagate into the GAN-residual component IAreBS,
and ffs therefore has the freedom to hallucinate high-
frequency details that add realism to generated images with-
out being constrained to match pixel-level details of ground
truth images at training time. While the proposed loss func-
tion (Eqn. 2) allows high-frequency deviations between 17
and IB, this by itself does not encourage multi-modal syn-
thesis of local texture and other high-frequency details. In
the next section, we discuss how to explicitly model the

local-variations multi-modality into our network.



3.3. Multi-modal outputs

At training time, I2I translation networks peek at the
target ground truth image I? and encodes it into a flat-
tened style latent code z°. However, due to the lossy na-
ture of such compression, it is impossible for the decoder
to recover pixel-level spatial information (e.g., location of
hair strands) to reconstruct 2. Driven by the adversarial
loss, the decoder hallicinates spatial patterns to bring syn-
thesized images closer to the manifold of real images. This
requires the decoder to devise a way to generate spatially-
varying pseudo-random numbers from the input flattened
latent. This challenge was first raised in StyleGAN [15],
where they showed that this is inefficient and consumes
much of the network capacity. To address this limitation,
StyleGAN et al. [15] proposed to add per-pixel noise maps
within each upsampling block in the decoder to encourage
synthesizing local variations of spatial patterns.

The use of spatial noise maps however did not transfer
to the I2I translation literature. This is because, unlike un-
conditional GANSs, the application of reconstruction losses
counteracts the added spatial noise by suppressing it, lead-
ing to a uni-modal output. On the other hand, decomposing
the synthesis into its reconstruction IAri and GAN-residual
ffs components allows for naturally adapting spatial noise
maps to I2I translation by modeling local stochastic varia-
tions in the GAN-residual component. This bridges the gap
between unconditional GANs and 121 translation since Ifs
is not affected by the reconstruction loss, and can therefore
fully utilize the added spatial noise. Adding spatial noise
maps models local variation multi-modality, and enables
generating multi-modal output for the same target image by

sampling random noise maps.

4. Experimental evaluation

Implementation details. In the interest of space we pro-
vide details about network architecture and training hyper-
parameters in the supplementary.

Dataset. We perform our evaluation on the CelebMask-
HQ dataset [21]. The dataset contains 30, 000 high resolu-
tion face images along with their corresponding segmenta-
tion masks which contain 19 semantic labels and are at a
512 x 512 resolution. We use the standard train and test
splits provided by Liu et al. [26].

Baselines. We compare our method with the following
approaches: Pix2PixHD [39], SPADE (also called Gau-
GAN) [32], DINO [38] and MoNCE [46]. We train
Pix2PixHD [39] and SPADE [32] using their official re-
leased code. For Pix2PixHD, we enable the option to train
a semantic-specific style encoder, which computes separate

Method L1) PSNR?t SSIM1 LPIPS| FID|]

Pix2PixHD [40] 24.78 17.53  0.515 0.256 4597
SPADE [32] 28.69 16.21  0.485 0.283  26.06

DINO [38] 51.84 12.13  0.401 0369 37.24
MOoNCE [46] 6426 1032 0357 0380 34.27
Ours 18.34 19.54 0.531 0.245 17.04

Table 1. Comparison with baselines at 256 x 256 resolution.

style codes per semantic label. We use the outputs pro-
vided by the authors for DINO [38], and use the released
pre-trained model of MoNCE [46] and follow the authors’
instructions to generate test results on the CelebAMask-HQ
dataset. Since MoNCE and DINO are trained at 256 x 256,
we train our method as well as Pix2PixHD and SPADE at
256 resolution for fair comparison. Additionally, we also
train our method, Pix2PixHD and SPADE at 512 x 512 res-
olution to evaluate and compare results at high resolution.

Metrics. We evaluate all methods using the following
metrics:

» Standard reconstruction metrics such as L1, Peak Sig-
nal to Noise Ratio (PSNR), and structural similarity
(SSIM) [42] between the output and ground truth.

* LPIPS [49] which measures the perceptual similarity be-
tween the output and ground truth using AlexNet features.

* Frechet-Inception Distance (FID) [8] which is used to
measure the perceptual quality and realism of the output.

4.1. Quantitative Comparison

We provide quantitative comparison with the baselines
in Table 1. We observe that Pix2PixHD performs much bet-
ter than SPADE on reconstruction metrics like L1, PSNR,
SSIM and LPIPS. This is because Pix2PixHD uses a power-
ful semantic-specific style encoder that encodes a separate
style code per each semantic label and is therefore able to
match the ground truth style more accurately. On the other
hand, SPADE uses a VAE-based encoder [19] which adds
robustness to noise in the style latent space, but at the ex-
pense of faithful reconstruction of the ground truth style.
SPADE however maintains good realsim, and thus performs
much better than Pix2PixHD on the FID metric. While
DINO [38] and MoNCE [46] are more recent baselines,
we observe they fall short in comparison with Pix2PixHD
and SPADE. Finally, our decoupled optimization of recon-
struction and adversarial losses achieves better reconstruc-
tion error, as well as better realism (FID) score compared
to the baselines. Our reconstruction component ffc focuses
on reconstructing low-frequency details to match the gen-
eral color and structure of the ground truth. Matching low-
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Figure 6. Qualitative comparison with DINO [38], MoNCE [46], Pix2PixHD [40] and GauGAN/SPADE [32].

frequency components has a direct impact on reconstruc-
tion metrics, especially L1 and PSNR. Additionally, unlike
the baselines, our GAN residual component I3, is not con-
strained by reconstruction losses. And so, it has the freedom
to add high-frequency details that improves the output real-

ism, which leads to a better FID score.

While many baselines are trained at a 256 x 256 resolu-
tion, we also inpsect our performance at a higher resolution
of 512 x 512. To provide comparative evaluation at this
resolution, we choose the Pix2PixHD and SPADE methods
which are the top performing methods at 256 x 256 reso-
lution, and retrain them at a 512 resolution. Table 2 shows
that the proposed method consistently shows similar trends

Method L1) PSNR{ SSIM{ LPIPS| FID |
Pix2PixHD [40] 24.80 17.40 0.534 0354 24.79
SPADE [32] 3144 1553 0490 0.389 20.80
Ours 19.02 1936 0555 0.333 1691

Table 2. Comparison with baselines at image translation resolution
of 512 x 512.

of improvement over the baselines across all metrics. We
qualitatively show examples for this resolution in the sup-
plemental.
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Figure 7. Examples of local stochastic variations. Top to bottom rows represent the input image, one sample output, the standard deviation
of each pixel over 20 different outputs for the same example, and the ground truth image respectively.

Method L1) PSNRT SSIM T LPIPS | FID |
U-Net [35] 21.68 1825 0504 0.222 20.24
+ spatial noise 2093 1855 0520 0219 2141

+ GAN residuals (ours) 18.34 19.54 0.531 0.245 17.04

Table 3. Ablation of different components of our approach.

4.2. Qualitative evaluation

In this section we qualitatively analyze and compare syn-
thesized results between our method and the baselines. We
also look at various aspects of our approach through visual
results to understand different components better.

4.2.1 Comparison with Baselines

Figure 6 shows qualitative comparison with the baselines.
Our method clearly improves over the baselines in terms of
both realism, as well as matching the ground truth style. We
note that our results could show some style deviations from
the ground truth style (e.g., lip color in the second row),
although we are still noticeably better than the baselines.
We observe that the added GAN residual can sometimes
cause such slight deviation from the reconstructed color,
since it is not constrained by the reconstruction loss. While
DINO captures the structure well, it loses out on realism
and on matching colors and textures to the ground truth im-
age. MoNCE shows more details due its patch based nature
during training, but again is not able to faithfully capture

the style and structure well. Pix2PixHD and SPADE both
generate reasonable results, but we observe that SPADE re-
sults look more realistic, although not faithfully matching
the ground truth style. Our output on the other hand gen-
erates high quality and realistic samples while making sen-
sible light deviations which capture the true nature of real
world data.

4.2.2 Standard Deviation of Spatial Noise

In our approach we utilize spatial noise by adding it to the
feature maps at each upsampling block. This along with the
decoupled objective lets the network learn to generate varia-
tions of local information which preserves the structure and
content but introduces diversity in the generated samples.
Here we analyze the variations generated for multiple sub-
jects over 20 different spatial noise samples for each of them
to understand the stochasticity better. Figure 7 shows pixel-
wise standard deviation over the different translation results
generated by varying the spatial noise. It can be see that
highest deviation occurs in regions corresponding to hair,
around eyes, lips and nose. These regions can be consid-
ered high-frequency locations as they usually contain mul-
tiple edges and have the most variations. By visualizing the
standard deviation we are able to verify that the network is
able to understand and model these regions better and gen-
erate sensible variations.
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Figure 8. Examples of the different outputs of our method along
with the input label map and ground truth image.

4.3. Ablation

We perform ablation on different components of our ap-
proach and show the effect of sequentially introducing each
of them. These results are highlighted in Table 3. The
first row shows the performance of a vanilla 121 framework
which utilizes a U-Net [35] based generator with a recon-
struction and GAN loss on the output. The second row cor-
responds to introducing spatial noise which lets the model
learn to generate local variations. It should be noted that
introducing spatial noise on its own does not realize its full
potential as the reconstruction loss can fight back and teach
the network to ignore it in order to improve on the pixel-
wise reconstruction loss. This is where the role of residuals
comes in, which can be seen in the third row. Introduc-
ing the GAN residuals along with the spatial noise gives a
considerable boost in performance, as while the reconstruc-
tion losses supervise the reconstructed output, the GAN loss
supervises the combined output and lets the network learn
residuals which can better capture details in the image. We
also compare the VGG and L1 loss as possible choices for
supervising the reconstruction and show results in the sup-
plemental supporting our choice for L1.

4.4. Understanding the GAN Residuals

Figure 7 shows examples of the different outputs gener-
ated by our network, namely, the reconstructed and residual
images followed by the final combined image. Here we try
to understand what kind of information these images hold.
As can be seen from Figure 8 the reconstructed image en-
codes most of the structure and content of the image. It
looks majorly a low-frequency and smooth image while the
the residual seems to contain a lot of high-frequency infor-
mation around the hair, eyes, beard, lips etc. where a lot of

edges and variation occur. As can be seen in the combined
output, adding these two gives a realistic image which re-
sembles the ground truth.
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Figure 9. We visualize the frequency spectrum and high-

light that the reconstructed image contains higher magnitude of
low-frequency information while the residual captures the high-
frequency more. By combining these, the resulting image has a
spectrum closer to the ground truth image. The y-axis denotes the
spectral density which is measures the magnitude of a particular
frequency while the x-axis corresponds to the frequency relative
to the maximum frequency corresponding to fryq.

We refer to the GAN residuals being high-frequency by
capturing local variations. Here we verify this hypothesis
by computing the frequency spectrum of the images simi-
lar to Schwarz et al. [36] which uses azimuthal averaging
over the spectrum in normalized polar coordinates. In Fig-
ure 9 we show the average over all the synthesized outputs
corresponding to the test set. It can be seen how the the
reconstruction (orange) encodes higher magnitude for the
low-frequencies with a complete cutoff at mid-to-late fre-
quencies. On the other hand the residual (blue), encodes
more of the high-frequency information. Combining both
of them (green) is much closer to the frequency spectrum of
the ground truth (red).

5. Conclusion

We propose a novel approach for image-to-image trans-
lation by highlighting the disconnect between the recon-
struction and adversarial losses which are at odds with each
other. Based on this insight we decouple the reconstruc-
tion and adversarial loss in the proposed approach which
enable it to have the freedom to learn local variations bet-
ter and generate more realistic translations. Through both
quantitative and qualitative results we highlight the efficacy
of the proposed approach and achieve state-of-the-art per-
formance on this task. We show results and compare at
both 256 x 256 and 512 x 512 resolutions which shows that
the proposed method can generate higher resolution images
too. We also analyze the diversity in image synthesis that



our method introduces using the spatial noise. We high-
light how these variations occur around regions of high fre-
quency in most cases. Further, we analyze the residuals and
the reconstructed output and visually show the importance
of having a combination of these to give the final output
along with their frequency analysis.
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