Support Vector Machines

Rezarta Islamaj Dogan

Resources

- Support Vector Machines tutorial
 Andrew W. Moore
 - www.autonlab.org/tutorials/svm.html

- A tutorial on support vector machines for pattern recognition.
 C.J.C. Burges.
Linear Classifiers

\[f(x, w, b) = \text{sign}(w \cdot x + b) \]

How to classify this data?
Linear Classifiers

\[w \cdot x + b > 0 \]

- denotes +1
- denotes -1

\[w \cdot x + b < 0 \]
Linear Classifiers

\[w \mathbf{x} + b > 0 \]

• denotes +1

\[w \mathbf{x} + b < 0 \]

• denotes -1

Misclassified to +1 class
Classifier Margin

- denoted +1
- denoted -1

Margin: the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin Classifier

1. Maximizing the margin is good
2. Implies that only support vectors are important; other training examples are ignorable.
3. Empirically it works very very well.

Support Vectors are those datapoints that the margin pushes up against.
Finding the boundary

What we know:
- $w \cdot x^+ + b = +1$
- $w \cdot x^- + b = -1$
- $w \cdot (x^+ - x^-) = 2$

Learning the Maximum Margin Classifier

Given a guess for w and b
- Compute whether all data points in correct half-planes
- Compute the width of the margin

Search the space of w’s and b’s to find the widest margin that matches all data points

- Quadratic programming
Linear SVM

Correctly classify all training data

\[
\begin{align*}
wx_i + b & \geq 1 & \text{if } y_i = +1 \\
wx_i + b & \leq 1 & \text{if } y_i = -1 \\
y_i (wx_i + b) & \geq 1 & \text{for all } i
\end{align*}
\]

Maximize: \(M = \frac{2}{|w|} \)
Minimize: \(\frac{1}{2} w'w \)

Solving the Optimization Problem

Find \(w \) and \(b \) such that

\(\Phi(w) = \frac{1}{2} w'w \) is minimized;
and for all \(\{(x_i, y_i)\} \): \(y_i (w'x_i + b) \geq 1 \)

Need to optimize a quadratic function subject to linear constraints.

Quadratic optimization problems are a well-known class of mathematical programming problems.

The solution involves constructing a dual problem where a Lagrange multiplier is associated with every constraint in the primary problem.
Maximum Margin Classifier with Noise

Hard Margin: requires that all data points are classified correctly

What if the training set is noisy?
- **Solution:** use very powerful kernels

OVERFITTING!

Soft Margin Classification

Slack variables ϵ_i can be added to allow misclassification of difficult or noisy examples.

Minimize:

$$\frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_{k=1}^{R} \epsilon_k$$
Hard Margin v.s. Soft Margin

The old formulation:

Find \(w \) and \(b \) such that

\[\Phi(w) = \frac{1}{2} w^T w \] is minimized and for all \(\{(x_i, y_i)\} \)

\[y_i (w^T x_i + b) \geq 1 \]

The new formulation incorporating slack variables:

Find \(w \) and \(b \) such that

\[\Phi(w) = \frac{1}{2} w^T w + C \sum \varepsilon_i \] is minimized and for all \(\{(x_i, y_i)\} \)

\[y_i (w^T x_i + b) \geq 1 - \varepsilon_i \] and \(\varepsilon_i \geq 0 \) for all \(i \)

Parameter \(C \) can be viewed as a way to control overfitting.

Linear SVMs: Overview

The classifier is a *separating hyperplane*.

Most “important” training points are support vectors; they define the hyperplane.

Quadratic optimization algorithms can identify which training points \(x_i \) are support vectors with non-zero Lagrangian multipliers.

Both in the dual formulation of the problem and in the solution training points appear only inside dot products.
Non-linear SVMs

Linearly separable data:

Map data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

The original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

$\Phi: x \rightarrow \phi(x)$
The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$

If every data point is mapped into high-dimensional space via some transformation Φ: $x \rightarrow \varphi(x)$, the dot product becomes:

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

A kernel function is some function that corresponds to an inner product in some expanded feature space.

Kernels

Linear: $K(x_i, x_j) = x_i^T x_j$

Polynomial of power p: $K(x_i, x_j) = (1 + x_i^T x_j)^p$

Gaussian (radial-basis function network):

$$K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2} \right)$$

Sigmoid: $K(x_i, x_j) = \tanh(\beta_0 x_i^T x_j + \beta_1)$
Nonlinear SVM - Overview

- SVM locates a separating hyperplane in the feature space and classifies points in that space

 - It does not need to represent the space explicitly, simply by defining a kernel function

 - The kernel function plays the role of the dot product in the feature space.

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection
SVM Applications

- text (and hypertext) categorization
- image classification
- bioinformatics (Protein classification, Cancer classification)
- hand-written character recognition
Etc.

Multi-class SVM

SVM only considers two classes

For m-class classification problem:

- SVM 1 learns “Output==1” vs “Output != 1”
- SVM 2 learns “Output==2” vs “Output != 2”
 ...
- SVM m learns “Output==m” vs “Output != m”

To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.