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Abstract

Problems dealing with assignment of clients to servers have been widely studied. However,
they usually do not model the fact that the delay incurred by a client is a function of both the
distance to the assigned server and the load on this server, under a given assignment. We study
a problem referred to as the Load-Distance Balancing problem (or LDB), where the objective is
assigning a set of clients to a set of given servers. Each client suffers a delay that is the sum of
the distance to its server and the congestion delay at this server, a non-decreasing function of
the number of clients assigned to the server.

We address two flavors of LDB – the first one seeking to minimize the maximum incurred
delay, and the second one targeted for minimizing the average delay. For the first variation, we
present hardness results, a best possible approximation algorithm, and an optimal algorithm for
a special case of linear placement of clients and servers. For the second one, we show the the
problem is NP-hard in general and present a 2-approximations for concave delay functions and
an exact algorithm if the delay function is convex. We also consider the game theoretic version
of the second problem and show the price of stability of the game is at most 2 and at least 4/3.
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1 Introduction

The ever-increasing demand for large-scale real-time services to geographically dispersed user pop-
ulations motivates access providers to deploy advanced services close to the network’s edge. Con-
sider, for example, wireless mesh networking (WMN) technologies, which are poised to be a next-
generation platform for high-speed Internet access in urban and rural areas [1]. A WMN infrastruc-
ture consists of numerous wireless routers, which jointly forward the user traffic to (and from) a
limited set of landline gateways. Today, these gateways mainly provide bandwidth sharing of their
high-speed access links to the WMN users. Tomorrow, they can be envisioned as a platform for
rolling out application-level services with stringent quality-of-service (QoS) requirements. For ex-
ample, we foresee WMN gateways playing the role of VoIP traffic gateways, media content delivery
caches, and even online game servers [5].

In a multi-server setting, service assignment problems naturally arise. In this context, each
client session must be assigned to an application-level server. Assignment problems have been
widely studied in operations research and computer science, and classical problems model the cost
of assigning clients to servers as a sum of fixed client-server distances and server (facility) costs. In
this context, the servers might or might not have capacities. We identify a need for a more realistic
model for describing the end-user QoS, e.g., service delay. We model the service delay of a client
session as a sum of a network delay, incurred by the network connecting the user to its server, and a
congestion delay, caused by queueing and processing at the assigned server. The delay experienced
by each end user is the sum of the distance to the assigned server, and the delay incurred at the
server. The load-distance balancing problem, or LDB, seeks to balance between these two factors,
in order to minimize the service delay among all clients. It has two flavors: (1) maximum delay
minimization (Min-Max LDB) and (2) average delay minimization (Min-Avg LDB).

Summary of Results: We demonstrate that the Min-Max LDB problem is NP-hard and present
an approximation algorithm with a factor of 2. We also show that the problem is non-approximable
with a factor better than 2 for general distance and load functions assuming P 6= NP . In addition,
we are able to show that for metric spaces (where triangle inequality is satisfied by the distance
function) we cannot obtain an approximation factor better than 5

3 unless P = NP . For the special
case when the users and the servers are located on a line segment with Euclidean network distances,
we present a polynomial time dynamic programming algorithm for this problem.

We show that the Min-Avg LDB problem is NP-hard, and can not be approximated within a factor
of (1−ǫ) ln n for any ǫ > 0 unless NP ⊆ DTIME(nO(log log n)). For concave delay function, we show
the problem is also NP-hard and present a 2-approximation for it. Indeed, the 2-approximation we
obtained is a Nash equilibrium for the game theoretic version of the problem in which each client is
a selfish player and attempts to minimize its service delay. Hence, the price of stability of the game
is at most 2. We also show a lower bound of 4/3 for the price of stability. Moreover, we present
a polynomial algorithm, which applies for convex delay functions, and a dynamic-programming
solution for the linear setting which has an improved time complexity.

Related Work: The Min-Max LDB problem has been introduced in [4]. That work concentrated
on solving the problem in a distributed setting, in which the servers jointly compute the assignment
with partial local data. The protocol of [4] can use any sequential algorithm as a building block.
In particular, it can use our algorithm described in Section 3.2, the best possible approximation
algorithm. Our paper studies the LDB problem in a broader context, and presents new problem
variations, algorithms, and hardness results.
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Related min-max problems dealing with capacities and facility location were studied before [3,
8, 10]. For example, the capacitated K-center problem [3, 8] asks for K locations to be designated
as centers, so as to minimize the maximum distance of a node from its assigned center. In the
basic K-center problem, there are no capacities and a center can be assigned an arbitrary number
of clients. In the capacitated version each center has a (uniform) load capacity of L, and thus each
center can have at most L clients assigned to it. In a sense, this guarantees a bound on the delay
of any client, since each is within a distance O(d∗) of its assigned center (d∗ is the optimal radius)
and cannot suffer a long service time at the assigned center due to the load being at most L. In [8],
a 5-approximation on the distance measure was presented for the capacitated K-center problem
(improving on a previous bound of 10 [3]) and in addition a (2

cK, cL, 2d∗) solution was presented
where c = 1 + ǫ for any 0 < ǫ < 1. This is a solution that uses at most2

cK centers, and allows
maximum load to be at most cL, yet provides a 2-approximation for the radius.

In fact, Min-Avg LDB is a special case of the universal facility location (UniFL) problem [7, 9]
(see its definition and the reduction in Section 4.1). The current best known approximation for
metric 2 UniFL is 6.702 [12] and 1.861 if the facility cost function is concave [7]. For the non-metric
UniFL, it is known that it is hard to approximate it within a factor of (1 − ǫ) ln n while whether
there is an O(ln n)-approximation is still an open problem [7, 9].

2 Problem Definition

Consider a set of servers S = {s1, . . . , sk} and a set of clients U = {u1, . . . , un}, so that k ≪ n.
The network delay function D : (U × S) → R

+ captures the network distance between a client and
a server. This function is not necessarily subject to the triangle inequality.

Consider an assignment λ : U → S that maps every client to a server. We assume that each client
u assigned to server s adds a unit of load on s. We denote the load on s as L(λ, s) , |{u : λ(u) = s}|.
We shorten this to L(s) when the assignment function is clear from the context. A monotonic non-
decreasing congestion delay function, δs : N → R

+, captures the delay incurred by server s as a
function of the number of assigned clients. Different servers can have different congestion delay
functions. The service delay ∆(u, λ) of session u in assignment λ is the sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(L(λ, λ(u))).
The maximum (resp., average) cost of an assignment λ is the maximum (resp., average) delay it
incurs for a client: ∆M(λ(U)) , maxu∈U ∆(u, λ), and ∆A(λ(U)) , 1

n

∑

u∈U ∆(u, λ).
The min-max (resp., min-average) load-distance balancing assignment problem (or Min-Max LDB

and Min-Avg LDB in short) is to find an assignment λ∗ such that ∆M(λ∗(U)) (resp., ∆A(λ∗(U)))
is minimized. An assignment that yields the minimum cost is called optimal. We also study the
game theoretic version of Min-Avg LDB where each client is a selfish player and aims at minimizing
its service delay.

We say an assignment is a Nash equilibrium if no single player can improve its delay by self-
ishly switching to another server. The objective function is also the average delay. We call this
game Min-Avg LDB Game. The price of stability, defined as the ratio of the delay of the best Nash
equilibrium and that of an optimal solution, is used to measure the inefficiency of Nash equilibria.
We left the the game theoretic version of Min-Max LDB as future work.

2The distance function satisfies triangle inequality.
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3 Min-Max Load-Distance Balancing

3.1 NP-Hardness

We prove that the Min-Max LDB problem is NP-hard. We consider the problem of deciding whether
delay ∆∗ is feasible, i.e., ∆M (λ(U)) ≤ ∆∗. In what follows, we show a reduction from the classical
exact set cover (XSC) problem. An instance of XSC is a collection S of subsets over a finite set U .
A solution S′ ⊆ S is a cover for U , i.e., every element in U belongs to at least one member of S′.
The decision problem is whether there is a cover such that each element belongs to precisely one
set in the cover.

Theorem 1 The Min-Max LDB problem is NP-hard, even to approximate to a factor strictly less
than 2 (or 5

3 in metric spaces).

Proof : Consider an instance of XSC in which |U | = n, |S| = k, and each set contains exactly m
elements. The problem is therefore whether there is a cover containing n

m sets.
The transformation of this instance to an instance of LDB−D is as follows. In addition to the

elements in U , we define a set U ′ of M(k − n
m) dummy elements, where M > m. We construct a

bipartite graph, in which the left side contains the elements in U
⋃

U ′ (the clients), and the right
side contains the sets in S (the servers). The dummy clients are at distance d1 from each server.
The real clients (elements) are at distance d2 > d1 from each server (set) that covers them, and at
distance ∞ from all the other servers. The capacity of each server for distance d1 is M , and for
distance d2 is m, i.e., δ−1

s (∆∗ − d1) = M , and δ−1
s (∆∗ − d2) = m. In other words, the delay at a

server for load at most m is ∆∗− d2 and for load at most M is ∆∗− d1. It is easy to see that under
a feasible assignment, no client’s delay exceeds ∆∗.

Each server can cover either (at most) M dummy clients, or any combination of 0 < m′ ≤ m
original clients and m−m′ dummy clients. If both real and dummy clients are assigned to at least
one server, the total number of servers that have real clients assigned to them is k′ > n

m . All these
servers have capacity m, and hence, they serve at most mk′ − n dummy clients. The remaining
servers can host M(k − k′) dummy clients. Hence, the total number of assigned dummy clients is
bounded by M(k − k′) + mk′ − n = M(k − n

m)−M(k′ − n
m) + m(k′ − n

m) < M(k − n
m), that is, the

assignment is not feasible. Hence, exactly n
m servers must be allocated to real clients, thus solving

the XSC instance. The NP-hardness proof is complete.
We simply specify some of the parameters in the above reduction to obtain the imapproximabil-

ity results. In particular, we show that if there is a solution to the exact cover problem, then there
is a solution for the Min-Max LDB with cost ∆∗. If there is no solution to the exact cover problem,
then all solutions for Min-Max LDB have a high cost of (2∆∗, or 5

3∆∗ in metric spaces).
For the non-metric case, consider the choice d1 = 0 and d2 = ∆∗. If an element is not a member

of a set, the distance to that server is very high. If there is no solution for exact cover, then any
collection of n

m sets will leave some element uncovered. The corresponding client will have to be
assigned to a server that is also serving M − 1 dummy clients. The delay experienced by this client
is thus d2 + (∆∗ − d1) = 2∆∗.

The choice of d1 = ∆∗

3 and d2 = ∆∗ preserves the triangle inequality. The distance of a client
in C ′ to a server is either ∆∗ or 5

3∆∗. If there is no solution to exact set cover, then the best
assignment can have delay no lower than 5

3∆∗. 2
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3.2 A 2-Approximation Algorithm

We now present 2-approximate solution for Min-Max LDB. The algorithm works in phases; in each
phase it guesses ∆∗ = ∆M (λ∗(U)), and checks the feasibility of a specific assignment in which
neither the network nor the congestion delay exceeds ∆∗, and hence its cost is bounded by 2∆∗. A
binary search is performed on the value of ∆∗. A single phase is as follows:

1. Each client u marks all servers s that are at distance D(u, s) ≤ ∆∗. These are its feasible
servers.

2. Each server s announces how many clients it can serve by computing the inverse of δs(∆
∗).

3. Define a bipartite client-server graph where an edge specifies that a server is feasible for the
client. We need to determine if there is a matching in which the degree of each client is
exactly one, and the degree of server s is at most δ−1

s (∆∗). A feasible solution can be found
via any flow algorithm.

Theorem 2 The algorithm computes a 2-approximation of an optimal assignment for Min-Max LDB.

Proof : Consider an optimal assignment λ∗ with cost ∆∗. It holds that ∆1 = maxu D(u, λ∗(u)) ≤
∆∗, and ∆2 = maxs δs(L(s)) ≤ ∆∗. A phase of the algorithm that tests an estimate ∆ =
max(∆1,∆2) is guaranteed to find a feasible solution with cost ∆′ ≤ ∆1 + ∆2 ≤ 2∆∗. 2

Since there are at most kn distinct D values, the number of binary search phases is logarithmic in
n. The number of phases needed for covering all possible capacity values of server s is O(log δs(n)),
which is polynomial in the input size.

3.3 Optimal Assignment on a Line with Euclidean Distances

In this section, we consider the case when the users and the servers are located on a line segment
[0, L], and the network delays are Euclidean distances. We show that Min-Max LDB is polynomially
solvable in this model through dynamic programming.

We start with some definitions. For simplicity of presentation, we assume that every user
or server i has a distinct location xi. The distance between user u and server s is therefore
D(u, s) = |xs − xu|. Assignment λ is called order-preserving if for every pair of users u1 and u2

such that xu1
< xu2

it holds that xλ(u1) ≤ xλ(u2). Otherwise, both λ and every pair (u1, u2) for
which this condition does not hold are called order-violating.

Every order-preserving assignment partitions the line into a series of non-overlapping segments
such that every user within segment i is assigned to server si. Segment i is located to the left of
segment j if and only if i < j. Note that si is not necessarily located inside segment i.

Theorem 3 The Min-Max LDB problem on a line has an order-preserving optimal assignment.

Proof : Consider an order-violating assignment λ. We show how it can be transformed into an
order-preserving assignment that incurs smaller or equal cost.

Since λ is order-violating, there exists a pair of users u1 and u2 assigned to servers s2 and s1

such that xu1
< xu2

but xs2
> xs1

. We transform λ to a new assignment λ′ from by switching
the assignments of u1 and u2, i.e., λ′(u1) = s1 and λ′(u2) = s2. Since this switch does not
affect the load on s1 and s2, no change is incurred to any user’s processing delay. Therefore,
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Figure 1: Switching the assignment of an order-violating pair (u1, u2).

only the network delays incurred to u1 and u2 are affected. We therefore need to show that λ′

does not incur greater maximum network delay values than λ, that is, we need to show that
max(D(u1, s1),D(u2, s2)) ≤ max(D(u1, s2),D(u2, s1)). To this end, consider the following cases:

1. xu1
< xu2

< xs1
< xs2

(Figure 1(a)). Then, D(u1, s1) < D(u1, s2) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1),D(u2, s2)) < max(D(u1, s2),D(u2, s1)).

2. xu1
< xs1

< xu2
< xs2

(Figure 1(b)). Then, D(u1, s1) < D(u1, s2) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1),D(u2, s2)) < max(D(u1, s2),D(u2, s1)).

3. xs1
< xu1

< xu2
< xs2

(Figure 1(c)). Then, D(u1, s1) < D(u2, s1) and D(u2, s2) < D(u1, s2),
hence, max(D(u1, s1),D(u2, s2)) < max(D(u1, s2),D(u2, s1)).

4. xs1
< xu1

< xs2
< xu2

. Symmetric to case (2).

5. xs1
< xs2

< xu1
< xu2

. Symmetric to case (1).

Thus, we switch the assignment of every order-violating pair of users until an order-preserving
assignment is obtained. We conclude that every optimal assignment for Min-Max LDB is either
order-preserving, or can be transformed into an order-preserving assignment that incurs an equal
service delay. 2

We now identify the recursive structure of an optimal assignment λ∗. Let λ∗
i,j for 1 ≤ i ≤ n and

1 ≤ j ≤ k be an optimal assignment for users {ui, . . . , un} that employs servers {sj , . . . , sk}. We can
assign ℓ = 0, . . . , n− i + 1 leftmost users to server sj. This assignment defines the maximum delay
among the leftmost users. From the optimality of λ∗

i,j, the assignment λ∗
i+ℓ,j+1 of the remaining

users to the remaining servers is also an optimal one. Hence,

∆M(λ∗
i,j) = min

0≤ℓ≤n−i+1
[max(δsj

(ℓ) + max
0≤ℓ′<ℓ

|xsj
− xui+ℓ′

|,∆M (λ∗
i+ℓ,j+1))], (1)

The boundary conditions are: ∆M (λ∗n + 1, j) = 0 (no users), and ∆M (λ∗i, k + 1) = ∞ (no servers),
for 1 ≤ i ≤ n and 1 ≤ j ≤ k. The global optimal assignment cost is ∆M (λ∗(U,S)) = ∆M (λ∗

1,1).
Optimal assignments can be computed through dynamic programming using the above recur-

rence. An optimal algorithm employs a two-dimensional table Table[1..n + 1, 1..k + 1], where an
entry Table[i, j] holds the value of ∆M (λ∗

i,j), and the number of users assigned to sj. Note that

max
0≤ℓ′<ℓ

|xsj
− xui+ℓ′

| = max(|xsj
− xui

|, |xsj
− xui+ℓ−1

|),
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and hence, the computation of a single entry Table[i, j] incurs O(1) operations for each examined
entry Table[i + ℓ, j + 1]. A naive implementation examines O(n) such entries, and therefore, the
time complexity of filling the whole table is O(kn2). This result can be improved by noting that
Eq. (1) defines a min-max among the value pairs of fi,j(ℓ) = δsj

(ℓ) + max0≤ℓ′<ℓ |xsj
− xui+ℓ′

| (a

non-decreasing function of ℓ) and gi,j(ℓ) = ∆M (λ∗
i+ℓ,j+1) (a non-increasing function of ℓ). Hence,

the min-max is achieved for the value of ℓ for which fi,j(ℓ) − gi,j(ℓ) is closest to zero. It can be
efficiently found through binary search, which yields O(log n) operations for a single table entry,
and O(kn log n) operations altogether.

4 Min-Average Load-Distance Balancing

In this section, we consider the Min-Avg LDB problem. Contrary to the Min-Max LDB, the goal is to
minimize the sum of delays among all users, i.e, ∆(λ) =

∑

u∈U ∆(u, λ).

4.1 General Congestion Delay Functions

4.1.1 NP-hardness Proof

We prove the Min-Avg LDB problem for general congestion delay functions is NP-hard by reducing
from the classical set cover problem. In a set cover instance, we have a family S of subsets of a
finite ground set U . A feasible solution to the problem is a collection S ′ ⊆ S of subsets such that
for every element u ∈ U , there exists at least one set s ∈ S ′ with u ∈ s. It is well-known that the
set cover problem is NP-hard.

Theorem 4 The Min-Avg LDB problem is NP-hard. Moreover, it can not be approximated within
a factor of (1 − ǫ) ln n for any constant ǫ > 0 unless NP ⊆ DTIME(nO(log log n))).

Proof : Suppose we are given a set cover instance with |U| = N and |S| = M . Let the optimal
cover be S∗.

The reduction is as follows. For each set s ∈ S, we have one server. Let α be any positive

integer. All servers have the same delay function δ(x) =

{

0, x ≤ α;
1, x ≥ α + 1.

For each element

u ∈ U , there is a client (which we call element client). If u ∈ s, then the distance (the network
delay) D(u, s) = 0 and D(u, s) = ∞ otherwise. For each server s, we also create α “special” clients
such that these clients have zero distance to s and infinite distance to other servers (thus in any
feasible solution, these clients should be assigned to s). It is not hard to see that every element
client u has service delay δ(u, λ) = 1 for any reasonable assignment λ. Moreover, for each server
s which serves non-zero element clients, all α special clients associated to s have service delay 1.
Therefore, an optimal solution for the Min-Avg LDB instance uses the minimum number of servers
to serve element clients and has cost α · |S∗| + N. This proves the NP-hardness of the problem.

Now, we show the inapproximability result. We need the following result by Feige [6]: For
any ǫ > 0, it is impossible to approximate the set cover problem within a factor of (1 − ǫ) ln N
unless NP ⊆ DTIME(nO(log log n)). Indeed, this result still holds even when we require that
M = N δ for any δ > 0. Suppose we can get an assignment λS having total delay within a factor
of (1 − ǫ) ln n of the optimal one for some 1/2 > ǫ > 0. Let S ′ ⊆ S be the collection of sets
whose corresponding servers serve non-zero element clients. We can see δ(λS) = α · |S ′| + N ≤
(1 − ǫ) log(N + Mα) (α · |S∗| + N). We assume M = N ǫ/10. By letting α = N1+ǫ/10, we can get
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|S ′| ≤ (1−ǫ/2) log n|S∗|+O(1), which is quite unlikely due to Feige’s result. This proves the second
part of the theorem. 2

4.1.2 The Universal Facility Location Problem

We show Min-Avg LDB is a special case of the universal facility location (UniFL) problem [7, 9]. In
a UniFL instance, we are given a set F of facilities and a set C of cities. A feasible solution is an
assignment λ of the cities to facilities. The facility cost for each facility i depends on the number of
cities it serves and is specified by a non-decreasing facility cost function fi(.). The services cost for
each city is equal to the distance between each city and its assigned facility. The goal is to minimize
the sum of the facility and service costs, i.e.,

∑

i∈F fi(L(λ, i)) +
∑

j∈C D(j, λ(j)) where L(λ, i) is
the number of cities that are assigned to i in λ. If the distance function satisfies triangle inequality,
we call the problem metric UniFL problem, otherwise, we call it non-metric UniFL problem.

The reduction is simply as follows. Each facility and city in UniFL correspond to a server
and a client in Min-Avg LDB, respectively. By letting the corresponding facility cost function be
fs(x) = x · δs(x), we can see that a Min-Avg LDB instance reduces exactly to a UniFL instance with
the same optimal cost. Therefore, any approximation for UniFL can be carried over to Min-Avg LDB

with the same ratio. However, all known approximations for UniFL are for the metric case. The
current best known approximation for metric UniFL is 6.702 by Vygen [12] and 1.861 if the facility
cost function is concave [7]. We note that δs(.) is concave does not necessarily imply the concavity
of the corresponding fs(.). For the non-metric UniFL, it is hard to approximate it within a factor
of (1 − ǫ) ln n for any ǫ > 0 since it also generalizes the set cover problem [6], while whether there
is an O(ln n)-approximation is still an open problem [7, 9].

4.2 Concave Delay Funcitons

In many real applications, the delay can roughly be modeled as a concave function of the load. We
prove the problem is NP-hard even for a very simple piecewise linear concave delay function. Then
we provide a polynomial time 2-approximation. As a byproduct, we show the approximation is a
Nash equilibrium for the game theoretic version of the problem, which implies the price of stability
of the game is 2.

4.2.1 The NP-hardness

Theorem 5 The Min-Avg LDB problem is NP-hard for concave delay function δ(x).

Proof : The reduction is almost the same as in Theorem 4 except that α = 1 and all servers have

the same following delay function δ(x) =

{

x, 0 ≤ x ≤ 2;
2, x ≥ 2.

It is obvious that δ(x) is a concave

function. Using an argument similar to the previous proof, we can see each element client must
experience a service delay of 2. Any special client who share common server with any element
client has a service delay of 2 and the other special clients experience delay 1. Therefore, an
optimal solution has a cost (M − |S∗|) + 2|S∗| + 2N = M + 2N + |S∗| which implies the problem
is NP-hard. 2
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4.2.2 A 2-Approximation Algorithm

We first define the following potential function Φ that maps every assignment into a numeric value.
The potential function is similar to the one used in [2].

Φ(λ) =
∑

s∈S

L(λ,s)
∑

x=0

δs(x) +
∑

u∈U

D(u, λ(u)). (2)

The following simple lemma shows the relationship between the potential function value of an
assignment λ and the actual delay produced by λ.

Lemma 1 If δs(x) is non-decreasing and concave for each server s, for any assignment λ, 1
2 ·

∆A(λ) ≤ Φ(λ) ≤ ∆A(λ).

Proof : By writing ∆A(λ) =
∑

s∈S L(λ, s)δs(L(λ, s)) +
∑

u∈U D(u, λ(u)), we can see the second

inequality holds obviously. To see the first inequality, it suffices to show 1
2ℓδs(ℓ) ≤

∑ℓ
x=0 δs(x) for

any ℓ > 0. Assume that ℓ is odd (The proof for even ℓ is similar and omitted). Due to the concavity
of δs(x), we have

ℓ
∑

x=0

δs(x) =

⌊ℓ/2⌋
∑

x=0

(δs(x) + δs(ℓ − x)) ≥

⌊ℓ/2⌋
∑

x=0

(δs(0) + δs(ℓ)) ≥
1

2
ℓδs(ℓ).

2

We show the problem can be reduced to a min-cost matching computation. We build a bipartite
graph where the left part contains n clients, and the right part contains n copies of each server. The
weight of edge connecting user u to the i’th copy of server s is D(u, s) + δs(i). Now, we compute
a minimum-cost matching such that each clients is matched with one server copy. If client u is
matched with some copy of server s, we assign u to s. Moreover, if k copies of s are matched, they
should be the first k copies since δs() is a increasing function. Therefore, we can see a min-cost
matching corresponds exactly to the assignment with the minimum potential function value.

Let λ′ be the assignment that minimizes the potential function Φ, and λ∗ be the global optimal
solution. From Lemma 1, we have ∆(λ′) ≤ 2Φ(λ′) ≤ 2Φ(λ∗) ≤ 2∆(λ∗). Therefore, we have proven
the following theorem.

Theorem 6 There is a polynomial time 2-approximation for Min-Avg LDB with concave congestion
delay functions.

4.2.3 The Price of Stability of Min-Avg LDB Game

In this section, we show the 2-approximation we just presented is actually a Nash equilibrium for
Min-Avg LDB Game, thus establishing an upper bound of 2 for the price of stability of the game. We
also present an example showing an lower bound of the price of stability of 4/3.

The most important property of the potential function is that if a single client u changes its
strategy, then the difference between the potential of the new assignment and that of the original
one is exactly the change in the delay of u. We formally state it in the following lemma.
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Lemma 2 Consider two assignments, λ and λ′, which only differ in the assignment of client u:
λ(u) = s, whereas λ′(u) = s′. Then, Φ(λ′) − Φ(λ) = ∆(u, λ′) − ∆(u, λ).

Proof : It is not hard to see the left-hand side is δs′(L(λ′, s′)) + D(u, s′) − δs(L(λ, s)) − D(u, s)
which exactly equals to the right-hand side. 2

Theorem 7 The price of stability of the Min-Avg LDB game with concave δ(x) is at most 2 and at
least 4/3.

Proof : Let λ′ be the assignment that minimizes the potential function Φ and λ∗ be the global
optimal solution. By Lemma 2, λ′ is a Nash equilibrium. By Theorem 6, we can conclude the price
of stability is at most 2.

To see the lower bound of 4/3, we consider the following simple instance. Consider two servers

s1 and s2 with congestion delay functions defined to be δs1
(x) =

{

x, 0 ≤ x ≤ 2;
2, x ≥ 2.

and δs2
(x) = 0

for all x ≥ 0. We also have two clients u1 and u2 with D(u1, s1) = 0,D(u1, s2) = +∞,D(u2, s1) = 0
and D(u2, s2) = 2 + ǫ. The global optimum is to assign u1 to s1 and u2 to s2 and has a cost 3 + ǫ.
The only Nash equilibrium is to assign both clients to s1 which has a total cost 4. 2

4.3 A Polynomial-time Algorithm for Almost Convex Delay Functions

We now present a polynomial-time algorithm for Min-Avg LDB when the function xδs(x) is convex
for each server s(most practical congestion delay functions satisfy this requirement). We note that
xδs(x) is always convex if δs(x) is convex.

The algorithm reduces the assignment problem to minimum-cost matching in a bipartite graph.
The left part contains n clients, and the right part contains n copies of each server (i.e., nk nodes).
The cost of connecting user u to the i’th instance of server s is defined as

∆i(u, s) = D(u, s) + iδs(i) − (i − 1)δs(i − 1).

Intuitively, these costs are marginal costs in the assignment, that is, ∆i(u, s) is the cost of connecting
user u to server s after i − 1 other users.

The algorithm computes a minimum-cost matching in the constructed graph (i.e., each user is
assigned to exactly one server copy), and turns this matching to a legal assignment by assigning
each user to the server it is matched to, regardless of the instance number.

Theorem 8 The algorithm computes an optimal assignment for Min-Avg LDB.

Proof : We first claim that if the copy si of server s is utilized by the matching, then all the copies
sj for j ≤ i are used too. Indeed, suppose by contradiction that user u is matched to some copy si

(i > 1), and si−1 is not used. If u is switched from si to si−1, the matching cost can be reduced by

∆i(u, s) − ∆i−1(u, s) = iδs(i) + (i − 2)δs(i − 2) − 2δs(i − 1),

which is a positive value since xδs(x) is a convex function. Hence, the matching’s cost can be
improved, in contradiction to optimality.

Consider a matching µ in the bipartite graph for which the set of used instances of each server
is contiguous, and the corresponding assignment λ for the original problem. We denote the set of
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users assigned to some instance of server s by µ(s), and the user assigned to the i’th copy of server
s by µi(s). Since the used set is contiguous, the sum of individual matching cost of the users in
µ(s) telescopes to

|µ(s)|
∑

i=1

∆i(µi(s), s) = |µ(s)|δs(|µ(s)|)+

|µ(s)|
∑

i=1

D(µi(s), s) =

|µ(s)|
∑

i=1

[D(µi(s), s)+δs(|µ(s)|)] =
∑

u:λ(u)=s

∆(u, λ).

Hence, the cost of the matching is equal to the cost of an assignment for the original problem.
Therefore, since the minimum-cost matching µ∗ has the desired property of contiguity, it produces
a minimum-cost assignment λ∗. 2

4.4 Optimal Assignment on a Line with Euclidean Distances

The fastest known minimum-cost flow algorithm on a graph G(V,E) runs in O(|E| log |V |(|E| +
|V | log |V |)) time [11]. We construct a bipartite graph in which |V | = O(nk) and |E| = O(kn2),
hence the running time is O(kn2 log(nk)(kn2 + nk log(nk))) = O(k2n4 log n). In the special case
when users and servers are located on a line segment, and network delays are modeled as Euclidean
distances, this running time can be significantly improved. Similarly to the Min-Max LDB problem,
the Min-Avg LDB on a line has an order-preserving optimal assignment. Hence, a polynomial time
dynamic programming algorithm similar to the one presented in Section 3.3 is applicable in this case.
The algorithm’s running time is O(kn2) (in contrast to Min-Max LDB, the binary search optimization
to reduce the number of operations on a single table entry to log n cannot be applied).

5 Conclusions and Future Work

We studied two variations of the load-distance balancing (LDB) problem, namely, Min-Max LDB and
Min-Avg LDB, which aim to minimize the maximum and the average delay, respectively. For the first
problem, we proved hardness of approximation for general cost functions, and presented the best
possible approximation algorithm, as well as an optimal algorithm for the case of linear placement of
clients and servers. For the second problem, we showed it is NP-hard and presented approximations
for concave delay functions and exact algorithm for convex delay functions. We also show an upper
bound of 2 and a lower bound of 4/3 for the price of stability for the game theoretic version of the
problem, Min-Avg LDB Game.

It would be interesting to achieve an approximation ratio less than 2 for Min-Max LDB when the
network delay satisfies triangle inequality (note that we proved a lower bound of 5/3). Another
open question is whether there is an O(ln n)-approximation for Min-Avg LDB with arbitrary non-
decreasing congestion delay functions (or even non-metric UniFL).

A more general question might be to optimize over the choice of servers, rather than fixing
the set of servers. For example, how can we choose a subset of k servers to open, and find an
assignment of clients to open servers so as to minimize the average cost, or maximum cost of a
client? Alternatively, each server may have a cost, and there may be a budget on the total cost of
open servers. These and other questions would be interesting to study.
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