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Minimizing Uncertainty through Sensor Placement with Angle Constraints

Ioana O. Bercea⇤ Volkan Isler† Samir Khuller⇤

Abstract

We study the problem of sensor placement in environ-
ments in which localization is a necessity, such as ad-hoc
wireless sensor networks that allow the placement of a
few anchors that know their location or sensor arrays
that are tracking a target. In most of these situations,
the quality of localization depends on the relative angle
between the target and the pair of sensors observing it.
In this paper, we consider placing a small number of
sensors which ensure good angular ↵-coverage: given ↵
in [0,⇡/2], for each target location t, there must be at
least two sensors s

1

and s
2

such that the \(s
1

ts
2

) is in
the interval [↵,⇡ � ↵]. One of the main di�culties en-
countered in such problems is that since the constraints
depend on at least two sensors, building a solution must
account for the inherent dependency between selected
sensors, a feature that generic Set Cover techniques
do not account for.
We introduce a general framework that guarantees an

angular coverage that is arbitrarily close to ↵ for any
↵ <= ⇡/3 and apply it to a variety of problems to get
bi-criteria approximations. When the angular coverage
is required to be at least a constant fraction of ↵, we
obtain results that are strictly better than what stan-
dard geometric Set Cover methods give. When the
angular coverage is required to be at least (1� 1/�) · ↵,
we obtain a O(log �)- approximation for sensor place-
ment with ↵-coverage on the plane. In the presence of
additional distance or visibility constraints, the frame-
work gives a O(log � · log kOPT)-approximation, where
kOPT is the size of the optimal solution. We also use
our framework to give a O(log �)-approximation that
ensures (1 � 1/�) · ↵-coverage and covers every target
within distance 3R.

1 Introduction

Localization is an important necessity in many mobile
computing applications. In ad-hoc wireless sensor net-
works, it centers around the ability of nodes to self
localize using little to no absolute spatial information.
When mobility is considered, the problem becomes that
of tracking a moving target through a sensor network in
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which a set of sensors must combine measurements in
order to detect the location of the target.

When a large number of sensors are deployed, it be-
comes impractical to equip all of them with the capa-
bility of localizing themselves with respect to a global
system (such as through GPS). From this perspective, a
commonly used technique is to employ a small number
of anchors (or beacons) that know their location and
are capable of transmitting it to the other nodes seek-
ing to localize themselves [27]. Alternatively, sensors
such as cameras or microphone arrays placed in the en-
vironment can collect measurements which can then be
used to estimate the locations of objects of interest. In
some of the most popular scenarios, each target seek-
ing to localize itself has access to Euclidean distances
and/or angular measurements (bearing) relative to the
sensors that are in its vicinity. When exact distances or
bearings from two sensors to a target are known, local-
ization can be easily performed through the process of
triangulation. In practice, however, the inherent sensor
measurements are noisy and several models of uncer-
tainty have been proposed [4].

From a geometric perspective, a common benchmark
for estimating uncertainty is the Geometric Dilution of
Precision (GDOP). This benchmark investigates how
the relative geometry between sensors and target nodes
amplifies measurement errors and a↵ects the localiza-
tion error. Savvides et al. [23, 24] observe that the error
is largest when the angle ✓ between two sensors and
the target node is either very small or close to ⇡. The
analysis of Kelly [14] further shows that, when trian-
gulation is used, this angle contributes to the GDOP
at a fundamental level. When distance measurements
are used in triangulation, the GDOP is proportional to
1/| sin ✓|. When angular measurements are used, the
GDOP is proportional to d

1

· d
2

/| sin ✓|, where d
1

and
d
2

are the distances from the sensors to the target. In-
tuitively, each measurement becomes a constraint that
restricts the set of possible locations of the target and
the quality of localization depends on both the area and
the shape of all intersections. As seen in Figure 1, when
the angle ✓ is close to 0 or ⇡, the feasible set becomes
unconstrained and the error unbounded. In particular,
when the sensors and the target are collinear, localiza-
tion is impossible.

Inspired by these observations, our paper focuses on
the geometry of sensor deployment and asks the ques-
tion of where should the sensors be placed so as to en-
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Figure 1: When bearing information is used to deter-
mine a target’s location, the measurement corresponds
to a cone centered at the true bearing from the sen-
sor to the target. Given sensors s

1

, s
2

and target t, let
✓ = \s

1

ts
2

, d
1

= d(s
1

, t) and d
2

= d(s
2

, t). When the
sensors are too far from the target, the uncertainty be-
comes unbounded. If ✓ is small, the y-direction becomes
unconstrained. If ✓ is large, the x-direction becomes un-
constrained.

sure that the GDOP is below a given threshold at all
target locations? To this end, we define an angular
constraint which we call ↵-coverage: given a parame-
ter ↵ 2 [0,⇡/2], each target at position t must be as-
signed two distinct sensors (at positions s

1

and s
2

) such
that the angle ✓ = \s

1

ts
2

is in the range [↵,⇡ � ↵]
(i.e. neither too small nor too big). We then frame the
problem of sensor placement as a bicriteria optimiza-
tion problem: given a set of possible sensor and tar-
get locations, we wish to select the smallest number of
sensors that provide ↵-coverage for all target locations.
We address these variants from a theoretical perspec-
tive and present a general algorithmic framework that
specifically addresses the angular constraint and itera-
tively obtains better angular guarantees at the expense
of larger solution sizes.

Our model. Formally, we consider the two dimen-
sional model in which the set of candidate sensor loca-
tions is a discrete set X ✓ R2 and the set of target loca-
tions is a discrete set T ✓ R2. We have chosen to discuss
this discrete setting (instead of the continuous one) be-
cause we consider it to be more theoretically rich. If
we could choose sensor locations anywhere in the plane,
we could essentially impose a grid on the plane and use
a constant number of sensors per cell to cover the tar-
gets (without violating the angular constraints). The
analysis would then use k-center or Art Gallery
techniques to obtain constant factor approximations.

Given a parameter ↵ 2 [0,⇡/2], we say that an (un-
ordered) pair (s

1

, s
2

) ↵-covers a target t if ✓ = \s
1

ts
2

is
in the range [↵,⇡�↵]. Notice that the higher the value
of ↵, the smaller the range of values that ✓ can take. Our
algorithmic framework applies to several sensor cover-
age problems. First, we define the Minimum Sen-
sor Placement with ↵-coverage (↵�Ang) problem,

which asks for the smallest set of sensors that ↵-covers
T . We then consider its clustering variant, in which we
additionally require that the sensors be within a given
range R of the target (corresponding to a finite sensing
range scenario). We call this the Minimum Sensor
Placement with (↵, R)-coverage ((↵, R)�AngDist)
problem and say that a pair of sensors (↵, R)-covers a
target if both sensors respect the constraints. Finally,
we consider a version of the Art Gallery problem, in
which the target must be visible to both sensors. This
problem was first introduced by Efrat, Har-Peled and
Mitchell [8] which discussed the case in which the sen-
sors (contained in a region P ) are required to ↵- guard
targets that are contained in a smaller region Q ✓ P .
Two sensors s

1

, s
2

↵-guard a target t if they both see
the target and (s

1

, s
2

) ↵-covers t. Given a sensor s 2 X
and a target t 2 T , we say that s sees t if the segment
connecting the two does not cross the boundary of P
(i.e. t is within line-of-sight of s). We henceforth refer
to this problem as the Art Gallery with ↵-coverage
(↵�ArtAng) problem.

Related work. When it comes to sensor coverage
problems, extensive work has been done although sur-
prisingly few results discuss ↵-coverage. Notable excep-
tions are the work of Efrat, Har-Peled and Mitchell [8],
Tekdas and Isler [25] and Isler, Khanna, Spletzer and
Taylor [13]. As mentioned before, Efrat et al. [8] intro-
duce the ↵�ArtAng problem in which two sensors are re-
quired to ↵-guard a target. They present a O(log kOPT)-
approximation algorithm that guarantees ↵/2-coverage,
where kOPT is the size of the optimal solution. Their
main subroutine is similar to an algorithm for the Art
Gallery problem that first imposes a grid � on P and
chooses guards located at vertices of �. We note how-
ever, that such a step is not necessary in our case, since
X is already a discrete set. Their algorithm runs in
time O(nk4OPT log2 n logm), where n is the number of
vertices of P and m is the number of points in � \ P
(i.e. possible sensor locations). In contrast, we present
a framework that achieves (1�1/�)·↵-coverage, approx-
imates the number of sensors by O(log � · log kOPT) and
runs in time O(log � · kOPT · mn logm), for any � � 1
and ↵  ⇡/3. In our case and throughout the rest of
the paper, n represents the number of targets.

Tekdas and Isler [25] formalize the angle constraint
by requiring that the uncertainty d

1

· d
2

/| sin ✓| com-
puted by Kelly [14] be smaller than a certain threshold
U . When the targets are contained in some subset of the
plane and the sensors can be placed anywhere (contin-
uous case), they present a 3-approximation with maxi-
mum uncertainty  5.5U . We note that (↵, R)�AngDist

is a generalization of the above problem in the sense
in which an algorithm for (↵, R)�AngDist can be used
in approximately solving the former. Finally, Isler et
al [13] consider the case in which the sensor locations
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are already given and one must compute an assignment
of sensors to targets that minimizes the total sum of er-
rors. In addition, they require that each sensor be used
in tracking only one target. The version relevant to our
problem is when the error is defined as 1/ sin ✓. In the
case in which the sensors are equally spaced on a circle,
they present a 1.42-approximation that also applies to
minimizing the maximum error.

Our contributions. For the case of ↵  ⇡/3, we
provide a general bi-criteria framework that approxi-
mates the angular coverage to arbitrary precision while
guaranteeing a good approximation in the size of the
solution. Specifically, for any � > 1, we propose an it-
erative method that guarantees (1 � 1/�) · ↵-coverage
and approximates the solution size by O(log �) for
↵�Ang and O(log � log kOPT) for (↵, R)�AngDist and
↵�ArtAng. When the polygon in ↵�ArtAng is allowed
to have h holes, we obtain a O(log � · log kOPT · log h)-
approximation. It is worthwhile to note that the main
technical theorem of the framework refers solely to the
angle coverage constraint and as such, could be applied
to a variety of other problems as long as the other con-
straints (such as distance or line-of-sight visibility) de-
fine a good set system (one with constant VC dimension,
for example).

In addition, we present further approximations for
(↵, R)�AngDist. We relax the distance constraints from
R to 3R and reduce the approximation factor of the
solution size from O(log � · log kOPT) to O(log �), while
keeping the angular coverage at (1�1/�)·↵. We achieve
this by using a more involved technique of employing ✏-
nets that we believe may be of independent interest.

We also consider the case in which ↵ = 0 and con-
struct a set of optimal size that covers the targets
within distance (1 +

p
3) · R. This particular case

remains relevant since it captures the spirit of fault
tolerance by requiring two distinct sensors to be as-
signed to a target. We achieve our result by show-
ing a (1 +

p
3)-approximation for the more general Eu-

clidean Fault Tolerant k-suppliers problem which
improves on the existing 3-approximation by Khuller et
al [15].

Discussion of existing techniques. In a more
general context, we believe that angular constraints
are interesting not just because they contribute to a
new geometrical direction in sensor coverage problems.
From a purely theoretical perspective, they also present
the challenge of approximating an optimization prob-
lem whose objective function is linear in the number of
chosen sensors but whose constraints depend on pairs
of sensors jointly satisfying a condition.

In such a case, an algorithm that chooses pairs which
satisfy the constraints might incur an overall cost that
is quadratic in the objective function. For example, one
natural way in which we can consider ↵�Ang is as an

instance of Set Cover. For each pair of sensors (s, s0),
we can define S

(s,s0) to be the set of targets t 2 T such
that (s, s0) ↵-covers them. Set Cover asks for the
smallest number of pairs whose union covers T . The
generic greedy charging scheme for Set Cover gives
us a solution of size at most k⇤ · log n, where k⇤ is the
size of the optimal Set Cover solution. Notice, how-
ever, that k⇤ can be much larger than kOPT (the size
of the optimal set of sensors for ↵�Ang) and this could
lead to a quadratic blowup in the size of the solution. In
the worst case, greedy Set Cover could pick as many
as

�kOPT

2

� · log n sensors in its solution. This degener-
ate case might happen when we end up picking distinct
pairs of sensors to cover each target while the optimal
solution picks a much smaller set of sensors that collec-
tively ↵-cover the targets.

Using the geometry of the problem, one could slightly
improve the above approximation factor from O(kOPT ·
log n) to O(kOPT · log kOPT). Specifically, one can show
that each S

(s,s0) is induced by the symmetric di↵erence
of two circles. As such, these objects have constant
Vapnik-Chervonenkis (VC) dimension [19] and allow
for a O(log k⇤)-approximation for Set Cover [10, 3].
Unfortunately, this only gets us a O(kOPT · log kOPT)-
approximation guarantee. The persistent kOPT factor
in the approximation comes from the fact that the
Set Cover framework cannot distinguish between sen-
sors that help cover a lot of targets (locally) and sensors
that, additionally, can also help cover more targets in
conjunction with other sensors. In other words, it does
not make use of the global dependency between sen-
sors in order to get a small solution size.

In fact, such observations are more in the spirit of
Label Cover type problems in which we need to as-
sign labels to vertices of a graph but a specific labeling
is considered feasible only when it satisfies certain edge
constrains. Indeed, when considered in its full general-
ity (i.e. points lie in arbitrary space and coverage is de-
fined arbitrarily), the problem becomes a generalization
of MinRep and, as such, incurs a hardness of approxi-
mation bound of 2log

1�✏ n, for any 0 < ✏ < 1 unless NP
✓ DTIME(npolylog(n)) [17]. Such occurrence of Label
Cover in a natural setting is intriguing in its own right.
Furthermore, it can conceivably model other instances
in which the quality of a solution depends on pairs of el-
ements jointly satisfying a condition, such as in pairwise
feature selection for Machine Learning tasks [22, 6]. We
defer the rest of the discussion to the extended version
of the paper [1].

2 Algorithmic Framework

Let m = |X| be the number of possible sensor locations
and n = |T | be the number of target locations. The
underlying distance function will be the Euclidean `

2
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Figure 2: The set Rt(s,�) is induced by the
double-wedge generated by the lines l

1

and l
2

and has
a central angle ✓ = ⇡ � 2�.

metric. We consider (unordered) pairs of the form (s, s0)
where s 6= s0, s 2 S, s0 2 S0 and S, S0 ✓ X are sets of
sensors. We denote the set of such pairs as S ⇥ S0.
Formally, S ⇥ S0 = {(s, s0)|s 6= s0, s 2 S, s0 2 S0}. We
say that the set of pairs S⇥S0 ↵-covers t if there exists
a pair (s, s0) 2 S ⇥ S0, s 6= s0, that ↵-covers t. When
S0 = S, we simply say that the set S ↵-covers t. A
pair or a set of pairs ↵-covers a set T of targets when it
↵-covers each element of T . In addition, a pair or a set
of pairs (↵, R)-covers a set T of targets within distance

R if, for at least one of the pairs that ↵-covers a target,
the distance from both sensors to the target is  R.

We begin by considering a fixed set S of given sensors
and asking the question of how should we pick a second
set of sensors S0 such that pairs of the form (s, s0) with
s 2 S and s0 2 S0 will �-cover the set of targets (for
a given �). Formally, given a target t 2 T , a sensor
s 2 X and angle parameter � 2 [0,⇡/2], we define the
set Rt(s,�) of feasible sensor locations that, together
with s, �-cover t:

Rt(s,�) = {s0 2 X|(s, s0) �-covers t}
As seen in Fig. 2, this set is induced by two wedges
centered around t. A wedge is defined as the intersection
of two non-parallel half spaces in R2. In our case, we are
interested in the two wedges defined by the lines that
form angles of � with the line that passes through s
and t. The union of these two wedges will be referred to
as the double-wedge around t. The task of constructing
a pair that �-covers t can now be reduced to that of
finding a second sensor s0 inside the double-wedge, i.e.
once we find such a sensor, we are guaranteed that the
pair (s, s0) �-covers t.

Specifically, the set S0 becomes a hitting set for the
given collection of double-wedges (one for each target).
Given a set system F(X,R), where X is the set of sen-
sors and R is a collection of subsets (double-wedges)
of X, a hitting set is a set H ✓ X that intersects
every subset in R non-trivially. The Hitting Set
problem asks for a hitting set of minimum cardinal-
ity. Our method constructs S0 by approximately solving

the Hitting Set problem, in which the double-wedges
may be further restricted to intersect the circle of ra-
dius R centered at the targets (for (↵, R)�AngDist) or
the visibility polygons of the corresponding targets (for
↵�ArtAng). For this step, we employ known techniques
using constant VC dimension and ✏-net constructions.

When it comes to the analysis, the challenge is mak-
ing sure that S0 is not much larger than kOPT = |SOPT|
(the size of the optimal set of sensors) and therein lies
the di�culty. We do this by showing that SOPT itself
is a hitting set, so the size of the optimal hitting set is
smaller than kOPT. Specifically, our structural theorem
shows that given a set S of sensors that (↵� 2✏)-covers
T for some ✏ 2 (0,↵/2], SOPT must intersect the double-
wedges induced by S around each target with � = ↵�✏:

Theorem 1 Let ✏ > 0 be such that ↵ � ✏  ⇡/3 and

✏  ↵/2. Given a set S that (↵ � 2✏)- covers T , let

T 0 ✓ T be the set of targets that S does not (↵ � ✏)-
cover. Then the set of pairs S ⇥ SOPT (↵ � ✏)-covers
T 0

.

When ✏ = ↵/2, we start with an arbitrary set S and
recover the observation of Efrat et al. [8]. In order to
get better than ↵/2-coverage, the seed set S cannot be
chosen arbitrarily. In fact, our proof crucially uses the
fact that the sensors in S already (↵ � 2✏)-cover the
targets. Given a pair (s

1

, s
2

) in S that (↵�2✏)-covers a
target t, we show that one of the optimal sensors must
be in Rt(s1,↵ � ✏) [ Rt(s2,↵ � ✏), i.e. it either makes
a good pair with s

1

or with s
2

. The restriction that
↵  ⇡/3 is used when ✏ < ↵/2 and guarantees that the
union of the two double-wedges (for s

1

and s
2

) is itself
a double-wedge with a large enough central angle that
it must intersect SOPT.

By adding the set S0 to S, we now obtain a larger
set that (↵� ✏)-covers the targets. Iterating this proce-
dure log � times, we guarantee (1 � 1/�) · ↵-coverage
and approximate the size of the optimal solution by
log � · c, where c is the approximation guarantee we get
from solving the Hitting Set problem in each iteration
(Section 2.2).

Finally, we note that while adding more sensors in
order to obtain a better solution is a classical approach,
the challenge is do so in a way that addresses the
global dependency between sensors and does not incur a
quadratic cost in each iteration. In this context, instead
of looking for pairs in which both sensors are unknown,
our framework looks for pairs in which one sensor is in
S (i.e. already known) and the other one is in S0. This
allows us to cast the task of constructing S0 as a global
optimization problem (Hitting Set) for which good
approximations exist. Moreover, when ↵  ⇡/3, our
main structural theorem allows us to bound the size of
such hitting sets linearly in kOPT (essentially shaving o↵
the additional kOPT factor from Set Cover).
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2.1 Proof of Theorem 1

In order to prove Theorem 1, we essentially show that
SOPT must intersect at least one of the double-wedges
generated by S around a given target t. First, notice
that if a set S already (↵� ✏)-covers a target t, then we
do not need to worry: S will continue to (↵�✏)�cover t
even when we add S0 to S. We are therefore concerned
with targets in T 0 that are not already (↵ � ✏)-covered
by S.
Fix such a target t 2 T 0 and let s

1

, s
2

2 S be any
two sensors that (↵ � 2✏)-cover t but do not (↵ � ✏)-
cover it. Our strategy will be to show that there exists
s⇤ 2 SOPT such that either (s

1

, s⇤) (↵ � ✏)-covers t or
(s

2

, s⇤) (↵ � ✏)-covers t, i.e. s⇤ 2 Rt(s1,↵ � ✏) or s⇤ 2
Rt(s2,↵ � ✏). The candidates will be s⇤

1

, s⇤
2

2 SOPT

where (s⇤
1

, s⇤
2

) is the optimal pair that ↵-covers t. We
will show that s⇤ is either s⇤

1

or s⇤
2

. Intuitively, each of
the double-wedges induced by s

1

and s
2

alone is not big
enough to ”capture” s⇤

1

or s⇤
2

. However, if \s
1

ts
2

is in
the range [↵�2✏,⇡�(↵�2✏)], then the unionDt of these
double-wedges will have a large enough central angle to
guarantee that one of the optimal sensors is contained
in it. In other words, at least one of the optimal sensors
s⇤
1

or s⇤
2

together with either s
1

or s
2

will (↵� ✏)-cover
t.
Let D

1

and D
2

be the double-wedges corresponding
to Rt(s1,↵ � ✏) and Rt(s2,↵ � ✏), respectively. Notice
that they have central angles ✓D1 = ✓D2 = ⇡� 2(↵� ✏).
Let ↵0 = \(s

1

ts
2

). We begin by first establishing that
the union of these two double-wedges generated by s

1

and s
2

is a larger double-wedge.

Lemma 2 The union of the two double-wedges D
1

and

D
2

is a larger double-wedge Dt centered at t with central

angle ✓Dt = ⇡ � 2(↵� ✏) + ↵0
.

Proof. We refer the reader to Figure 3 for an intu-
itive explanation. Formally, let l be the line that passes
through s

1

and t and let l
1

and l
2

the two lines that de-
fine D

1

. Since \(s
1

ts
2

) /2 [↵� ✏,⇡ � (↵� ✏)], it follows
that s

2

is not in D
1

. Assume without loss of generality
that s

2

is between the lines l and l
1

in the counterclock-
wise direction. The same proof follows for the other
possible locations of s

2

.
Now consider D

2

and let l
3

and l
4

be the defining
lines through t, while l0 is the line that passes through
s
2

and t. Notice that D
1

and D
2

are identical except
that D

2

is a rotated copy of the D
1

. In other words,
since \(l, l0) = ↵0, we also have that \(l

1

, l
3

) = ↵0 and
\(l

2

, l
4

) = ↵0.
We will show that (l

1

, l
3

)  \(l
1

, l
2

), and hence con-
clude that l

3

must lie between l
1

and l
2

. Since \(l
1

, l
3

) =
↵0  ↵� ✏ (by choice of s

2

) and \(l
1

, l
2

) = ⇡�2(↵� ✏),
we have that when ↵� ✏ < ⇡/3:

↵� ✏  ⇡ � 2(↵� ✏).

s1 l

l1 l2

l0

l3

l4

✓Dt = ⇡ � 2(↵� ✏) + ↵0

s2

✓D0
t
= 2(↵� ✏)� ↵0 ↵0

t

Figure 3: Since \(s
1

ts
2

) = ↵0, D
2

is a rotation by ↵0 of
D

1

. Their union is another double-wedge Dt defined
by l

1

and l
4

with central angle ✓Dt = ⇡ � 2(↵� ✏) + ↵0.

Therefore, the union of the two double-wedges D
1

and
D

2

is a continuous double-wedge Dt determined by l
1

and l
4

. It has central angle ✓Dt = ✓D1 + \(l
2

, l
4

) =
⇡ � 2(↵� ✏) + ↵0.

⇤
The next step is to show that one of the two optimal

sensors s⇤
1

and s⇤
2

must be in Dt. The intuition is that
by making Dt have a large central angle, we ensure that
the complement D0

t of Dt has such a small central angle
that it would not be able to contain both s⇤

1

and s⇤
2

.

Lemma 3 At least one of the two optimal sensors s⇤
1

and s⇤
2

assigned to t must be in Dt.

Proof. Let D0
t be the complement of Dt. Notice that

D0
t forms another double-wedge defined by l

1

and l
4

but
that it does not actually contain points on these lines.
Moreover, D0

t has a central angle ✓D0
t
= ⇡� ✓D = 2(↵�

✏) � ↵0. Since s
1

and s
2

(↵ � 2✏)-cover the target, and
we are considering the case where s

2

is between l and l
1

,
we have that ↵0 � ↵�2✏. Hence, we have that ✓D0

t
 ↵.

This implies that s⇤
1

and s⇤
2

cannot be both in the same
wedge of D0

t without being exactly situated on the lines
l
1

and l
4

( i.e. in Dt). The other bad situation would be
for them to be in di↵erent wedges of D0. But then the
angle between them would be greater than ✓Dt . Since
↵0 � ↵� 2✏, we get that

✓Dt = ⇡ � 2(↵� ✏) + ↵0 � ⇡ � ↵,

which would contradict the fact the \(s⇤
1

ts⇤
2

) 2 [↵,⇡ �
↵]. In other words, at least one of the optimal sensors
s⇤
1

and s⇤
2

must be in Dt. ⇤
This concludes the proof of Theorem 1. At this point,

it is worthwhile to notice that the requirement that
↵  ⇡/3 is relatively tight in this framework. When
↵ � ✏ > ⇡/3, both of the above claims fail. In particu-
lar, the central angle of D

1

and D
2

would be too small
and their union would no longer correspond to a bigger
double-wedge. Furthermore, it would no longer be true
that such a union must intersect SOPT.
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2.2 Iterating to obtain ((1� 1/�) · ↵)-coverage
Given the technical lemmas from before that allow us to
refine the angular coverage of a given seed set S, we can
now develop a more general algorithm that constructs a
new set that achieves ((1�1/�) ·↵)-coverage for any � >
1. The idea is to iteratively apply the refinement step
(by setting S = S [ S0) log � times, first with ✏ = ↵/2,
then with ✏ = ↵/4 etc. At the end of log � iterations,
we have that the updated set S ((1 � 1/�) · ↵)-covers
T . The running time of the algorithm is log � times the
time to find the appropriate hitting set plus the time
it takes to find the starting set. This first set (denoted
S
1

) requires special care and depends on the problem at
hand.

Notice that we require S
1

to 0-cover T but one can
check that the proof of Theorem 1 follows in this case
even when we do not have two distinct sensors 0-
covering a target. Therefore, in the case of ↵�Ang,
it su�ces to pick S

1

to consist of any sensor in X and
get the following:

Theorem 4 Given X, T , ↵ 2 [0,⇡/3] as above, we can

find a set of sensors S ✓ X such that S ((1� 1/�) · ↵)-
covers T and |S| = O(log �) · kOPT. The running time

of the algorithm is O(log � · kOPT ·m logm).

When it comes to the (↵, R)�AngDist problem, we re-
quire that the initial set S

1

has the property that each
target is within distance R of at least one sensor in S

1

.
Without loss of generality, we can assume that R = 1
and then our problem becomes an instance of the Dis-
crete Unit Disk Cover (DUDC) problem [5]. In
DUDC, we are given a set P of n points and a set of D
of m unit disks in the Euclidean plane. The objective is
to select a set of disks D⇤ ✓ D of minimum cardinality
that covers all the points. The problem is a geometric
version of Set Cover and is NP-hard [9]. Neverthe-
less, several constant factor approximations have been
developed and all could be used to compute a good ap-
proximation while balancing the trade-o↵ between the
approximation factor and the running time. For our
purposes, we use the 18-approximation by Das et al [5]
that has a runtime of O(n log n + m logm + mn). We
note that better approximations are known, but using
them in our framework could increase the total run-
time. In each iteration, we increase the size of our set
by O(log kOPT) · kOPT and since |S

1

|  18 · kOPT, we get
the following:

Theorem 5 Given X, T , ↵ and R as above, we can

find a set of sensors S ✓ X such that S ((1� 1/�) · ↵)-
covers T within distance R and |S| = O(log � ·log kOPT)·
kOPT. The running time of the algorithm is O(log � ·
kOPT ·mn logm).

For ↵�ArtAng, we need to find a set of sensors S
1

✓ X
that guard T . To this extent, we can again employ the

fact that the set of visibility polygons has finite VC-
dimension [26]. Notice that finding a small S

1

that
guards T corresponds to the hitting set problem for
the set system made of sensors and visibility polygons
of target locations. We therefore obtain a set of size
O(log k⇤) · k⇤, where k⇤ is the size of the smallest set of
sensors from X that guard T . Since SOPT also guards T ,
we have that k⇤  kOPT, so we are guaranteed to obtain
a solution of size O(log kOPT) · kOPT. In each iteration,
we increase the size of our set by O(log kOPT) ·kOPT and
since |S

1

| = O(log kOPT) · kOPT, we get the following:

Theorem 6 Given polygons Q ✓ P ,X, T , and ↵ 2
[0,⇡/3] as above, we can find a set of sensors S ✓ X
such that S ((1� 1/�) · ↵)-guards T and |S| = O(log � ·
log kOPT) · kOPT. The running time of the algorithm is

O(log � · kOPT ·mn logm).

We note that, in the case of ↵�ArtAng, we improve
on the result of Efrat et al [8], in that we approx-
imate the ↵-coverage constraint to any constant fac-
tor while maintaining the same approximation factor
of O(log kOPT). Moreover, our running times are com-
parable: O(nk4OPT log2 n logm) in [8] versus O(kOPT ·
mn logm) for our approximation. We note that their
running time comes from the fact they do not di-
rectly use the bounded VC dimension of the set sys-
tem. Instead, they use a previous algorithm designed
by Efrat et al [7] for approximating the more general
Art Gallery problem when the set of targets is re-
stricted to vertices of that grid. When angle constraints
are added, they adapt this algorithm to only consider
vertices of the grid that also satisfy ↵-coverage. In our
scenario in which targets have to be chosen from a dis-
crete set, we do not need to impose a grid and can di-
rectly apply the Brönnimann and Goodrich algorithm
[3]. For the case in which the sensors can be placed
anywhere, their algorithm could be employed instead
while maintaining the same approximation guarantees.

3 Other bi-criteria approximations for
(↵, R)�AngDist

The geometric objects at the core of our method are
wedges centered at targets whose central angles depend
on ↵ and ✏. These ranges define the set of feasible lo-
cations from which we must choose a new set of sen-
sors and are given as input to the subsequent Hitting
Set problem. In the case of (↵, R)�AngDist, the dis-
tance constraints require that the sensors we pick also
be within range R of the target, so our wedges become
sectors through intersection with a disk of radius R cen-
tered at the target.

When it comes to solving the Hitting Set prob-
lem, we employ the instrumental results of Haussler and
Welzl [10] and Brönnimann and Goodrich [3] which are
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based on the existence of good ✏-nets for a given set
system. We defer the intricacies of ✏-nets to the long
for of the paper[1] but mention now that, given an al-
gorithm that computes in polynomial time an ✏-net of
size O((1/✏) ·g(1/✏)), the algorithm of Brönnimann and
Goodrich [3] returns a hitting set of size O(⌧ · g(⌧)),
where ⌧ is the size of the optimal hitting set and g is
a monotonically increasing sublinear function. Several
good ✏-net constructions are known when the underlying
objects are geometrical. For the case of (↵, R)�AngDist,
we employ the canonical ✏-net construction of Blumer et
al [2] and Komlós et al [16] which exploits the fact that
our ranges have constant VC dimension. This yields a
O(log kOPT)-approximation for Hitting Set on sectors
of radius R.
In order to reduce the approximation factor, we con-

sider relaxing the distance constraint and allowing the
chosen sensors to be within distance 3R of the targets.
In other words, we extend the radius of our sectors
from R to 3R. Inspired by the construction of Kulka-
rni and Govindarajan [18] for (unbounded) wedges, we
then propose a deterministic rule for picking sensors and
obtain a “relaxed” ✏-net of size O(RI

R · 1

✏ ), where RI is
the diameter of the largest enclosing ball of all possible
sensor locations. The main di↵erence between our con-
struction and the one in [18] is the fact that the objects
the latter considers are unbounded and, as such, allow
for simpler grid-based constructions. In fact, this dis-
tinction is indeed the source of the additional RI

R factor
that we incur in our bound.
To our knowledge, this is the first ✏-net construction

whose size depends linearly on 1

✏ and the ratio of the
diameter of the input space to the size of the ranges
(that is, when size can be appropriately defined). We
note that the O( 1✏ ) construction of Pach and Woegin-
ger [21] for translates of convex polygons does implicitly
depend on solving the problem for points contained in-
side a bounded square. It is unclear, however, how to
adapt their method for the case in which the ranges are
sectors of similar radius but can have arbitrary central
angles and orientations.
In order to overcome the dependency on RI

R , we fur-
ther employ the shifting technique of Hochbaum and
Maass [11] to first partition our space into cells of
bounded width and height and apply our ✏-net con-
struction to obtain good hitting sets in those restricted
spaces. The analysis then yields an overall hitting set of
size O(kOPT) that achieves the desired (↵� ✏)-coverage
and is within distance 3R of the targets. The complete
argument is rather involved and we defer the exact de-
tails to extended version of the paper [1]. Formally, we
get that:

Theorem 7 Given X, T , ↵  ⇡/3 and R, we can find

a set of sensors S ✓ X such that S ((1 � 1/�) · ↵)-
covers T within distance at most 3R and |S| = O(log �)·

kOPT. The running time of the algorithm is O(kOPT ·
mn logm log n).

Another interesting special case of (↵, R)�AngDist is
the one in which ↵ = 0, since it requires us to place
two distinct sensors within distance R of each target. A
related problem is the fault tolerant k-suppliers
problem as defined by Khuller et al [15] that requires
us to select k suppliers such that each client has � sup-
pliers within an optimal distance r⇤ of it. While the
objective in k-suppliers is to minimize the covering
radius (as opposed to the number of sensors used), we
will nevertheless exploit the connection and use it for
(↵, R)�AngDist. Under arbitrary metrics, Khuller et
al. [15] develop a 3-approximation for fault toler-
ant k-suppliers: they select k sensors that are guar-
anteed to cover the clients within 3 · r⇤. Karlo↵ and
then Hochbaum et al. [12] show that this factor is tight
for the general k-suppliers problem (i.e. � = 1), un-
less P=NP. When the underlying space is Rd with the
`
2

metric, Nagarajan et al. [20] improve this factor to
(1+

p
3) for Euclidean k-suppliers. They crucially use

the observation that three clients who are pairwise more
than

p
3 ·r⇤ apart from each other can never be covered

by the same supplier within distance r⇤ and reduce the
problem of finding k suppliers to that of computing a
minimum edge cover. A similar approach can be used
in our case, except the structure of the optimal solu-
tion corresponds to a b-edge cover. In the long form
of the paper [1], we present the details of the analy-
sis and guarantee that � suppliers are within distance
(1 +

p
3)r⇤ of each client:

Theorem 8 There exists a polynomial time

(1 +
p
3)-approximation algorithm for the Euclidean

fault tolerant k-suppliers in any dimension for

arbitrary � � 1.

The k-suppliers technique minimizes the covering
radius by relying on the existence of k suppliers that
cover all the clients within a guess radius R. Given
such a guess radius, the algorithm itself never picks more
than k sensors (i.e. without explicitly knowing the value
of k). The binary search technique of Hochbaum and
Shmoys [12] is then used to obtain guarantees with re-
spect to the optimal covering radius r⇤. The algorithm
hence starts with a guess R and returns a set of k sen-
sors that cover everything within distance (1 +

p
3) ·R.

In our case, k = kOPT, so we will always pick at most
kOPT sensors. Since we already know the value of R, we
get the following result as well:

Theorem 9 Given X, T , and R as above, we can find

a set of sensors S ✓ X such that S 0-covers T within

distance R · (1+p
3) and |S| = kOPT, where kOPT is the

cardinality of the smallest set of sensors that 0-covers T
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within distance R. The running time of the algorithm

is O(n2 log n(m+ n log n)).
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