
Towards Discovery and Attribution of Open-world GAN Generated Images:
Supplementary Material

Sharath Girish*

sgirish@cs.umd.edu

Saksham Suri*

sakshams@cs.umd.edu

Saketh Rambhatla
rssaketh@umd.edu

Abhinav Shrivastava
abhinav@cs.umd.edu

University of Maryland, College Park

1. Additional experimental details
For our feature extractor, we use 3 fully-connected lay-

ers. Each fully connected layer is followed by the ReLU
activation unit and Dropout with a drop probability of 0.5
during train phase for regularization. The first layer maps
the input 2048 dimensional vector to 512 dimension. The
second layer maintains the number of activation units at
512 while the third one downsamples it to 128 which is
the final dimension of the feature vector we use for sub-
sequent stages. For all our experiments in the supplemen-
tary, we train on 128 ˆ 128 sized images. We set a per-
centile threshold of 0.9 for our out-of-distribution detection
stage. Our cluster merging algorithm using the 1-Nearest
Neighbour Graph is a 2 staged setup which initially merges
the newly obtained clusters from K-Means in the previous
stage and then merges the entire clustered set. We adopt
this 2 staged setup as K-Means overclusters the discovery
set and requires merging before merging with the clusters
in the clustered set. For training SVMs, we use the GPU-
accelerated library of ThunderSVM [1].

2. Additional dataset details
Table 1 summarizes the class-wise train and test splits

used across our experiments. We use a variety of images
for multiple image sources to more closely simulate a real
world setup. Note that some train images are not used de-
pending on the dataset setup where the image sources could
only belong in the discovery set.
Our online dataset setup defined in Section. 4.4.3 of the pa-
per consists of GANs in the chronological order they were
published or introduced. We have an initial labeled and dis-
covery set as defined in Table 2. After running our pipeline
for 2 iterations on this set, we add 3 more GANs to the
discovery set: BigGAN and SSGAN [2], both trained on
ImageNet, StyleGAN trained on CelebA-HQ. We run our
pipeline for 2 more iterations on the new discovery set, and
add 3 more GANs: ResNet19 and StarGAN-v2 [3], both

*First two authors contributed equally

trained on CelebA-HQ, S3GAN trained on ImageNet. This
is followed by 2 more iterations of network training result-
ing in a total of 6 iterations for the full online setup. The
numbers are as reported in Section 4.4.3 of the main paper.

3. Additional baseline comparisons

Section 4.2 of the paper provides comparisons with base-
lines derived from the works of [4] and [5] by training their
methods on our dataset in a multiclass manner. We addi-
tionally provide baselines by using features from the pre-
trained models provided by them which were trained on
their datasets. We provide results by performing K-means
clustering on the features for k “ 20 and k “ 500 simi-
lar to the baselines derived in Section 4.2. The results are
shown in Table 3 (denoted by *). It can be seen that the fea-
tures don’t generalize across datasets and does worse than
the baselines reported in the paper on both the metrics of
Average Purity and NMI.
Also, as [5] primarily deals with only real-fake classifi-
cation, we train their method on our dataset but only on
the binary real-fake classification task and extract their fea-
tures. We show the results based on clustering the fea-
tures for k “ 20 and k “ 500 and reporting results in
Table 3 (denoted by). We see that features generated
from the binary classification problem do worse than the
multiclass case. This is because the binary classification
problem only discriminates between real and fake image
sources while grouping the different fake image sources to-
gether. This causes less discrimination between the fake im-
age sources harming the clustering performance. We also
provide a baseline (denoted by #) using our approach but
adding JPEG and blur augmentations as used by [5]. We see
that this degrades the performance compared to our orig-
inal approach likely because these augmentations destroy
valuable high frequency information used for discriminat-
ing between GAN sources. Since the baseline performance
was lower in these evaluations we did not include them in
the main paper.

1

Table 1. List of GANs trained on the corresponding 4 real datasets
used in our labeled and discovery set. Note that the same GAN
can be trained on multiple datasets.

Dataset Image Source
of Images

(Train)
of Images

(Test)

CelebA

Real 20k 10k

StarGAN 20k 5k

AttGAN 20k 10k

BEGAN 20k 10k

ProGAN 20k 10k

SNGAN 20k 10k

MMDGAN 20k 5k

CramerGAN 20k 10k

CelebA-HQ

Real 20k 10k

ProGAN 20k 10k

StyleGAN 20k 5k

ResNet19 20k 10k

ImageNet

Real 20k 10k

BigGAN 20k 5k

S3GAN 20k 10k

SNGAN 15k 10k

LSUN-Bedroom

Real 20k 5k

ProGAN 20k 10k

MMDGAN 20k 5k

SNGAN 20k 3k

CramerGAN 20k 10k

DTD
Real - 10k

ProGAN 20k 5k

FashionGen
Real 20k 10k

DCGAN 20k 5k

Night
Real 15k 5k

Pix2Pix 15k 10k

Shoes
Real 20k 3k

Pix2Pix 20k 10k

Table 2. Initial labeled and discovery set for our online setup.

Dataset Labeled GANs Discovery GANs

CelebA BEGAN,
MMDGAN,
CramerGAN,
ProGAN

BEGAN, MMDGAN,
CramerGAN, ProGAN,
StarGAN, AttGAN,
SNGAN

CelebA-HQ ProGAN -
ImageNet SNGAN -
LSUN
Bedroom

ProGAN,
MMDGAN,
CramerGAN

ProGAN, MMDGAN,
CramerGAN,SNGAN

Table 3. Comparing the proposed approach with additional base-
lines from [4, 5]. * represents the pretrained features used for clus-
tering while denotes the features obtained from binary classifica-
tion, the original task of [5]. We also provide a baseline (denoted
by #) using our approach but with JPEG and blur augmentations as
used by [5]. This does worse on both clustering metrics compared
to our original approach.

of
clusters Method Avg. Purity NMI

20
Wang et al. [5]* 0.1946 0.2042
Yu et al. [4]* 0.4529 0.4543
Wang et al. [5] 0.3841 0.4434

500
Wang et al. [5]* 0.2929 0.2004
Yu et al. [4]* 0.5947 0.3916
Wang et al. [5] 0.6082 0.4334

258 Ours# 0.7696 0.6249
266 Ours 0.8216 0.6552

4. Out-of-distribution detection

In this section, we provide more details on the WTA
hash and also a comparison between cosine based distance
and the WTA hashing based hamming distance for out-of-
distribution detection. Additionally, we compare our ap-
proach with another popular out-of-distribution algorithm
[6] and show that our algorithm performs well on their re-
ported benchmarks. Finally, we analyze the effect of the
percentile threshold used in our approach.

4.1. WTA hash details

The WTA hashing algorithm proceeds as follows.
Suppose a single feature vector x has a dimension d. We
generate H different permutations pi, i P t1, ...,Hu of
indices t1, ..., du and then apply each of these permutations
to x to get a set of vectors tx1iu

H
i“1. For each vector x1i,

we take the first K elements, for a window size K, and
obtain the index of the max element. The set of these H
indices (one for each permutation) yields a new vector xH .
Note that xH is a H dimensional vector with its elements
taking integral values in r0,K ´ 1s. The distance between
two feature vectors is then defined as the hamming distance
between their corresponding hashes.

4.2. Cosine based distance details

We compare the in-distribution, out-distribution and
overall accuracy of our algorithm for the 12 seen classes (as
described in Table 1 of the paper) using the WTA hash dis-
tance and a cosine-based distance. The results are shown in
Table 5. As the number of samples in our in-distribution
is roughly the same as number of samples in our out-
distribution, we use standard accuracy as our metrics for

2

Table 4. Comparison of our approach using WTA hash with ODIN [6]. The in-distribution dataset is CIFAR-100 which is used to train
a DenseNet. We evaluate our method on the same metrics reported in [6]. The numbers reported are in the format of ”ODIN/Ours”. All
values are in percentages. Ò implies that the larger value is better while Ó implies smaller value is better. We outperform ODIN on all OOD
datasets and metrics excluding LSUN (crop).

Out-distribution dataset FPR at 95% TPR Ó Detection error Ó AUROC Ò AUPR In Ò AUPR OutÒ

Tiny-ImageNet (crop) 26.9{18.8 12.9{10.2 94.5{96.4 94.7{96.6 94.5{96.3
Tiny-ImageNet (resize) 57.0{20.2 22.7{10.6 85.5{96.2 86.0{96.3 84.8{96.1
LSUN (crop) 18.6{32.1 9.7{14.0 96.6{93.8 96.8{94.2 96.5{93.7
LSUN (resize) 58.0{17.3 22.3{9.6 86.0{96.8 87.1{97.0 84.8{96.7
iSUN 64.9{28.3 24.0{12.6 84.0{94.8 85.1{95.2 81.8{94.6
Gaussian 100.0{0.0 17.9{0.1 99.5{100.0 87.5{100.0 65.1{99.8
Uniform 100.0{0.0 38.0{0.0 40.5{100.0 60.5{100.0 40.9{99.9

Table 5. Comparison of our OOD step using WTA hash or cosine
distance. We see that the WTA hash consistently outperforms the
cosine-based distance at all 4 iterations of training even though it
drops slightly on the out-distribution accuracy.

Iteration
In-distribution
Accuracy (%)

Out-distribution
Accuracy (%)

Net
Accuracy (%)

1 86.02{91.74 93.26{89.35 89.33{90.65
2 83.49{88.33 98.36{97.63 90.22{92.58
3 81.14{85.37 99.32{98.34 89.45{91.3
4 79.11{82.94 99.10{99.12 88.27{90.33

comparison. In-distribution accuracy refers to the accu-
racy on all the samples in the discovery set which belong
to the 12 seen classes while out-distribution corresponds
to those belonging to the 8 unseen classes. Net accuracy
is the overall accuracy on the full discovery set. We see
that using the hash outperforms cosine based distance in
terms of the net accuracy and in-distribution accuracy. It
performs lower than the cosine-based distance in terms of
the out-distribution accuracy but with only a small differ-
ence. This is because of an inherent tradeoff between in-
distribution and out-distribution accuracy based on the per-
centile threshold.

4.3. Related works comparison for OOD

We now compare our approach with the popular out-
of-distribution (OOD) approach called ODIN [6] on their
benchmark. We show results using features extracted from
DenseNet trained on CIFAR-100. We evaluate on the var-
ious out-of-distribution datasets provided by the authors of
[6] and report our results in Table 4. We see that we outper-
form their algorithm on almost all datasets except LSUN
(crop). Additionally, our algorithm has very few hyperpa-
rameters which require careful tuning and does not require
a validation set. This shows that our approach generalizes
well to other dataset setups and can be used in general for
the problem of out-of-distribution detection.

Table 6. Comparison between using the WTA hash based ham-
ming distance or the cosine based distance for computing the 1-NN
graph during merge step. We analyze the performance directly at
iteration 1 and also at the end of 4 iterations for both stages of
merge and refine.

#iter. Stage
Avg.

Purity NMI
% Samples
Discovered

of Sources
Discovered

of
clusters

1
Merge 0.791{0.793 0.642{0.646 - - 433{383

Refine 0.776{0.780 0.671{0.666 74.70{76.54 4{5 167{180

4
Merge 0.820{0.825 0.635{0.647 - - 618{432

Refine 0.819{0.823 0.651{0.655 91.80{94.76 8{8 294{266

Table 7. Reducing number of clusters for K-Means (K) by almost
half at each iteration. Average Purity and NMI does not change
drastically compared to our default setup.

Iteration K Avg. Purity NMI

1 500 0.695 0.6756
2 250 0.7877 0.6572
3 125 0.8086 0.6484
4 60 0.8056 0.6399

Ours (Default) 0.8216 0.6552

Table 8. We Naı̈vely recluster the test set after each training step
and use them as pseudolabels for retraining. Compared to our
original approach, a significant drop in Average Purity and NMI
is observed.

Step
Avg. Purity NMI

Reclustering Ours Reclustering Ours

1 0.7858 0.7803 0.5402 0.6658
2 0.7803 0.8183 0.5383 0.6625
3 0.7597 0.8211 0.5289 0.6595
4 0.7303 0.8216 0.5112 0.6552

4.4. Threshold analysis

We evaluate the performance of our pipeline when vary-
ing the percentile threshold which was set by default to 0.9.
We run our full pipeline iteratively for 4 iterations and re-
port the numbers for 4 different values of 0.7, 0.8, 0.9,
0.95. The results are summarized in Table 9. Increasing the

3

Table 9. Effect of the percentile threshold for OOD on the final
performance. The default value for our experiments is 0.9. For all
the thresholds, all sources were discovered.

β Avg. Purity NMI
of

Clusters
% Samples
Discovered

0.7 0.7952 0.5842 449 0.9226
0.8 0.8087 0.6135 376 0.9234
0.9 0.8216 0.6552 266 0.9476

0.95 0.8268 0.6985 181 0.9358

threshold has the expected result of decreased clusters as
more samples in the discovery set are called in-distribution
and are attributed to existing clusters. However, the re-
sulting cluster metrics do not vary drastically in the neigh-
bourhood of the default value of 0.9. This shows that our
pipeline is fairly robust to the percentile threshold which
also intuitively transfers across datasets. Our approach thus
has a single easy to tune scalar which automatically varies
the threshold for the different seen classes or clusters.

5. Clustering
We analyze the effect of the clustering, merge and refine

stages of the pipeline, varying a number of hyperparame-
ters and show our pipeline’s robustness to these values with
respect to the final performance.

5.1. Effect of different number of clusters and num-
ber of rounds of merge and refine

The k value chosen for K-Means changes the number
of clusters that are passed on to the merge step. Addition-
ally, we try performing multiple rounds of merge and re-
fine within a single iteration, which decreases the number
of clusters and improve purity. Table 11 summarizes the
effect of changing k and the number of rounds of merge
and refine, r, for the pipeline. We see that for a fixed r and
different k’s, even though the number of clusters changes in
the clustering stage, the final number of clusters at the end
of 4 iterations are similar and the performance on Average
Purity and NMI does not vary drastically. However, when
we fix k and vary r we see that final number of clusters
show a visible drop and as expected NMI increases slightly
while Average Purity decreases.

5.2. Cosine distance based merging

Instead of using the hamming distance between the WTA
hashes of the feature vectors, we use a cosine based distance
between feature vectors and compare the performance at the
end of the first iteration and also at the end of 4 iterations.
Table 6 compares cosine and WTA based distance at both
points in the pipeline at the end of both merge and refine
steps. We see that the WTA hash based distance marginally
outperforms the cosine based distance at almost all points in

Table 10. Effect of varying the size threshold (τ) and SVM fire fire
threshold (ε) on performance. The default setting corresponds to
τ “ 100 and ε “ 0.5.

τ ε
Avg.

Purity
NMI

Sources
Discovered

#
of Clusters

% Samples
Discovered

50
0.3 0.8178 0.6356 20/20 407 0.9695
0.5 0.8212 0.6326 20/20 434 0.9729
0.7 0.8223 0.6551 20/20 308 0.9549

100
0.3 0.8238 0.6451 20/20 293 0.9590
0.5 0.8216 0.6552 20/20 266 0.9476
0.7 0.823 0.6573 20/20 245 0.9237

200
0.3 0.8265 0.6731 20/20 166 0.8919
0.5 0.8197 0.67 20/20 161 0.9015
0.7 0.8233 0.686 19/20 138 0.8841

300
0.3 0.7849 0.7124 14/20 70 0.8643
0.5 0.8009 0.6992 13/20 89 0.8340
0.7 0.8055 0.7161 18/20 85 0.8638

the pipeline. It also discovers a higher percentage of sam-
ples with fewer clusters demonstrating its effectiveness in
our pipeline.

5.3. Size threshold and SVM firing threshold

Next, we evaluate the effect of varying the size threshold,
τ for discarding clusters at the end of refine step, as well
as varying the SVM fire threshold, ε, which also controls
the number of clusters (likely impure) being discarded. The
results are summarized in Table 10. As expected increasing
τ or ε decreases the number of clusters as more samples
are discarded. This comes at the cost of fewer samples and
GANs being discovered. However, the clustering metrics
do not vary drastically showing that our pipeline is robust
to these hyperparameter values and can generalize across
varying datasets and sizes.

5.4. Reclustering

We now evaluate the effect of removing the merge and
refine steps from our pipeline. Our pipeline consists of the
usual network training followed by clustering. For each it-
eration, we discard the old clusters and perform clustering
again using K-Means on all the test set samples. We then
use the new clusters as pseudo-labels and retrain our net-
work for improving the features. It should be noted there
is no OOD detection, merge or refine steps. This method is
similar to ClusterFit [7] who also use cluster pseudo-labels
for network training. We analyze the results in Table 8 by
comparing with our original pipeline. We see that the per-
formance drops by a significant margin showing that it is
crucial to maintain existing clusters and iteratively merge
and refine them while simultaneously improving the feature
representations of the existing clusters.

4

Sub-Cluster 1 (ResNet19-CelebA-HQ) Sub-Cluster 2 (ResNet19-CelebA-HQ)

Merged Cluster Merged Cluster
Sub-Cluster 1 (SNGAN-Imagenet) Sub-Cluster 2 (SNGAN-Imagenet)

Figure 1. Some example clusters merged by our approach during the merge step.

Table 11. Effect of varying the number of clusters k for K-Means
along with the number of times merge and refine (Additional Iters)
is performed for each step. In the default setting Additional Iters is
0 as merge and refine are performed once per step while k “ 500.

K
Additional

Iters
Avg.

Purity
NMI

Sources
Discovered

% Samples
Discovered

of
Clusters

100

0 0.7948 0.6722 20/20 0.9839 133
1 0.7952 0.6938 20/20 0.9876 104
2 0.7889 0.7016 19/20 0.9904 89
3 0.7627 0.7255 19/20 0.9835 66

200

0 0.8086 0.657 20/20 0.9762 199
1 0.8125 0.6798 20/20 0.9847 154
2 0.7944 0.6981 19/20 0.9749 105
3 0.7944 0.7085 20/20 0.9757 95

300

0 0.8142 0.652 20/20 0.9665 238
1 0.8051 0.6696 20/20 0.9486 163
2 0.802 0.6975 20/20 0.9602 121
3 0.7669 0.7046 17/20 0.9569 92

400

0 0.8175 0.6472 20/20 0.9494 281
1 0.814 0.6639 20/20 0.9637 196
2 0.8105 0.6817 20/20 0.9687 158
3 0.8005 0.7078 20/20 0.9679 113

500

0 0.8216 0.6552 20/20 0.9476 266
1 0.8249 0.6736 20/20 0.9532 195
2 0.8118 0.6887 20/20 0.9536 136
3 0.7862 0.691 20/20 0.9485 114

600

0 0.8264 0.6535 20/20 0.9396 279
1 0.8229 0.667 20/20 0.9545 212
2 0.8176 0.6854 20/20 0.9470 153
3 0.8039 0.6936 20/20 0.9459 121

700

0 0.8279 0.6572 20/20 0.9137 266
1 0.8294 0.6837 20/20 0.9115 172
2 0.8348 0.6887 20/20 0.9473 166
3 0.8233 0.6923 20/20 0.9382 139

5.5. Effect of varying number of clusters

For most of our experiments we run the clustering using
K-Means at a fixed value of k, which is used for all iter-

ations. As the number of undiscovered samples reduce as
number of iterations increases, we evaluate our pipeline’s
performance by decreasing k after each iteration. We thus,
approximately halve the value of k after each iteration. The
results are reported in Table 7. We see that the performance
does not change drastically compared to the default setup
which shows that our network does not heavily rely on the
number of clusters used during K-Means.

5.6. Qualitative Analysis

We now qualitatively show the effect of our merge step
for a few clusters. The merge step of our approach merges
clusters belonging to the same class but are actually frag-
mented due to overclustering from K-Means. We visualize
two such clusters in Fig. 1. As we showed in the main paper,
our clusters focus on the GAN source rather than image se-
mantics and the merge step successfully combines clusters
having the same majority GAN source.

6. Network Training
6.1. Effect of faster training

By default, we retrain all feature extractor weights ev-
ery iteration. To reduce the cost of full network retraining,
we analyze finetuning only the final residual block of the
ResNet-50 backbone along with the subsequent fully con-
nected layers of the feature extractor. We also analyze us-
ing a lighter network such as MobileNet [8] for our network
training and compare it with our original setup. Addition-
ally, we try to see the effect of removing the merge step
from the pipeline The results are summarized in Table 12.
We see that there is a small drop in network performance in
terms of both Average Purity and NMI and it also fails to
discover a single unseen source. Constraining the network
is likely to have restricted the network’s capability of im-
proving the discovery set features although it doesn’t have
a significant impact. On the other hand, MobileNet obtains

5

Table 12. Results on our setup with slight variations in our training.
Experiment # of Clusters Avg. Purity NMI # Sources Disc.

Ours (Original) 209 0.861 0.724 20/20
Ours (w/o merge) 257 0.841 0.712 19/20
Ours (Freeze) 229 0.850 0.691 19/20
MobileNet 70 0.846 0.773 15/20

Table 13. Results on our setup with varying image sizes.
Image Size # of Clusters Avg. Purity NMI # Sources Disc.

64 169 0.655 0.579 19/20
128 266 0.822 0.673 20/20
256 209 0.861 0.724 20/20

a higher NMI because of much fewer clusters, albeit at the
cost of not discovering most of the unseen sources. This
shows that very light networks are not as effective in ob-
taining discriminative representations for discovering new
sources. Also the performance without merge is sub-par to
our original approach which shows the importance of per-
forming merge step to group similar clusters together after
over-clustering.

6.2. Effect of image size

By default, we resize and center crop all images to
256 ˆ 256 in most of our experiments. We compare re-
sults when image sizes are varied from 64 to 256 for net-
work training. From Table 13, we see that increasing image
size shows a marked improvement in all metrics. Therefore,
we hypothesize that model fingerprints are likely more de-
tectable and distinguishable when the image is resized to a
higher resolution. However, this comes at the cost of in-
creasing network training times and memory requirements
(quadratically) which is infeasible in an online setup or for
very large scale datasets.

7. Multiple seed sources
[4] showed that training generators with different ran-

dom seeds generate different distinguishable fingerprints in
their images. We analyze whether we can discover new sep-
arate sources when a single generator architecture is trained
on the same dataset but with different seeds. Table 14 shows
results comparing this setup with our original setup. We add
2 different seeds for ProGAN for both CelebA and LSUN-
Bedroom providing 2 new sources. Note that only a single
seed of ProGAN trained on LSUN-Bedroom is present in
the labeled set while the other 3 sources are unseen. The re-
maining classes are same as our original setup as described
in Table 1 of the main paper. We see that there is only a
small drop in Average Purity and NMI although it fails to
discover a single unseen source.

Table 14. Results on our setup with variations in training.
Experiment # of Clusters Avg. Purity NMI # Sources Disc.

Ours (Original) 209 0.861 0.724 20/20
Ours + Unseen seeds 216 0.842 0.702 21/22

References

[1] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and
Jian Chen. ThunderSVM: A fast SVM library on GPUs
and CPUs. Journal of Machine Learning Research,
19:797–801, 2018. 1

[2] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lu-
cic, and Neil Houlsby. Self-supervised gans via aux-
iliary rotation loss. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 12154–12163, 2019. 1

[3] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-
Woo Ha. Stargan v2: Diverse image synthesis for mul-
tiple domains. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 8188–8197, 2020. 1

[4] Ning Yu, Larry S Davis, and Mario Fritz. Attributing
fake images to gans: Learning and analyzing gan fin-
gerprints. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7556–7566,
2019. 1, 2, 6

[5] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are
surprisingly easy to spot... for now. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, volume 7, 2020. 1, 2

[6] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant.
Enhancing the reliability of out-of-distribution im-
age detection in neural networks. arXiv preprint
arXiv:1706.02690, 2017. 2, 3

[7] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti
Ghadiyaram, and Dhruv Mahajan. Clusterfit: Improv-
ing generalization of visual representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6509–6518, 2020.
4

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 5

6

