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:L Resources

= Support Vector Machines tutorial
Andrew W. Moore

= www.autonlab.org/tutorials/svm.html

= A tutorial on support vector machines for
pattern recognition.
C.J.C. Burges.

= Data Mining and Knowledge Discovery, 2(2):955-
974, 1998.




i Linear Classifiers
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f(x,w,b) = sign(w x + b)

i Linear Classifiers

wx + b>0

e denotes +1

° denotes -1

How to classify
this data?

w X + b<0
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i Linear Classifiers
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Misclassified
to +1 class




e denotes +1

° denotes -1

Margin:

° the width that the
boundary could be
increased by before
hitting a datapoint.

i Maximum Margin Classifier

Support Vectors
are those
datapoints that
the margin
pushes up
against

Z
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Maximizing the margin is good
Implies that only support vectors are
important; other training examples
are ignorable.

Empirically it works very very well.




i Finding the boundary

What we know:
s W. X" +b=+1
s W. X +b=-1
W, (Xxt-x) =2

i Learning the Maximum Margin Classifier

Given a guess forw and b

= Compute whether all data points in correct half-
planes

= Compute the width of the margin

Search the space of w’s and b’s to find the
widest margin that matches all data points

- Quadratic programming




Linear SVM

Correctly classify all training data
wx, +b=1  ify=+1

wx, +b =<1 ifyi=_1}2

y.(wx, +b)=1 forali
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Maximize: M=H > Minimize: EWW
w

Solving the Optimization Problem

Find w and b such that
d(w) =% wiw is minimized;
and for all {(X; ,y,)}: »; (Wix; +b)>1

Need to optimize a quadratic function subject to linear
constraints.

Quadratic optimization problems are a well-known class of
mathematical programming problems.

The solution involves constructing a dual problem where a

Lagrange multiplieris associated with every constraint in the

primary problem.




i Maximum Margin Classifier with Noise

Hard Margin: requires that all data
points are classified correctly

What if the training set is noisy?

- Solution: use very powerful
kernels

OVERFITTING!

:L Soft Margin Classification

Slack variables ¢; can be added to allow
misclassification of difficult or noisy examples.

Minimize:

1 R
—W.W+ CE &,
2 k=1




Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that

®(w) =% w'w is minimized and for all {(X;,;)}
y;(wix; +b)>1

The new formulation incorporating slack variables:

Find w and b such that

®(w) =% w'w + CZ¢,  is minimized and for all {(X; ,;)}
y;(WIx;+b)>1-¢ and ¢&>0foralli

Parameter C can be viewed as a way to control
overfitting.

Linear SVMs: Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define
the hyperplane.

Quadratic optimization algorithms can identify which training
points x; are support vectors with non-zero Lagrangian multipliers.

Both in the dual formulation of the problem and in the solution
training points appear only inside dot products




i Non-linear SVMs

Linearly separable e —Ere >
data: 0 g

Map data to a
higher-dimensional space:

The original input space can always be mapped to some
higher-dimensional feature space where the training set is
separable:




i Kernels

The linear classifier relies on dot product between vectors K(x;,x;)=x;"X;

If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(Xioxj)= o(x;) T(P(Xj)

A kernel function is some function that corresponds to an inner product
in some expanded feature space.

i Kernels

Linear: K(x;,X;)= X; T

Polynomial of power p: K(x;,x;)= (1+ x; Tx;)
Gaussian (radial-basis function network):

i -x [ —XH

K(xl,x ) = exp(-

Sigmoid: K(x;,x;)= tanh(Box; ™x; + B1)
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i Nonlinear SVM - Overview

- SVM locates a separating hyperplane in the
feature space and classifies points in that
space

- It does not need to represent the space
explicitly, simply by defining a kernel function

- The kernel function plays the role of the dot
product in the feature space.

i Properties of SVM

Flexibility in choosing a similarity function
Sparseness of solution when dealing with large data sets

- only support vectors are used to specify the separating
hyperplane

Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the feature
space

= Overfitting can be controlled by soft margin approach

= Nice math property: a simple convex optimization problem
which is guaranteed to converge to a single global solution

= Feature Selection
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i SVM Applications

- text (and hypertext) categorization
- image classification
- bioinformatics (Protein classification,
Cancer classification)
- hand-written character recognition
Etc.

i Multi-class SVM

SVM only considers two classes

For m-class classification problem:

= SVM 1 learns “Output==1" vs “Output !=1”
= SVM 2 learns “Output==2" vs “Output !=2”

= SVM m learns “Output==m” vs “Output = m”

To predict the output for a new input, just predict with each SVM
and find out which one puts the prediction the furthest into the
positive region.
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