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ABSTRACT
The co�ow scheduling problem has emerged as a popular abstrac-
tion in the last few years to study data communication problems
within a data center [6]. In this basic framework, each co�ow has a
set of communication demands and the goal is to schedule many
co�ows in a manner that minimizes the total weighted completion
time. A co�ow is said to complete when all its communication
needs are met. This problem has been extremely well studied for
the case of complete bipartite graphs that model a data center with
full bisection bandwidth and several approximation algorithms and
e�ective heuristics have been proposed recently [1, 2, 29].

In this work, we study a slightly di�erent model of co�ow sched-
uling in general graphs (to capture tra�c between data centers
[15, 29]) and develop practical and e�cient approximation algo-
rithms for it. Our main result is a randomized 2 approximation
algorithm for the single path and free path model, signi�cantly
improving prior work. In addition, we demonstrate via extensive
experiments that the algorithm is practical, easy to implement and
performs well in practice.
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KEYWORDS
co�ow, scheduling, LP relaxation, network �ow, LP rounding, cloud
computing

∗Research supported by the National Science Foundation (CNS-1563095 and CNS-
1617773)
†Research partially supported by an Amazon research award.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6184-2/19/06.
https://doi.org/10.1145/3323165.3323179

ACM Reference Format:
Mosharaf Chowdhury, Samir Khuller, Manish Purohit, Sheng Yang, and Jie
You. 2019. Near Optimal Co�ow Scheduling in Networks. In 31st ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’19), June
22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3323165.3323179

1 INTRODUCTION
Modern computing applications have rather intensive computa-
tional needs. Many machine learning applications require up to
tens of thousands of machines and often involve processing units
across multiple data centers collaborating on the same application.
This collaboration is usually handled by a large-scale distributed
computing framework that ideally ensures a close-to-linear speedup
compared to a single machine. A crucial part of the collaboration is
that large chunks of data require both inter and intra-datacenter
transmissions.

For intra-datacenter transmission, a common example would be
the MapReduce framework. Map workers write all intermediate
results independently to several servers to guard against failure and
allow possible re-calculation. These results are shu�ed and sent to
Reduce workers. The volume of transmission between machines is
so large that it has become amajor bottleneck in the performance. In
addition to this challenge, multiple applications may share the same
cluster, and an un-coordinated schedule of their data transmission
may cause an unacceptable delay in their completion times.

Chowdhury and Stoica [6] �rst introduced the abstraction of
co�ow scheduling, which assumes that each application consists
of a set of �ows, and is �nished once all the �ows are completed.
In their framework the network between machines is modeled as
a switch: the input ports of di�erent machines on one side, and
output ports on the other side. A machine can send (receive) data to
(from) any other machine, but to (from) only one machine at a time
(sending and receivingmay happen concurrently). The transmission
speed between all machines is uniform. This describes a “perfect”
datacenter where networking between machines is handled by a
high-speed central switch (modeled by a complete bipartite graph)
connected directly to all the machines [6]. However, real world
datacenters are far more complicated; direct (virtual) links between
machines may exist to avoid latency, duplicate links may exist
to tolerate failure, network speeds may vary widely for di�erent
machines and links, and complicated network structures may exist
for a variety of reasons. To make things worse, some tasks may
involvemultiple datacenters around the globe, and the switchmodel



simply cannot accurately capture the graph based network that
connects all the data centers.

For inter-datacenter transmission, distributed machine learning
tasks can generate huge amounts of tra�c. Due to legal or cost rea-
sons, some datasets cannot be gathered into a single datacenter for
processing. Instead, several geographically distributed datacenters
work together to train a single model, and exchange local updates
frequently to ensure accuracy and convergence. Though the size of
a single transmission may be small considering the network band-
width, the repeated exchange blows up the volume of transmission
and makes network tra�c its bottleneck.

In order to solve these problems, a slightly di�erent model of
co�ow scheduling was proposed by Jahanjou et al. [15], which
assumes that the underlying connection between machines is an
arbitrary graph rather than a complete bipartite graph. Each node
can be a machine, a datacenter or an exchange point (switch, router,
etc.), and an edge between two nodes represents a physical link
between the two Internet infrastructures. When some data needs to
be transmitted from one node to another, it needs to be transmitted
along edges. Unlike in the switch model where only one packet can
be sent at each time slot, data for multiple jobs is allowed to transfer
on the same link at the same time, or in other words, shared tra�c
on links is allowed. The total volume of data transmission on a link
however is bounded by the link bandwidth1. Jahanjou et al. [15]
considered the model in which data has to travel along a single
speci�ed path. In addition to this model, we also consider the free
path model which allows data to be split or merged at nodes to
utilize the whole graph when transmitting the same piece of data
as long as the capacity of each link is respected. This seems much
more complicated in practice than a single path transmission, but
modern distributed computation frameworks [29] allow this kind
of �ne-grained control on network routing and transfer rate, which
makes the model realistic. See Figure 1 for a brief illustration of the
two models. The formal de�nitions come in Section 2.

1.1 Related Work
The idea of scheduling co�ows was �rst introduced by Chowdhury
and Stoica [6]. Since then, it has been a hot topic in both the sys-
tems [7, 19, 20, 30] and the theory [2, 15, 18, 24, 28] communities.
Most theoretical research has focused on co�ow scheduling in the
switch model, where the communication graph is a complete, bi-
partite graph. Since this basic problem generalizes concurrent open
shop scheduling and is thus NP-hard, the main results focus on the
development of approximation algorithms. Over the last three years,
a series of papers [2, 18, 24] have brought down the approximation
factor from 67/3 to 5 for co�ow scheduling with arbitrary release
times and to 4 for the case without release times [2, 28] 2. We would
like to note that a very simple primal-dual framework is proposed
by Ahmadi et al. [2], and this yields a very practical combinatorial
algorithm for the problem without requiring the need to solve an

1One major challenge in the switch model is the node-wise I/O speed constraint. In
order to capture this in the graph model, we can replace every datacenter with a gadget
of two nodes. The �rst node has exactly the same neighbors and edges that the original
node for the datacenter has, plus links from and to the second node. The second node is
only connected to the �rst node, and is the true source and destination for all demands
involving this datacenter. By setting capacity on the links between these two nodes,
we can enforce I/O limit for the whole datacenter like in the switch model.
24 is still the best known bound.
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Figure 1: Example of co�ow. The �rst graph shows the net-
work topologies and the bandwidth of each link. We have
one co�ow consisting of two�ows: one fromNY toBA of de-
mand 18 (denoted with dashed, green lines), the other from
HK to FL of demand 12 (denoted with solid, red lines). The
second graph shows the single path model, where each �ow
needs to be transmitted along a given path. It also implies a
schedule in this model: transmit according to the path for 3
time units, and both �ows are done. The third graph shows
the free pathmodel, where each �ow can be split alongmul-
tiple paths as long as the capacity of edges are respected.
Here both �ows can share the link from NY to FL and the
entire co�ow �nishes in 2 units of time.

LP (as in [28]). Furthermore, in recent work, a system called Sin-
cronia [1] was also developed based on the primal-dual method.
It improves upon state-of-the-art methods and gives practical and
near-optimal solutions in real testbeds.

One natural extension is to take the graph structure into consid-
eration. Zhao et al. [31] consider co�ow scheduling over arbitrary
graphs and attempt to jointly optimize routing and scheduling. They
give a heuristic based on shortest job �rst, and use the idle slots
to schedule �ows from the longest job. Jahanjou et al. [15] studied
two variants of co�ow scheduling over general graphs, namely,
when the path for a �ow is given or if the path is unspeci�ed. In
both cases, the transmission rate may change over time, but each
�ow can only take a single path, whether given to or chosen by the
fractional routing algorithm. In the �rst case, Jahanjou et al. [15]
develop the �rst constant approximation algorithm (approxima-
tion ratio 17.6) and in the second case they develop an O( logn

log logn )
approximation algorithm (n is the number of nodes in the graph),
matching the lower bound given by Chuzhoy et al. [8].

Since preemption often incurs large overheads, some recent
work [30] has tackled the problem of non-preemptive co�ow sched-
uling.Mao, Aggarwal, and Chiang [21] consider the non-preemptive
co�ow scheduling problem with stochastic sizes and give an algo-
rithm with an approximation factor of (2 logm + 1)(1 + pm�)(1 +
m�)(3 + �)/2, where � is an upper bound of squared coe�cient
of variation of processing times. This simpli�es to a (3 logm + 3

2 )
approximation for non-stochastic cases.

1.2 Our Contributions
The main result of this paper is a uni�ed, tight 2-approximation
algorithm for the co�ow scheduling problem in both the single path
model and the free path model when all release times and demands
are polynomially sized, and a (2+�)-approximationwhen the release
times and demands can be super-polynomial. This improves upon

2



the 17.6 approximation given by Jahanjou et al. [15] for the single
path model, and is the �rst approximation algorithm for the free
path model (introduced by You and Chowdhury [29]).

We also evaluated our algorithm using two WAN topologies
(Microsoft’s SWAN [12] and Google’s G-Scale [16]) on four di�erent
workloads (BigBench [14], TPC-DS [22], TPC-H [23], and Facebook
(FB) [5, 9]) and compared with state-of-the-art for both models[15,
29]. For the single path model, we signi�cantly improved over
Jahanjou et al. [15]. For the free path model, we are close to what
Terra [29] gets, but have the extra capability of dealing with weights.
Across all variants and models, we have shown that taking the LP
solution directly is an e�ective heuristic in practice.

1.3 Paper Organization
In Section 2 we give a formal de�nition of the two models for
co�ow scheduling. In Section 3 we give a general linear program
that deals with both models. We give the additional �ow constraints
for the two models in Section 3.1. In Section 4.1 we describe the
main algorithm and present the analysis in Section 4.2. We prove
both models to be NP-hard in Section 5. In Section 6, we show
experimental results by comparing our algorithms to some baseline
algorithms. We conclude in Section 7 with some new directions to
work on.

2 MODEL AND PROBLEM DEFINITION
We now formally de�ne the models of co�ow scheduling that we
consider in this paper. Let G = (V , E) be a directed graph that
represents the data center network and c : E ! R+ be a function
that denotes the capacity (bandwidth) available on each edge of the
network. Let J = {F1, F2, . . . , Fn } denote the set of n co�ows. A
co�ow Fj has weight w j that denotes its priority and consists of
nj individual �ows, i.e., Fj = { f 1j , . . . , f

nj
j } where f ij = (sij , t ij ,� ij )

denotes a �ow from source node sij 2 V to sink t ij 2 V with demand
� ij 2 R+. We assume that time is discrete and data transfer is
instantaneous, i.e., it takes negligible time for data to cover multiple
hops of edges as network delay is low compared to the time to
transmit large chunks of data. A co�ow Fj is said to be completed at
the earliest time t such that for each �ow f ij 2 Fj , � ij units of data
have been transferred from source sij to sink t ij . Our goal is to �nd
a schedule that routes all the requisite �ows (i.e. at any time, what
fraction of a certain �ow is transmitted and along which path/paths)
subject to the edge bandwidth constraints so that the total weighted
completion time of the co�ows

Õ
j w jCj is minimized. Figure 2 gives

an example of an instance of the co�ow scheduling problem over a
simple network.

We consider two di�erent transmissionmodels, based onwhether
a �ow f ij has restrictions as to how the data is transmitted. In the
single path model, each �ow f ij speci�es a path pij from source
sij 2 V to sink t ij 2 V so that the �ow can only be routed along that
path. This is exactly the “circuit-based co�ows with paths given”
model studied by Jahanjou et al. [15].

In the free path model, we can freely select the routing we de-
sire for any �ow f ij . In any time slot, data transmission occurs as
a feasible multi-commodity �ow so that both �ow-conservation

and edge bandwidth constraints are satis�ed. Thus, we can split
any �ow f ij along multiple paths from its source to destination.
This model was proposed in Terra [29]. Since the shortest paths of
di�erent �ows can share edges and cause congestion, the free path
model o�ers the �exibility of rerouting �ows along less congested
paths. In addition, modern internet infrastructures support using
multiple paths together to get a higher overall speed (known as link
aggregation), which is captured in the free path model as network
�ow.

In fact, both models are handled uniformly by the same frame-
work, and the only di�erence is the set of �ow constraints that
describe what are considered feasible transmissions. It is also possi-
ble to handle other kinds of transmissions, like an intermediate case
between single path and free path: several paths are given, and we
can use them together and decide at what rate we are transmitting
along each path. Figures 3 and 4 show the optimal solutions for the
example co�ow problem in the single path and free path models
respectively.
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Figure 2: On the left is the graph structure: bi-directed edge
of independent capacity of 1, on the right is the demanded
co�ow. There are four co�ows each containing one single
�ow: red (solid) from �1 to t , green (dashed) from �2 to t , or-
ange (dotted) from �3 to t , and blue (curly) from s to t . The
�rst three have demand 1, while the blue co�ow has a de-
mand of 3. All of them have the same weight of 1.
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Figure 3: For the single pathmodel, we have the path assign-
ment in the left �gure. Notice the path for green (dashed)
�ow shares an edge with that for the blue (curly) �ow. Here
is one optimal solution for the single path model. The total
weighted completion time is 1 + 1 + 1 + 4 = 7.

3 LINEAR PROGRAMMING RELAXATION
We use a time-indexed linear program to model this problem. LetT
denote an upper bound on the total time required to schedule all the
co�ows. Note thatT might be super-polynomial if the release times
or co�ow sizes are large. However, there is a standard technique
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Figure 4: This is the optimal solution in the free path model.
At time 1, send the red (solid), green (dashed), and orange
(dotted) co�ows. At time 2, send the blue (curly) co�owon all
paths. The total weighted completion time is 1+ 1+ 1+ 2 = 5.

that achieves polynomial size at the cost of a (1 + �) factor on
approximation ratio. We will assumeT to be polynomial in the main
paper, and present the �x for super-polynomial T in Appendix A.

Let time be slotted and time slot t cover the interval of time
[t � 1, t]. For a given �ow f ij and a time slot t , we introduce the
variable x ij (t) to indicate the fraction of �ow f ij that is scheduled at
time t . For each co�ow Fj , we introduce variables X j (t) to indicate
if all the �ows f ij 2 Fj have been completely scheduled by time t .
Finally, we introduce a variableCj that models the completion time
of co�ow Fj .

To make the linear program compatible with both single path
model and free path model, we exclude the �ow constraints and
edge bandwidth constraints for now and delay them to Section 3.1.

Minimize
’
j
w jCj , subject to

’
t
x ij (t) = 1 8j 2 [n],8i 2 [nj ] (1)

X j (t) 
t’

`=1
x ij (`) 8j 2 [n],8i 2 [nj ],8t 2 T (2)

Cj � 1 +
’
t
(1 � X j (t)) 8j 2 [n] (3)

r ij � t ) x ij (t) = 0 8j 2 [n],8i 2 [nj ],8t 2 T (4)

x ij (t) � 0 8j 2 [n],8i 2 [nj ],8t 2 T (5)

Constraint (1) certi�es that each �ow is fully scheduled. Con-
straint (2) ensures that co�ow Fj is considered completed at time
t only if all �ows f ij 2 Fj have been fully scheduled by time t . In
Proposition 3.1, we show that Constraint (3) enforces a valid lower
bound on the completion time of co�ow Fj . Finally, Constraint (4)
ensures that no �ow is scheduled before it has been released. Note
this is not a typical LP relaxation, since any fractional solution is
valid. The main relaxation is around the completion time, since rep-
resenting the exact completion time of job is beyond the capability
of a linear program.

Proposition 3.1. The completion time of a co�ow Fj can be lower
bounded by Cj � 1 +

Õ
t (1 � X j (t)) where X j (t) 2 [0, 1] denotes the

fraction of co�ow Fj that has been completed by (the end of) time slot
t .

P����. Conventionally, in time-indexed linear programming
relaxations, the completion time of a job j is lower bounded by the
fractional completion time in the schedule, orCj = Cj ·

ÕT
t=1 x j (t) �ÕT

t=1 t · x j (t). In our setting, this corresponds to the constraint
Cj � Õ

t t · x j (t) where x j (t) = X j (t) � X j (t � 1) denotes the
fraction of co�ow Fj that is scheduled during time slot t . The desired
constraint in Eq (3) is exactly the same constraint rearranged in a
format that is more convenient for analysis.

Cj �
T’
t=1

t · x j (t) =
T’
t=1

x j (t)
t’

�=1
1

=

T’
�=1

T’
t ��

x j (t) =
T’
�=1

 T’
t=1

x j (t) �
��1’
t=1

x j (t)
!

=

T’
�=1

(1 � X j (� � 1)) =
T�1’
�=0

(1 � X j (� )) = 1 +
T�1’
�=1

(1 � X j (� ))

⇤

3.1 Model-speci�c Constraints
3.1.1 Single Path Model. In the single path model, a �ow f ij can
only be routed along a speci�ed path pij . Thus, we do not need to
make any routing decisions in the linear program and only need to
ensure that edge bandwidths are respected.’

pij 3e
x ij (t) · � ij  c(e), 8e 2 E,8t 2 T (6)

Constraint (6) enforces that the total �ow scheduled through edge e
at any time slot t does not exceed the edge bandwidth. Constraints
(1)-(6) thus form the complete linear programming relaxation for
co�ow scheduling in the single path model.

3.1.2 Free Path Model. In the free path model, the path for �ow f ij
is not speci�ed. In fact, data can split and merge at vertices to utilize
all possible capacity. We use variable x ij (t, e) to denote the fraction
of �ow f ij transmitted through edge e in time slot t . Recall that we
use x ij (t) to denote the total fraction of �ow f ij that is transmitted
in time slot t . �in (�) (�out ) represents the set of edges that comes
in (out of) vertex � . Here are the �ow conservation constraints we
need.

’
e 2�out (s ij )

x ij (t, e) = x ij (t), 8j 2 [n],8i 2 [nj ],8t 2 T (7)

’
e 2�in (t ij )

x ij (t, e) = x ij (t), 8j 2 [n],8i 2 [nj ],8t 2 T (8)

’
e 2�in (�)

x ij (t, e) =
’

e 2�out (�)
x ij (t, e), 8j 2 [n],8i 2 [nj ],8t 2 T ,

8� 2 V \{sij , t ij } (9)’
j 2[n],i 2[nj ]

x ij (t, e) · � ij  c(e), 8t 2 T ,8e 2 E (10)

Constraints (7) and (8) enforce that the total fraction of �ow f ij
satis�ed at time t over all the paths is exactly x ij (t). Constraints (9)
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ensure �ow conservation at all nodes other than source and sink.
Constraints (10) guarantee that all edge bandwidths are satis�ed at
all time steps. Constraints (1)-(5) and (7)-(10) thus form the complete
linear programming relaxation for co�ow scheduling in the free
path model.

Let C⇤
j denote the completion time of co�ow Fj in an optimal

solution of the LP relaxation, and letCj (opt) denote the completion
time of co�ow Fj in the corresponding optimal integral solution.
Thus, for both the models, we have’

j
w jC

⇤
j 

’
j
w jCj (opt). (11)

4 APPROXIMATION ALGORITHMS
Let x ij (t) denote the fraction of �ow f ij that is scheduled at time
step t in an optimal solution to the above LP. The LP constraints
guarantee that this yields a feasible schedule to the co�ow schedul-
ing problem (in both the single path as well as the free path models).
However, since the completion time of a co�ow Fj is de�ned as the
earliest time t such that all �ows f ij 2 Fj have been completely
scheduled, the true completion time of co�ow Fj obtained in this
scheduled is given by

Cj (LP Sched) = max
i

{ max
t :x ij (t )>0

[t]}. (12)

Unfortunately, this completion time Cj (LP Sched) can be much
greater than the completion time variable in the optimal LP solution
C⇤
j , and thus the obtained schedule is not a constant-approximate

co�ow schedule. For instance, consider a co�ow Fj with only one
�ow (nj = 1) and let the optimal LP solution set its schedule as
follows x1j (1) = 0.9, x1j (10) = 0.1, and x1j (t) = 0,8t < {1, 10}.
Now, the completion time variable in the optimal LP solution is
C⇤
j =

Õ
t tx

1
j (t) = 1.9. However, true completion time of the co�ow

Fj in such a schedule is Cj (LP Sched) = 10 � C⇤
j .

To overcome the obstacle above, we propose the following al-
gorithm called Stretch (see Section 4.1) that modi�es the schedule
obtained by the linear program so that the completion time of each
co�ow in the modi�ed schedule can be compared with the comple-
tion time variable of the corresponding co�ow in an optimal LP
solution. The schedule “stretching” idea (also called ‘slow-motion’)
used in our algorithm has been used before successfully in other
scheduling contexts [13, 25, 27].

4.1 Stretch Algorithm
(1) Solve the linear program in Section 3 and obtain a fractional

optimal solution.
(2) Let � 2 (0, 1) be drawn randomly according to the p.d.f

f (�) = 2� . We can verify that this is indeed a valid probabil-
ity distribution.

(3) Stretch the LP schedule by 1
� . This means that we schedule

everything exactly as per the LP solution - but whatever
LP schedules in the interval [a,b], we will schedule in the
interval [a� ,

b
� ].

(4) Once � ij units of �ow f ij have been scheduled, leave the
remaining slots for f ij empty.
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Figure 5: Here we show an example solution obtained from
the LP, di�erent color indicate di�erent�ows. In the second
picture, we stretch with � = 0.5. In the third picture, we leave
the slots empty if the corresponding �ow is �nished. In the
fourth picture, we utilize the idle slots andmove some �ows
to earlier times. Though this does not improve the theoret-
ically bound, it is bene�cial in practice and is used in our
experimental evaluation.

Figure 5 illustrates the key ideas of the algorithm. To help un-
derstand this algorithm, start with the simple case where we have
a �xed � = 0.5, in other words stretch the time axis by a factor of
1/� = 2. Intuitively, we move everything at time slot t and to both
time slots 2t � 1 and 2t . What used to be transmitted at time t will
be transmitted no later than time 2t . Consider any �ow f ij and let
� denote the earliest time by which the LP has scheduled at least
1/2 fraction of the �ow. Then, it is easy to verify that the �ow f ij is
completely scheduled by time 2� .

Now we consider a general � and prove that this algorithm does
output a feasible schedule. Due to fractional �, it might be the
case that some �ow f ij of LP variable x ij (t) in integral interval
[t � 1, t] becomes [ t�1� ,

t
� ], a fractional interval. In this case, for

a time slot � , or a interval [� � 1, � ] after stretching, we just add
x ij (t) · |[� � 1, � ] \ [ t�1� ,

t
� ]|.

The only �ows that might be scheduled in time slot � are those
scheduled in time slot 1+ b�(� � 1)c and 1+ b�� c before stretching,
or �ows f ij (1+b�(��1)c) and �ows f ij (1+b�� c). (The two time slots
might be the same. If so, feasibility is automatically met. Otherwise,
we have 1 + b�(� � 1)c + 1 = 1 + b�� c.) For all �ows at time
1 + b�(� � 1)c before stretching, the factor we multiplied with
is w1 =

���[� � 1, � ] \ [ b�(��1)c� , 1+ b�(��1)c� ]
���. For all �ows at time

1 + b�� c before stretching, the factor we use to multiply with is
w2 =

���[� � 1, � ] \ [ b�� c� ,
1+ b�� c

� ]
���. Note w1 + w2 = 1. In fact, the

schedule at time � can be viewed as a weighted average of the
schedule at time [b�(� � 1)c, 1 + b�(� � 1)c] and [b�� c, 1 + b�� c]
(if �(� � 1) is a integer, then the schedule will be exactly what it
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used to be at time �� ), the �rst with weightw1 and the second with
weightw2. The nature of network �ow ensures that the weighted
sum of two feasible �ows is a feasible �ow.

Another fact that needs proof is that every �ow is �nished. This
is guaranteed since schedules are stretched, and we only leave the
remaining slots empty for f ij if �

i
j units of �ow have been scheduled,

or in other words, all the demand for this �ow has been scheduled.

4.2 Analysis
Recall that C⇤

j denotes the completion time of co�ow Fj in the
optimal LP solution. While we consider that time is slotted in the
LP formulation and time slot t covers the interval of time [t � 1, t],
at this stage it is more convenient to work with continuous time
rather than discrete time. For any continuous time � 2 [0,T ], de�ne
X j (� ) to be the fraction of co�ow Fj that has been scheduled in the
LP solution by time � . We de�ne X j (� ) by assuming that the �ow is
scheduled at an uniform rate in every time slot. Formally, we have

X j (� ) = X j (b� c) + (� � b� c)
�
X j (b� c + 1) � X j (b� c)

�
. (13)

The LP constraints (3) guarantee that for any co�ow Fj , we have
C⇤
j � 1+

Õ
t (1�X j (t)). We can now lower-bound the LP completion

time by replacing the above summation by an integral.

Lemma 4.1.
Ø T
�=0(1 �X j (� ))d�  C⇤

j �
1
2 where X j (� ) is de�ned as

per Eq. (13).

P����. By de�nition of X j (� ), we have the following.π T

�=0
(1�X j (� ))d� = T �

π T

�=0
X j (� )d�

= T �
T�1’
t=0

π t+1

�=t
X j (� )d�

= T �
T�1’
t=0

π t+1

�=t

⇥
X j (t) + (� � t)

�
X j (t + 1) � X j (t)

� ⇤
d�

= T �
T�1’
t=0


X j (t) +

�
X j (t + 1) � X j (t)

� π t+1

�=t
(� � t)d�

�

= T �
T�1’
t=0

1
2

⇥
X j (t) + X j (t + 1)

⇤

= T �
"
1
2

�
X j (0) + X j (T )

�
+

T�1’
t=1

X j (t)
#

Since by de�nition, X j (0) = 0 and X j (T ) = 1, we get

= T �
"
1
2
+

T�1’
t=1

X j (t)
#

Rearranging the terms, we get

= 1 +
T�1’
t=1

(1 � X j (t)) �
1
2
 C⇤

j �
1
2

where the last inequality follows from Constraint (3). ⇤

For any � 2 [0, 1], de�neC⇤
j (�) to be the earliest time � such that

� fraction of the co�ow Fj has been scheduled in the LP solution,
i.e., in other words its the smallest � such that X j (� ) = �. Note that
by time C⇤

j (�), � fraction of every �ow f ij 2 Fj has been scheduled
by the LP.

Proposition 4.2.
π 1

�=0
C⇤
j (�)d� =

π T

�=0
(1 � X j (� ))d�

P����.π 1

�=0
C⇤
j (�)d� =

π 1

�=0

π T

�=0
[C⇤

j (�)>� ]d�d�

=

π T

�=0

π 1

�=0
[C⇤

j (�)>� ]d�d�

=

π T

�=0

π 1

�=X j (� )
1d�d� =

π T

�=0
(1 � X j (� ))d�

⇤

Finally, we are ready to bound the completion time of co�ow
Fj in the stretched schedule (denoted as Cj (al�)). For any �xed
� 2 (0, 1), since we stretch the schedule by a factor of 1

� , we have

Cj (al�) 
⇠
C⇤
j (�)
�

⇡
. Notice the ceiling function in the bound 3. Since

� is drawn randomly from a distribution, the following lemma
bounds the expected completion time of co�ow Fj in the stretched
schedule.

Lemma 4.3. The expected completion time of any co�ow Fj in the
stretched schedule is bounded by 2C⇤

j .

P����.

E[Cj (al�)] 
π 1

�=0
f (�)

&
C⇤
j (�)
�

'
d� 

π 1

�=0
(2�)

 
C⇤
j (�)
�
+ 1

!
d�

= 2
π 1

�=0
C⇤
j (�)d� + 1

By Lemma 4.1 and Proposition 4.2,

= 2
π T

�=0
(1 � X j (� ))d� + 1  2

✓
C⇤
j �

1
2

◆
+ 1 = 2C⇤

j

⇤

Theorem 4.4 thus follows from the linearity of expectation.

Theorem 4.4. There is a randomized 2-approximation algorithm
for co�ow scheduling in networks in both the single path and free
path models when all release times and co�ow sizes are polynomially
sized.

For the case where the total time we need to schedule all co�ows
is super-polynomial, we use the standard trick of geometric series
time intervals, and claim the following theorem. Proof comes in
Appendix A.

3All �ows f ij 2 Fj were completed by at least � fraction by time C⇤
j (�). So in the

stretched schedule, all those �ows must be completed by time
C⇤
j (�)
� . The ceiling is

necessary since
C⇤
j (�)
� may be fractional (i.e. occur in the middle of a time slot)
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Theorem4.5. For any � > 0, there is a randomized (2+�)-approximation
algorithm for co�ow scheduling in networks in both the single path
and the free path models (with possibly super polynomial release times
and demands).

5 HARDNESS OF APPROXIMATION
We claim the following theorem:

Theorem 5.1. For the co�ow scheduling problem, in both the sin-
gle path and the free path model, it is NP-hard to obtain a (2 � �)
approximation, for any � > 0.

P����. We prove it by a reduction from concurrent open-shop
problem (proved NP-hard to approximate within a factor better than
(2 � �) [3, 26]). The de�nition of concurrent open shop problem is
as follows: there arem machines and n jobs, each job j need to be
processed on machine i for pij time non-preemptively. We would
like to minimize the total weighted completion time. Unlike the
open shop problem, in the concurrent open shop problem a job can
be processed on more than one machine at the same time.

Given a concurrent open-shop problem instance with M ma-
chines, we construct an instance of the co�ow scheduling problem
as follows. For every machine i , we have two nodes xi and �i , and
an edge of unit bandwidth from xi to �i . Notice the graph has M
di�erent components, between each pair (xi ,�i ), there is only one
path from xi to �i . Thus this construction works for both the single
path model and the free path model. We will not distinguish the
models in the following proof.

For a certain job j with demands � ij in the concurrent open shop
instance, we add a co�ow j with demand of� ij from xi to�i . Weights
are directly taken from the concurrent open shop problem instance.
Suppose we get a solution for this co�ow scheduling instance, we
can get a solution of no larger cost for the concurrent open shop
instance as follows. If we have a �ow f ij for job j on edge (xi ,�i )
of size x ij (t) at time t , then we schedule a fraction of x ij (t) for job
j on machine i at time t . Suppose a �ow f ij is �nished at time Cij
in the co�ow scheduling problem, the corresponding concurrent
open shop problem for job j and machine i is also �nished at time
Cij . Similarly, the �nishing timeCj of co�ow j and concurrent open
shop job j are the same. However, the solution we get is fractional,
and might be preemptive (we might pause a job and resume it later).

Now we prove that we can modify this solution to get a non-
preemptive integral solution without raising the total weighted
completion time. For each machine i , consider all completion times
Cij . Sort them in non-decreasing orderCil1 ,C

i
l2
, . . . ,Cil �

, and we can
safely reschedule these demand in the order of l1, l2, . . . , lj , and get
new completion timesCil1 , . . . ,C

i
lj
while not raising any completion

time. We know all demand of job l1 on machine i has been �nished
by Cil1

, so Cil1 = dl1,i  Cil1
, similarly all demands of job l1 and

l2 have been �nished by Cil2
, and Cil2 = dl1,i + dl2,i  Cil2

. We
can continue and get Cilj  Cilj

,8j 2 {� }. Thus the total weighted
completion time for this integral solution would be upper bounded
by the cost for the co�ow scheduling instance.’
j 2{� }

w j · Cj =
’
j 2{� }

w j · max
i 2{M }

Cij 
’
j 2{� }

w j · max
i 2{M }

Cij =
’
j 2{� }

w j ·Cj

For the other direction, for a certain solution of a concurrent
open-shop problem, if task i of job j is scheduled from time t1 to
time t2, we make the �ow f ij take up all bandwidth of edge (xi ,�i )
from time t1 to time t2. Then �ow f ij is �nished the same time when
task i of job j is �nished. Since every task i is �nished the same
time before and after reduction, completion times and the objective
weighted completion time stays the same for the co�ow scheduling
problem.

In conclusion, for a solution SOL of concurrent open-shop prob-
lem with weighted completion timeW , we can construct a solution
SOLco�ow for co�ow scheduling problem of the same weighted
completion timeW . For a solution SOL0co�ow of co�ow scheduling
problem with weighted completion timeW 0, we can construct a
solution SOL0 for the original concurrent open-shop problem, with
cost at mostW 0. Since concurrent open-shop problem is NP-hard
to get a (2 � �) approximation, we know it is also NP-hard to ap-
proximate co�ow scheduling problem to a factor of (2� �), for both
single path model and free path model. ⇤

6 EXPERIMENTS
We evaluated the Stretch Algorithm on 2 topologies and 4 bench-
marks/industrial workloads. Experiments were run on a machine
with dual Intel(R) Xeon(R) CPU E5-2430, and 64GB of RAM, and
using Gurobi [11] as the LP solver. We �rst discuss the experi-
mental set up and then in Section 6.2 discuss what evaluation we
performed.

WAN topology:We consider the following graph topologies.

(1) Swan [12]: Microsoft’s inter-datacenterWANwith 5 datacen-
ters and 7 inter-datacenter links.We calculate link bandwidth
using the setup described by Hong et al.[12].

(2) G-Scale [16]: Google’s inter-datacenter WAN with 12 data-
centers and 19 inter-datacenter links.

Workloads:We use the following mix of jobs from public bench-
marks - TPC-DS [22], TPC-H [23], and BigBench [14] - and from
Facebook (FB) production traces [5, 9]. We follow [29] to set up the
benchmarks: for a certain workload, jobs are randomly chosen and
since they do not have a release time, we assign a release time sim-
ilar to that in production traces. Each job lasts from a few minutes
to dozens of minutes. Each benchmark experiment has 200 jobs.
We randomly assign these jobs to nodes in the datacenter, and the
demand will be between the corresponding nodes. Since weights
are not available, we assign weights that are uniformly chosen from
the interval between 1.0 and 100.0.

6.1 Implementation Details
In this subsection we discuss some details related to the implemen-
tation.
Time Index: There is a trade-o� in selecting the size of a time slot.
If the length of a time slot is shorter, we get more accurate answers,
but need to solve a larger LP. On the contrary, if we make each
time slot longer, the amount of computational resources need is
greatly reduced, but the quality of the solution su�ers. In all our
experiments, we considered time slots of length 50 seconds as this
led to tractable LP relaxations.
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Rounding: Algorithm Stretch is meant for easy theoretical analy-
sis, and is not a sophisticated rounding method; we are not trying
to schedule later �ows in the slots that are idle. This can cause huge
overhead in experiments. See Figure 5 for an illustration. In our
implementation, we deal with this issue by moving the schedule of
every time slot t to an earlier idle slot t 0 if for all �ows scheduled
at t , its release time is before t 0.

To address the random sampling of �, we sample 20 times from
the distributionmentioned in Section 4.1 to get the expectedweighted
completion time for Algorithm Stretch, and denote it with “Average
�”. We also measure the best solution obtained over these random
choices (denoted by “Best �”).

6.2 Baselines
LP-based Heuristic: In addition to algorithms with theoretically
worst case guarantee, we also propose a heuristic that works well
in practice. Recall in Section 4.1, we mentioned that the LP solution
itself is a valid schedule. We can use this solution as a heuristic,
for both the single path and free path models. Note the weighted
completion time for this LP solution is NOT the same as the LP
objective function, as explained in Section 4.1. This implies that the
solution from the heuristic can be arbitrarily bad in the worst case.
In practice, however, this proves to be a very e�ective algorithm
that can be quite close to the lower bound we get from LP.

Jahanjou et al. (Single path model): Since path information
is not available in the datasets, we randomly generate one for each
�ow. For a source sink pair (sij , t ij ), we randomly select one of the
shortest paths as the path for �ow f ij . For this model, we compare
our algorithm with the algorithm presented by Jahanjou et al. [15].
Here is a brief description of their approach. First write an LP using
geometric time intervals, then schedule each job according to the
interval its � point (the time when � fraction of this job is �nished)
belongs to. A common reason for geometric time intervals is to
avoid having a super-polynomial time horizon (a practical reason
is to make the LP smaller), and a time series of {(1 + �)i } is chosen
where � is close to 0. The closer � is to 0, the better the approxi-
mation ratio can be. However, in Jahanjou et al.’s algorithm, the
rounding step has a dependency on � . To optimize the approxi-
mation ratio, � is set to 0.5436. Our algorithm, on the contrary, is
time slot based, and can be turned into a geometric series of time
intervals by losing a factor of (1 + �). In experiments, we include
both the case of � = 0.2 and the case of � = 0.5436 for completeness.

Terra (Free path model): For the �ow-based model, we are
comparing to the o�ine algorithm in Terra [29]. This algorithm
only works for the unweighted case. It calculates the time for each
single co�ow to �nish individually, and then schedule with SRTF
(shortest remaining time �rst). Instead of one large LP like all other
algorithms compared here, this algorithm solves a large number
of LPs, twice the number of co�ow jobs. Terra can work with very
�ne grained time, to the order of milliseconds (and does not need
time to be slotted). Since there is no previous work on weighted
case, we compare the weighted case with the LP solution and our
heuristic directly based on time indexed LP.

6.3 Experimental Results
Impact of �: See Figure 6 and Figure 7. When � is 1.0, we take the
LP solution directly (this is exactly the LP-based heuristic). Across
all experiments, this seems the best choice of �. The best sampled �
and the average case � are pretty close, indicating the performance
does not change much across di�erent �.

Impact of � : To study the e�ect of the size of the time interval,
we measure the LP objective and the schedule obtained by the LP-
based heuristic as we vary � in Figure 8. As � increases, the size
of the linear program will drop, making it faster to solve. On the
other hand, the quality of solution drops, as we will not start a job
until the whole current interval is after its release time, and will
not consider a job �nished until the interval its completion time
belongs to ends. Thus a proper selection of � may depend on the
available computational resources for solving the LP.

Single Path Model: Figures 9 and 10 compare the performance
of our algorithms with that of Jahanjou et al. [15] on all the bench-
marks and topologies. Across all the experiments, we observe that
our algorithms perform signi�cantly better.

Free Path Model: See Figure 11 and Figure 12 for comparisons
with the algorithm in Terra[29]. Since Terra only handles uniform
co�ow weights, we set all weights to be unit for these experiments.
Surprisingly, we observe that Terra performs slightly better than
even the LP objective itself. This disparity arises as the LP relies
on time slots of 50 seconds while Terra deals with time slots of
much �ner granularity. For the weighted case, we are not aware of
previous work, and only compare to LP solution in Figures 6 and 7.

7 CONCLUSION
In this paper we developed an e�cient approximation algorithm for
the co�ow scheduling problem in general graph topologies. This
algorithm is shown to be practical and one that delivers extremely
high quality solutions. The new insight was to write a time indexed
LP formulation and to convert it using the idea of stretching the
schedule.

The next major challenge is developing onlinemethods for co�ow
shceduling to minimize weighted �ow time. Prior work [17] deals
with the problem of minimizing weighted completion time by mak-
ing use of o�ine approximation algorithms. However, the problem
of minimizing weighted �ow time is considerably more challenging.
The technical di�erence is that �ow time is de�ned asCj �r j where
Cj is the completion time of a job, and r j the release time. Opti-
mizing �ow time non-preemptively even on a single machine (a
di�erent model) is a notoriously di�cult problem with some recent
progress [4, 10].
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A SKETCH OF GENERALIZATION TO
SUPER-POLYNOMIAL TIME SPAN

Geometric series time interval is de�ned as follows. For an � > 0, let
�0 = 0, �1 = 1, · · · , �k = (1 + �)k�1, · · · . We de�ne the k-th interval
as lk = [�k�1, �k ]. Since T is at most the sum of all processing
time and all release time, we know the number of intervals T =
1 + dlog1+� T e is polynomial.

We change the LP as follows. We abuse notation a bit and allow
T to represent the set {1, 2, · · · ,T} when there is no confusion. We
replace all accurance of T with T in Section 3, modify Equation (4)
and Equation (3) to accommodate for release time, and get the
following linear program.

Minimize
’
j
w jCj , subject to

’
t
x ij (t) = 1 8j 2 [n],8i 2 [nj ] (14)

X j (t) 
t’

`=1
x ij (`) 8j 2 [n],8i 2 [nj ],8t 2 T (15)

Cj � 1 +
’
t
(�t � �t�1)(1 � X j (t)),8j 2 [n] (16)

r ij � �t ) x ij (t) = 0 8j 2 [n],8i 2 [nj ],8t 2 T (17)

x ij (t) � 0 8j 2 [n],8i 2 [nj ],8t 2 T (18)

For the model speci�c part of linear program, we only need to
change the capacity constraints: replace Equation (6) for single path
model to get’

pij 3e
x ij (t) · � ij  (�t � �t�1)c(e), 8e 2 E,8t 2 T (19)

and Equation (10) for free path model to get’
e 2�out (s ij )

x ij (t, e) = x ij (t), 8j 2 [n],8i 2 [nj ],8t 2 T (20)

’
e 2�in (t ij )

x ij (t, e) = x ij (t), 8j 2 [n],8i 2 [nj ],8t 2 T (21)

’
e 2�in (�)

x ij (t, e) =
’

e=�out (�)
x ij (t, e), 8j 2 [n],8i 2 [nj ],8t 2 T,

8� 2 V \{si , ti } (22)’
j 2[n],i 2[nj ]

x ij (t, e) · � ij  (�t � �t�1)c(e),8t 2 T,8e 2 E (23)

Similar to Proposition 3.1, we prove Constraint (16) is a good
lower bound.

Proposition A.1. The completion time of a co�ow Fj can be lower
bounded by Cj � 1 +

Õ
t (�t � �t�1)(1 � X j (t)) where X j (t) 2 [0, 1]

denotes the fraction of co�ow Fj that has been completed by (the end
of) time interval [�t�1, �t ].
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P����. If a job completes in the interval (�t�1, �t ], then its �n-
ishing time is at least �t�1 + 1.

Cj �
T’
t=1

(1 + �t�1) · x j (t) =
T’
t=1

x j (t) +
T’
t=1

x j (t)
t�1’
�=1

(�� � ���1)

= 1 +
T�1’
�=1

(�� � ���1)
T’

t=�+1
x j (t)

= 1 +
T�1’
�=1

(�� � ���1)
 
T’
t=1

x j (t) �
�’
t=1

x j (t)
!

= 1 +
T�1’
�=1

(�� � ���1)(1 � X j (�))

⇤

After getting a solution, wewould schedule co�ows into intervals
instead of into time slots. Inside each time interval, we just schedule
each �ow at uniform speed, and break into actual time slots. Similar
to Section 4.1, we can prove that this solution is feasible.

A.1 Analysis
Recall that C⇤

j denotes the completion time of the co�ow Fj in the
optimal LP solution. For any continuous time t 2 [0,T ], de�nebX j (t) to be the fraction of co�ow Fj that has been scheduled in the
LP solution by time t . Note X j (t) is for time interval [�t�1, �t ], butbX j (t) is for original time slots. Flows are scheduled at an uniform
rate in every time interval. Use �(t) to denote the smallest � such
that t 2 (���1, �� ], we have

bX j (t) = X j (�(t)) +
t � ��(t )�1

��(t ) � ��(t )�1

�
X j (�(t) + 1) � X j (�(t))

�
(24)

Similar to Lemma 4.1, we state and prove the following lemma.

Lemma A.2.
Ø T
t=0(1 � bX j (t))dt  (1 + �)C⇤

j � 1
2 where X j (�) is

de�ned as per Eq. (24).

P����. From constraints (16), we have thatπ T

t=0
(1 � bX j (t))dt =

T’
�=1

π ��

t=���1
(1 � bX j (t))dt

Since 1 � bX j (t) is linear for t 2 (���1, �� ],

=

T’
�=1

�� � ���1
2

(1 � X j (�) + 1 � X j (� � 1))

=

T’
�=1

�� � ���1
2

(1 � X j (�)) +
T’
�=1

�� � ���1
2

(1 � X j (� � 1))

=

T’
�=1

�� � ���1
2

(1 � X j (�))

+ (1 + �)
T’
�=2

���1 � ���2
2

(1 � X j (� � 1)) + �1 � �0
2

(1 � X j (0))

=

T�1’
�=1

�� � ���1
2

(1 � X j (�)) +
�T � �T�1

2
(1 � X j (T))

+ (1 + �)
T�1’
�=1

�� � ���1
2

(1 � X j (�)) +
�1 � �0

2
(1 � X j (0))

=
2 + �
2

T�1’
�=1

(�� � ���1)(1 � X j (�)) +
1
2

Plugging in Proposition A.1,

 2 + �
2

(C⇤
j � 1) + 1

2
 (1 + �)C⇤

j �
1
2

⇤

For any � 2 [0, 1], de�neC⇤
j (�) to be the earliest time � such that

� fraction of the co�ow Fj has been scheduled in the LP solution,
i.e., in other words its the smallest t such that bX j (t) = �. Note that
by time C⇤

j (�), � fraction of every �ow f ij 2 Fj has been scheduled
by the LP.

Proposition A.3.
π 1

�=0
Cj (�)d� 

π T

t=0
(1 � bX j (t))dt .

P����.π 1

�=0
Cj (�)d� =

π 1

�=0

π T

t=0
[Cj (�)>t ]dtd� =

π T

t=0

π 1

�=0
[Cj (�)>t ]d�dt

=

π T

t=0

π 1

�=X j (t )
1d�dt =

π T

t=0
(1 � bX j (t))dt

⇤

Finally, we are ready to bound the completion time Cj (al�) of
co�ow Fj in the stretched schedule. For any �xed � 2 (0, 1), since
we stretch the schedule by a factor of 1

� , it is easy to verify4 that

Cj (al�) 
l
Cj (�)
�

m
. Since � is drawn randomly from a distribution,

the following lemma bounds the expected completion time of co�ow
Fj in the stretched schedule.

Lemma A.4. The expected completion time of any co�ow Fj in the
stretched schedule is bounded by 2(1 + �)C⇤

j .

P����.

E[Cj (al�)] 
π 1

�=0
f (�)

⇠
Cj (�)
�

⇡
d� 

π 1

�=0
2�

✓
1 +

Cj (�)
�

◆
d�

=

π 1

�=0
2�d� + 2

π 1

�=0
Cj (�)d�

= 1 + 2
π 1

�=0
Cj (�)d�

By Lemma A.2 and Proposition A.3,

 2(1 + �)C⇤
j .

⇤

Theorem 4.5 thus follows from the linearity of expectation.
4All �ows f ij 2 Fj were completed by at least � fraction by time Cj (�). So in the

stretched schedule, all those �ows must be completed by time
lCj (�)

�

m
.
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