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Abstract

Facility location problems are traditionally investigated with
the assumption that all the clients are to be provided ser-
vice. A significant shortcoming of this formulation is that a
few very distant clients, called outliers, can exert a dispro-
portionately strong influence over the final solution. In this
paper we explore a generalization of various facility loca-
tion problems (K -center, K-median, uncapacitated facility
location etc) to the case when only a specified fraction of
the customers are to be served. What makes the problems
harder is that we have to also select the subset that should
get service. We provide generalizations of various approxi-
mation algorithms to deal with this added constraint.

1 Introduction

The facility location problem and the related clustering
problems, k-median and k-center, are widely studied in
operations research and computer science [3, 7, 22, 24,
32]. Typically in problems of this type, we are given
an n-vertex graph whose edge weights define a distance
metric. Let ¢;; denote the distance between nodes 7 and
Jj-

In the (uncapacitated) facility location problem,
each node ¢ is associated with a facility cost f;, which
reflects the cost of opening a facility at this node. The
problem is to open a subset of facilities so as to minimize
the sum of facility costs and the service cost, which is
defined to be the sum of distances from each node to
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its closest open facility. The k-median problem differs
in that exactly k facilities be opened, and there is no
facility cost, only service cost. The k-center problem
differs from the k-median problem in that the service
cost is defined to be the maximum distance (rather than
the sum of distances) from any facility to its closest open
facility. All of these optimization problems are NP-
hard, and polynomial time approximation algorithms
have been studied (see [17,4, 5, 6, 31, 19, 13, 15, 21, 23]).

A significant shortcoming of these simple formula-
tions is that a few very distant clients, called outliers,
can exert a disproportionately strong influence over the
final solution. This is clearly true for min-max problems
like k-centers, where a single client residing far from the
other clients may force a center to be placed in its vicin-
ity. With min-sum formulations this effect is reduced,
but it is still possible if the outliers are sufficiently far
away. Such outliers have the undesirable effect of in-
creasing the cost of the solution, without improving the
level of service to the majority of clients.

For many applications of facility location, such
as mail delivery, it may be that all clients must be
serviced. However, for the majority of commercial
applications of facility location, it may be economically
essential to ignore very distant outliers. For example,
Kmart claims to provide service to 88% of the US
population within a radius of 6 miles using the current
set of Kmart stores [14]. Clearly, if they tried to
cover the entire population of the country, either the
covering radius or the number of stores would need
to be significantly higher. The simple formulations
of facility location problems described above can lead
to nonsensical solutions, in which facilities are placed
in isolated areas just to satisfy the demands of a few
outliers. Remarkably, we know if virtually no existing
work on this important variant of the problem.

In this paper we introduce the notion of how to
perform facility location in contexts where outliers
may exist. Our principal contribution is to formulate
variations of the facility location problems so that
outliers can be handled in a meaningful way, and to
consider the computational consequences of these new



formulations. The essential feature of our formulations
is to provide additional parameters that allow a small
subset of the clients to be denied service, thereby
reducing costs drastically. These denied clients do not
contribute to the final service cost. We propose two
ways to do this.

Robust facility location: In addition to the stan-
dard problem formulation we are given a param-
eter p. The problem is to place facilities so as to
minimize the service cost to any subset of facilities
of size at least p. (Recall that there are n clients.)
Setting p = n is equivalent to the standard formu-
lation.

Facility location with penalties: Each client j is as-
sociated with a penalty p;. For each client we may
decide to either provide service, and pay the service
cost to its nearest facility or to pay the penalty.
Setting the penalties to co gives the standard for-
mulation. (This notion has been studied earlier in
the context of TSP and Steiner trees, see [11, 10]
and references therein.)

2-center solution (k=2)

&

2-center robust solution (k=2, p=11)
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Figure 1: Example to illustrate how robust measures
lead to better clustering solutions.

These two modifications can be applied to any of
the variants of the facility location problems. The ter-
minology used in the first formulation i1s borrowed from
the well-studied area of robust estimators in statistics
[30]. An estimator is said to be robust with a breakdown
point of v if the estimator’s value is immune to the place-
ment of any fraction of up to « outliers, no matter how

far they lie from the rest of the population. In our case
p = [(1 — a)n]. For facility location, « represents the
fraction of the population to which we are willing to
deny service. An example is shown in Figure 1.

Note that by using the notion of “weights” in the
K-center problem one can reduce the effect of outliers
[12, 29] and design constant factor approximation al-
gorithms. (The definition of the distance function is
modified to be a weighted distance function, by multi-
plying the weight of the node with its distance to the
closest center.) The main problem with this approach
is that we need to “know” who the outliers are before
running the algorithm and we can decrease their effect
on the objective function. Our approach on the other
hand, identifies the outliers automatically.

The robust k-center problem with forbidden centers
is the same as the above problem with the added con-
straint that some points are forbidden from being chosen
as centers. The robust k-supplier problem requires that
k centers be selected from a given set of suppliers so
that the maximum distance from p clients to the chosen
centers is minimized. We report the following results for
the three min-max clustering problems defined above:

1.1 Robust K-Center Results. The robust &-
center problem is of interest in clustering applications in
data analysis, where erroneous data is present or where
it is desirable to ignore less significant subsets of the

data [18].

Lower Bounds: If the input points are in ¢ (with the
FEuclidean metric), then it is NP-hard to approxi-
mate the optimal cost (for all variants) to within a
factor of 1.822. If the input points in V' are from
an arbitrary metric space, then unless P = NP,
the optimal cost for the robust k-center problem
with forbidden centers cannot be approximated to
within a factor of 3 — €.

Arbitrary Metric: There exist O(n?)-time 3-approx-
imate algorithms for all three robust clustering
problems.

1.2 Facility Location and K-Median problem
with penalties. We introduce variants of the k-median
and facility location problems. The variant involves
associating each vertex j with a penalty p;. In the
original k-median problem, we must choose k vertices
as centers. Every vertex is then assigned to the closest
center and the objective function is the sum of distances
of vertices from their centers. In the k-median problem
with penalties, we have the option of either connecting a
vertex to a center or selecting it to be an outlier and not
connecting it to any center. If we connect a particular



vertex j, the contribution to the objective function is
the distance of the vertex to the associated center. If
vertex j is selected to be an outlier, the contribution to
the objective function is the penalty p;.

Similarly, in the facility location problem with
penalties, each vertex can either be connected to a
facility or selected to be an outlier. The objective
function 1s the sum of the facility costs for all the open
facilities, the assignment cost for the vertices that are
connected to open facilities and the penalties for the
vertices that are selected to be outliers.

Facility location with penalties: We can obtain a
3 approximation for the facility location problem
with penalties in polynomial time.

K-median with penalties: We can obtain a 4 ap-
proximation for the k-median problem with penal-
ties in polynomial time.

1.3 Robust Facility Location and K-Median
Results. The above two variants of facility location
and k-median with penalties are important building
blocks in obtaining algorithms for the corresponding
clustering problems with an upper bound on the number
of excluded outliers.

Robust facility location: For the robust facility lo-
cation problem we can obtain a 3 approximation in
polynomial time.

Robust K-Median problem: We obtain a solution
which has the number of outliers to be at most
(1 + €) times the number of specified outliers and
has cost at most 4(1 + 1/¢) times the cost of the
optimal solution.

1.4 Extensions. In addition, we can obtain a 2-
approximation for the robust bottleneck-TSP problem
as well. Rather than asking for a min-max tour visiting
all n locations, we would like to visit only a specified
number of locations.

For Euclidean instances of problems such as k-TSP
[1], k-medians [2], etc., we note that the PTAS’s can
all be extended to obtain PTAS’s for robust versions of

these problems.

2 Lower Bounds

Feder and Greene [8] showed that if k£ is part of the
input, then the k-center problem (i.e., the non-robust
version) is NP-hard to approximate to within a factor of
1.822 even for points in the plane (with the Euclidean
distance metric). We observe that the proof can be
easily extended to a similar claim about the robust k-
center problem for any given value of p.

Since the robust k-center problem is a generaliza-
tion of the (non-robust) k-center, the lower bound of
2 — ¢ (assuming P # NP) for the approximation ratio
mentioned in [16] also holds for the robust case. The
following theorem proves a hardness of 3 — € on the
performance of any approximation algorithm for the ro-
bust k-center problem (with forbidden centers) for input
points from an arbitrary metric space.

Note that the non-robust version of the k-center
problem with forbidden centers is a special case of the
cost k-center problem [17] for which such a lower bound
is not known.

THEOREM 2.1. For input points from an arbitrary met-
ric space, the optimal cost for the robust k-center prob-
lem with forbidden centers cannot be approrimated to
within a factor of 3 — ¢ unless P = NP.

Proof. Our proof uses a result on the mazimum coverage
problem proved independently by Feige [9] and Khuller
et al. [20]. The problem is defined as follows: given
a collection S of sets over a domain B of elements,
finding a subset S’ C S of cardinality k that maximizes
the number of elements covered from B is a NP-hard
problem. It was shown that it cannot be approximated
to a factor of @« = 1 — 1/e + ¢ for any ¢ > 0 and that
this result is the best possible unless P = NP [9].

Consider an instance of the maximum coverage
problem. Let S be a collection of m sets whose domain
is a set B with n elements. We assume that we are
asked to find k sets that cover the maximum number of
elements from B.

We construct an instance of the robust k-center
problem with forbidden centers as follows: We construct
a set B’ of size nqg + 1 from B by making q “copies” of
each of the n elements and then adding one “special”
element to the set. The value of ¢ will be specified later.
For each set S; € S, 1 < i < m, we construct a set S}
by including in it the special element and each copy of
every element from S;. Thus |S}| = ¢|S;| + 1. Now
construct a bipartite graph G with S’ and B’ as the
two sets of vertices. There is an edge between S; € S’
and b € B iff b € S]. Finally we set the vertices of B’
as the forbidden centers, i.e., all centers must be chosen
from S’. We assume that all edges of the graph have
unit cost.

If we assume that there exist k& sets in S that cover
all n elements of B, then there exist k centers in S’ that
cover all nqg + 1 vertices of B’ with radius 1, i.e., there
exist k centers in S’ that cover nq+ 1+ k vertices from
G. If p = nq+ 1+ k, then we know that a solution
to the robust k-center problem with forbidden centers
exists with cost equal to 1.

By the inapproximability result of the maximum



coverage problem, we know that no polynomial-time
algorithm can guarantee selecting k sets from S that
cover more than an elements from B (for convenience,
we will avoid repeating the phrase “unless P = NP”
until the end of the proof).

Suppose that there exists a polynomial-time algo-
rithm that can guarantee selecting k centers from S’
that covers p nodes with an approximation guarantee
of 3 — ¢. Note that any single center from S’ can cover
all vertices from S’ with radius 2 because of the spe-
cial element; however, the same center from S’ will not
be able to cover any more vertices from B’ with radius
3 — € than it did with radius 1. Suppose the algorithm
covers m nodes from S’ and z nodes from B’. Then
m+4z>p=nqg+1+k Thusz>ng+1+k—m. To
get z > a(nq+ 1), choose ¢ such that ng+1+k—m >
a(ng + 1). This implies that we need ¢ such that the
following holds

m—k
(I—a)

It is easy to see that ¢ can be chosen so that this holds.
This implies that there is a polynomial time algo-

rithm that can select k sets from S’ that cover at least

an elements from B. This implies that P = N P.
Hence the proof. R

(2.1) ng+12>

3 Robust Clustering for Arbitrary Metrics

We present a 3-approximation algorithm for the robust
k-center problem with input points from an arbitrary
metric. As with many approximation algorithms, the
algorithm is simple, yet counter-intuitive, and has an
interesting analysis of the performance ratio. We first
present an algorithm that takes as input a radius r and
a set of n points V from an arbitrary metric space and
finds a solution S with cost(S) < 3r, assuming one
exists with radius r.

Since the optimal cost must correspond to an inter-
point distance, a 3-approximation to the optimal cost
can then be found by simulating a binary search on the
list of all approximate interpoint distances.

For each point v; € V, let G; (E;, resp.) denote the
set of points that are within distance r (37, resp.) from
v;. We refer to the sets GG; as disks of radius r and the
sets E; as the corresponding ezpanded disks of radius
3r. We use the term weight of a disk (or expanded disk)
to refer to its cardinality. The algorithm is as follows:

e Construct all disks and corresponding expanded

disks.
e Repeat the following k£ times:

— Let G be the heaviest disk, i.e. contains the
most uncovered points.

— Mark as covered all points in the correspond-
ing expanded disk ;.

— Update all the disks and expanded disks, i.e.,
remove from them all covered points.

o If at least p points of V' are marked as covered, then
answer YES, else answer NO.

THEOREM 3.1. Given a set V of n points from an arbi-
trary metric, an integer k < n, and an integer p, there
ezists a polynomaal time 3-approzimation algorithm for
the robust k-center problem, the robust k-center prob-
lem with forbidden centers, and the robust k-suppliers
problem.

Proof. Let V' be the n input points. Assume that
G1,Gs,...,Gy are the k disks selected in each of
the k iterations. Let the disk centers be the points
v1, V2, ..., v, and let the corresponding expanded disks
be FE1,Es,...,E;. Note that G; (F;, resp.) consists
of a set of points that are within distance r (37,
resp.) from v;. Let an optimal solution have centers
at vi,vh, ..., v, with the corresponding disks being
01,03, ...,0y. Consider an optimal solution consisting
of the disks O1,0,,...,0;. The proof follows from
showing that it is possible to order the optimum disks
such that for each 2, the first ¢ expanded greedy disks
E1UFE3U...UE; cover at least as many points as the
first 7 optimal disks, O1 UO5 U . ..U O;. The proof is by
induction using a charging argument that charges each
point of the union of the optimal disks to a distinct
point in the union of the expanded disks.

Assume that the disks Oy, 05, ...,0;_1 have been
selected and that each point in their union has already
been charged to a distinct point in EyUEyU. . .UFE;_q,
thus satisfying the induction hypothesis. Consider Gj.
If G UGy U ...UG; intersects any of the remaining
k — 1+ 1 optimal disks, then let O; be such a disk.
Thus, F1 U Fs U ...U E; covers all the points of O;.
Charge each of the newly covered points of O; to itself.
Call this charging rule 1. Each point can be charged only
once (namely to itself) by this rule.

If, on the other hand, G UG5 U ... U G; does not
intersect any of the remaining k£ — z + 1 optimal disks,
then let Unc be the points that are still uncovered by
by the first i — 1 expanded greedy disks, i.e.,

Unc:P—(E1UE2U...UEi_1).

Let O; be the remaining optimal disk that covers the
greatest number of points in Unc. Charge the points of
O; that have already been covered by expanded greedy
disks to themselves (using charging rule T). Observe that
by greediness, G; covers at least as many elements of



Unc as O; does. Charge these uncovered points of O;
to the uncovered points of G;. Call this charging rule
IT. No future optimal disk will attempt to charge these
same points by charging rule I, because Gj is disjoint
of the remaining optimal disks. Also, no future optimal
disk will attempt to charge points of GG; by charging
rule I, since these will be charged to uncovered points
of later greedy disks. Since G; C Ej;, we are done. l

Remark: We note that if the input points lie in R¢
with the Euclidean distance metric, then the above
algorithm and proof can be modified to deal with a
version of the k-center problem where the centers may
or may not be located at the input points; the facility
may also be placed at any other point in space. The
main modification that is required is in determining
the values of r to be searched. Searching through the
list of interpoint distances is not sufficient any more.
Instead we need to search all values of r such that the
corresponding set of disks have at least three points on
their boundary or have two points located diametrically
opposite from each other. The time complexity in this
case does increase, although it still remains polynomial.
Remark: If the points lie on a line, then the robust &
center problem can be solved optimally using dynamic
programming.

4 Linear programming relaxations

We now introduce LP relaxations and their duals for
the penalty and robust versions of the facility location
and k-median problems.

We use the following LP relaxation (LP1) for the
facility location problem with penalties. We use y; as a
binary variable that is 1 if and only if facility 7 is opened
at cost f;. We use x;; to denote that client j is assigned
to facility . The connecting cost is ¢;; to connect client
J to facility 2. The penalty for not connecting a client
is p;. We use r; as an indicator variable for whether or
not client j is connected to a facility.

(4.2) miﬂZfi "Yi +Zcij “Xij —|-ij -1
vV EXZ']'—}-I‘J'Zl

Xij <Yi
(4.4)

(4.5) Xij, Yi,rj > 0

The dual of the above LP is:

max 5 o
J

(4.6)

(4.7) Vi Y B <F
j

(4.8) Vij aj <cij+ B

(49) V_] Oz]' S p]'

(4.10) aj, i > 0

We use the following LP relaxation (LP2) for the
k-median problem with penalties:

(4.11) minz Cij * Xij + EPJ " Ty
4.12) ’ Vij ]Xij <y
(4.13) Vi xijtr>1
(4.14) Y vi<k
(4.15) Xij, ;/i, rj 20

The dual of the above LP 1is:

(4.16) maxz aj—k-z
J
(4.17) Vi Y B <z
J
(4.18) Vij oy <ej+ Bij
(4.19) Vi o <p
(420) Ozj,ﬁij, z Z 0

The LP relaxation (LP3) for the robust facility
location problem is as follows. We use ¢ to denote the
number of excluded outliers, can be set to be n — p.

(421)  mind_fioyi+ i xi
4.22) Z v ij ’ Xij SYi
(4.23) Vi D xijtr>1
(4.24) dor <t
(4.25) Xija:‘jia rj >0

The dual of the above LP 1is:

(4.26) maXZ aj —L-q
J
(4.27) Vi > B <F
J
(428 Y i &7 < cij + ﬂzy
(4.29) Vi e <a
430) a]',/))ij >0



The LP relaxation (LP4) for the robust k-median
problem is:

(4.31) minz Cij * Xij
4.32) Vg ’ xij <Yi
(4.33) Vi D oxij+ri>1
(4.34) doyi<k
(4.35) > or <t
(4.36) X, ?jz', rj >0

The dual of the above LP is:

(4.37) maxzaj—k~z—£~q
J
(4.38) Vi > pij<a
J
(439) Y Z_] a; < Cij + ﬁij
(4.40) Vi a;<a
(4.41) 0, B > 0

5 Primal dual algorithms

5.1 Facility location overview. Jain and Vazi-
rani [19] gave a primal dual algorithm for the facility
location problem. We first review their algorithm briefly
as it will be an important building block in obtaining
algorithms for the problems we consider.

The algorithm works in two phases. The first phase
grows dual variables «; and f;; (initially 0). The
variables a; are grown uniformly. Suppose a; > ¢,
then §;; is set to a; — ¢;;; such an edge ij is called
saturated. As this process continues, the following
events occur:

LY B =fi
In this case we say that facility ¢ is paid for. For
all j with 3;; > 0, a; stops growing and ¢ is said to
be the connecting witness of j (provided j has not
been assigned a connecting witness already). Let ¢;
be the time at which facility ¢ gets paid for.

2. a; = ¢;; and ¢ is paid for.
In this case, a; stops growing and : is said to be a
connecting witness of j.

The first phase terminates when all demand points are
assigned connecting witnesses. The second phase is
a cleanup phase. We pick facility ¢ that is paid for
the earliest, delete facilities reachable from i by two
saturated edges and repeat this process. A demand

point j is said to be directly connected if there exists
a facility ¢ in the final solution such that g;; > 0; j is
assigned to ¢ in this case. (Note that there can be at
most one such facility ¢ because of the cleanup step).
On the other hand, if there is no facility ¢ in the final
solution such that 3;; > 0, then the demand point j is
either assigned to its connecting witness or to the facility
that caused the deletion of its connecting witness in the
cleanup step. Such demand points are called ndirectly
connected.

Let C' be the assignment cost of the solution pro-
duced by the algorithm, F' be the facility cost and OPT
be the cost of the optimal solution. Jain and Vazirani
prove the following guarantee about their algorithm:

LEMMA 5.1.

C+3F <3 a; <30PT
J

We now show how the primal dual algorithm can
be adapted to solve the penalty versions and the robust
versions of the facility location and k-median problems.

5.2 Facility location with penalties. The dual of
LP1 suggests a natural modification to the primal dual
algorithm to adapt it for this problem. The constraint
(4.9) puts an upper bound on the value of the dual
variable a;. Note that this is the only additional
constraint compared to the dual for the facility location
problem.

We modify the primal dual algorithm as follows:
We grow the dual variable o; as in the Jain Vazirani
algorithm. If vertex j does not get a connecting witness
by the time the value of o; equals the penalty p;, then
we freeze the value of the dual variable a; at p;. In this
case, we say that a timeout occurs for vertex j. We now
run the rest of the algorithm with the value of «a; fixed
at p;. Note that later on in the algorithm, j could get a
connecting witness. This happens if any facility ¢ such
that 3;; > 0 gets paid for. We also run the cleanup
phase in an identical fashion as the original algorithm.
Some of the vertices for which timeouts occurs are
selected to be outliers as follows: If a timeout occurs for
vertex j and j ends up being indirectly connected to a
facility, then j is selected to be an outlier. All the other
vertices are connected (either directly or indirectly) to
the facilities assigned to them by the cleanup phase of
the facility location algorithm.

Let C' be the assignment cost of the solution pro-
duced by the algorithm, F' be the facility cost of the
solution, P be the total penalty for all the vertices se-
lected as outliers, and OPT be the cost of the optimal
solution. We can prove the following guarantee about
the solution produced by the algorithm:



Figure 2: Indirectly connected demand point.

LEMMA 5.2.

(5.42) C+3F+3P < 3) a;
i

(5.43) < 30PT

Proof Sketch The analysis proceeds along similar
lines to the analysis of the primal dual algorithm for
facility location. For a point j selected as an outlier,
a;j = pj. The contribution to the LHS of (5.42) is
3p; and the contribution to the RHS is 3a;. We
claim that the analysis for directly connected points
and indirectly connected points goes through as in the
original analysis. Note that neither of these contribute
to the 3P term in the LHS of (5.42). The only properties
of the algorithm used in the analysis are:

1. Bi; > 0= a; <t.

2. 7 is a connecting witness for j; = oj, > 1;,.

The first property holds for the modified algorithm. The
second one is not necessarily true. However it holds if a
timeout has not occurred for j;. The only place we need
the second property is in the analysis of an indirectly
connected demand point (see Figure 5.2).

In this case it is certainly true that a timeout did not
occur for j; (else j; would be selected to be an outlier).
Hence the original analysis applies for both directly
connected and indirectly connected demand points. O

We thus obtain:

THEOREM b.1. We can obtain a 3 approrimation for
the facility location problem with penalties in polynomial
time.

5.3 Robust facility location. We now describe a
primal dual algorithm for the robust facility location
problem, based on the relaxation LP3 (4.21) - (4.25).
As stated, LP3 has an unbounded integrality gap.
Since we use the LP to lower bound the cost of the
optimal solution, we cannot hope to prove a bounded
approximation guarantee using LP3. In order to fix
this, we guess the most expensive facility in the optimal
solution and run the algorithm on a modified instance

where the only allowable facilities are those that are not
more expensive than the guessed facility.

In fact, we guess the most expensive facility in the
optimal solution (of cost f’ say) and modify the instance
by setting its cost to zero. For all facilities whose cost
is greater than f’, we set the facility cost to co. We
run the primal dual facility location algorithm on this
modified instance. However we terminate the execution
of the algorithm before all vertices are connected to
facilities. Initially all vertices are labeled outliers. As
the algorithm proceeds, vertices are assigned connecting
witnesses and they cease to be outliers. We stop the
algorithm when the number of outliers is at most £.
In order to get exactly £ outliers, we examine the last
step where the number of outliers first fell to a value
< £. At this point, some facility ¢; got paid for and a
number of vertices got connecting witnesses. Of these,
we select an arbitrary subset to be outliers so that
the number of outliers is exactly £. We decide which
facilities to open by performing a cleanup step exactly
as the cleanup step in the primal dual facility location
algorithm. The facility i; which got paid for at the
termination of the algorithm may or may not get opened
in the final solution.

We now analyze the algorithm. Suppose that in the
optimal solution (of cost OPT) for the original robust
facility location instance, the cost of the most expensive
facility is f’. We separate the cost of the optimal
solution (OPT) into the cost of the most expensive
facility f’ and the rest of the solution cost (OPT").
OPT = OPT' + f'. We focus on the case when the
algorithm guesses f’ correctly. The instance is modified
by setting to oo the cost of all facilities originally more
expensive than f’. Also the cost of the guessed most
expensive facility is set to zero. Let S be the set of
vertices that are connected to facilities, i.e. the set of all
vertices excluding the £ outliers. The cost of the solution
produced by the algorithm is broken up into the cost f;
of the guessed most expensive facility, the cost fo of the
facility ¢; that got paid for at algorithm termination and
the rest of the solution cost (the assignment cost C' and
the remaining facility cost F'). Note that the facility i;
may or may not be selected to be opened in the final
solution after the cleanup step is performed.

LEMMA 5.3.

(5.44) > a; <OPT

JjES

Proof. The original optimal solution is a feasible so-
lution for the modified instance with cost OPT' =
OPT — f'.



We will use the dual solution constructed by the
algorithm to get a feasible solution for the dual of LP3
(4.26)-(4.30). Let t be the time at which the algorithm
terminates, 1.e., the time at which we have < £ vertices
remaining to be connected for the first time. We set the
variable q = t. Note that o; < ¢, satisfying constraint
(4.29). Constraints (4.27) and (4.28) are satisfied since
these inequalities are maintained by the primal dual
algorithm during its execution. The value of the dual
solution is Z]' aj—L-q= ZjeS a;. The lemma follows
from the fact that this is a lower bound on OPT",

LEMMA 5.4.

(5.45) C+3F < 3> o

JjES

Proof. As in the proof of Jain and Vazirani, we charge
the facility cost F' and connection cost C' to the dual
variables a; as follows. For vertex j directly connected
to facility 7, define ozf = fi; (contribution to facility
cost) and af = cjj (contribution to connection cost).
Then a; = ¢;;+ fij = af + ozjf. For every open facility 7
that contributes to the facility cost F', Z]' Bi; = fi. The
vertices j that have a positive contribution to Z]' Bi;
are precisely the vertices that are directly connected to
1. Note that all such vertices occur in S, 1.e. are not
selected as outliers. (The only possible exception is the
case ¢ = if, the facility that got paid for at the point of
termination of the algorithm. Some of the vertices j for
which F;; > 0 may be selected as outliers. But notice
that we exclude the cost of iy from the facility cost F'
and account for it separately.) Thus, for every facility ¢
that contributes to F', f; = E]' af where the summation
is over vertices j in S that are directly connected to i.
For every directly connected vertex j, the connec-
tion cost is af. Its contribution to the LHS of (5.45) is

o + 3cy;»C < 3a;. For every indirectly connected vertex
J, the connection cost is at most 3a;. Thus its contri-
bution to the LHS is at most 3a;.

THEOREM b.2. For the robust facility location problem
we can obtain a 3 approximation in polynomial time.

Proof. Lemmas 5.4 and 5.3 imply that C' + 3F <
30PT’. In addition to the facility costs included in
F', the cost of the final robust facility location solution
may include the cost fi of the guessed most expensive
facility (recall that its cost is set to zero in the modified
instance) as well as the cost fo of the facility that got
paid for at the termination of the primal dual algorithm.
Now fi1 = f" and fo < f’. The cost of the final solution
is at most C' + F + f1 + fo <30PT' +2f' <30PT.

5.4 k-median with penalties. Jain and Vazirani
show how their primal dual approximation algorithm for
facility location can be used to obtain an approximation
algorithm for k-median, achieving an approximation
ratio of 6. Charikar and Guha [4] improve the algorithm
and to obtain a factor 4 approximation. Similarly, we
can use the facility location with penalties algorithm to
obtain an algorithm for k-median with penalties.

The basic idea is to take an instance of k-median
with penalties, set all facility costs to z (where z is some
parameter) and run the facility location with penalties
algorithm on this instance. We do a binary search on
z to find two values z; and 23 very close such that for
z = z1, we obtain a solution with k:l < k centers and
for z = z5, we obtain a solution with ]52 > k centers.
After this, we perform the greedy augmentation step
introduced in [4]. This tries to add centers chosen in
one solution to the other solution according to a certain
rule.

We describe how the small solution (corresponding
to z1) is augmented. The augmentation of the large
solution is done in a symmetric fashion other than the
stopping condition.

1. Consider all nodes which are centers in the large
solution and are not centers in the small solution.
Let 7 be the current node.

2. If the small solution has k centers, stop.

3. If there exists a node i’ which is chosen as a
center in the current small solution (which resulted
from a previous augmentation) and demand node
j such that ﬁij(zl) > O,ﬂij(ZQ) > O,ﬁi/]’(zl) >
0, Bir j(z2) > 0, i cannot be added. Otherwise add

node 7 to the small solution.

4. Repeat the above steps until the solution has k
nodes or all nodes are considered.

The final solution to the k-median problem will be either
one of the two solutions obtained after augmentation or
a subset of centers in either of the solutions, under a
suitable distribution.

We claim that a modified form of the analysis of [4]
goes through for the k-median problem with penalties.
The guarantee we obtain is as follows:

THEOREM 5.3. Let C' be the assignment cost of the
solution returned by the algorithm, P be the total penalty
for the vertices selected as outliers and OPT be the cost
of the optimal solution. Then,

(5.46) C+4P <40PT
5.5 Robust k-median. The gap example in Ap-

pendix A shows that we cannot expect to obtain a con-
stant factor guarantee for the robust k-median problem



by using the linear relaxation LP4 (4.31) - (4.36) as a
lower bound. However, we can get a bi-criteria approx-
imation guarantee using the previous result. We take a
robust k-median instance, set penalties of vertices ap-
propriately and use the solution returned by running
the k-median with penalties algorithm on this instance.
The penalties are chosen as follows: Suppose we know
the value C* of the optimal solution to the robust k-
median problem with at most ¢ outliers. We set the
penalties of vertices to be C*/v£ (7 is a tradeoff param-
eter that we can set). Since we do not know the exact
value C* of the optimal solution, we guess C* to within
1+e.

THEOREM 5.4. The algorithm returns a solution to the
robust k-median problem with number of outliers at most
(1 + v) times the optimal solution and cost at most
4(141/7v) times the cost of the optimal solution (within
(14 ¢) factors).

Proof. For ease of presentation, we will first assume
that the penalties are set to exactly C* /¢, where C* is
the cost of the optimal solution to the robust k-median
problem with £ outliers. For the instance of k-median
with penalties, the value OPT of the optimal solution
is at most

OPT§C’*—|—€~C—:C* <1—|—l).
7t 7
Suppose the algorithm for the k-median problem with

penalties returns a solution of cost C' with ¢ outliers.
Then

C+ 4£’C— < 407 <1 + l)
7 Y
C < 4c* <1+ l)
g
< Ul+y)

Since we guess the value of C* to within a (1+¢) factor,
the above guarantees on C' and £ hold to within (1 + ¢)
factors.
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Appendix

A Gap example for the robust k-median LP
relaxation

We give an example to show that a bicriteria result is
inevitable if we use LP4 (4.31)-(4.36) as a lower bound
on the value of the optimal solution to k-median with
excluded outliers. Consider an instance consisting of 2n
vertices at x, 2n vertices at y and n vertices at z. The
distances between points are: czy = 1,¢5, = 00,¢y; =
0o. We describe two solutions to the robust 2-median
problem for this instance. The first solution S consists
of centers at x and y; the vertices at z are outliers. The

cost of this solution is 0 and the number of outliers is n.
The second solution S5 consists of centers at z and z.
The vertices at y are connected to the center at . The
cost of this solution is 2n and the number of outliers is 0.
Consider the fractional solution S = (1 — %)51 + %52.
This is a feasible solution to LP4 with the number of
outliers £ = n — 1 and cost 2. However the optimal cost
of an integral solution with at most n—1 outliersis n+1.
(For example, this can be achieved by placing centers
at x and z. n + 1 of the vertices at y are connected to
the center at z and n — 1 of them are selected to be
outliers). This implies that the integrality gap of L.P4
is at least (n +1)/2.



