
Broadcast Scheduling: Algorithms and Complexity

JESSICA CHANG

Department of Computer Science and Engineering

University of Washington, Seattle

THOMAS ERLEBACH

Department of Computer Science

University of Leicester, Leicester

RENARS GAILIS

Blue Coat Systems, Sunnyvale

and

SAMIR KHULLER

Department of Computer Science

University of Maryland, College Park

Broadcast Scheduling is a popular method for disseminating information in response to
client requests. There are n pages of information, and clients request pages at different
times. However, multiple clients can have their requests satisfied by a single broadcast
of the requested page. In this paper we consider several related broadcast scheduling
problems. One central problem we study simply asks to minimize the maximum response
time (over all requests). Another related problem we consider is the version in which
every request has a release time and a deadline, and the goal is to maximize the number
of requests that meet their deadlines. While approximation algorithms for both these
problems were proposed several years back, it was not known if they were NP-complete.
One of our main results is that both these problems are NP -complete. In addition, we use
the same unified approach to give a simple NP -completeness proof for minimizing the sum
of response times. A very complicated proof was known for this version. Furthermore, we
give a proof that FIFO is a 2-competitive online algorithm for minimizing the maximum
response time (this result had been claimed earlier with no proof) and that there is no
better deterministic online algorithm (this result was claimed earlier as well, but with an
incorrect proof).

A preliminary version of this paper was presented at the ACM-SIAM Symposium on Discrete
Algorithms (2008).
Contact Information:
J. Chang: jschang@cs.washington.edu. Research done while this author was at the University
of Maryland and supported by a Senior Summer Scholar award from the University of Maryland
and by an NSF REU Supplement to Award CCF-0430650.
T. Erlebach: E-mail: te17@mcs.le.ac.uk.

R. Gailis: E-mail: renarsg@gmail.com. Research done while this author was a graduate student
at the University of Maryland.
S. Khuller: samir@cs.umd.edu. Research supported by NSF Awards CCF-0430650 and CCF-
0728839.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Chang, Erlebach, Gailis, Khuller

Categories and Subject Descriptors: F.2.2 [Non-numerical Algorithms and Problems]:

General Terms: scheduling, NP-completeness, approximation algorithms, online algorithms

1. INTRODUCTION

Broadcasting is a widely used mechanism to disseminate data since multiple clients
can have their requests satisfied simultaneously. A very large amount of work in
the database and algorithms literature has focused on scheduling problems based
on a broadcasting model [Bar-Noy et al. 1998; Aksoy and Franklin 1999; Bartal and
Muthukrishnan 2000; Wong 1988] (including several Ph.D. theses from Maryland
and Brown). Broadcasting is used in commercial systems, including the Intel Inter-
cast System and the Hughes DirecPC system. We focus our attention on pull-based

schemes, where clients request the data that they need and the data is delivered on
a fast broadcast medium (often using wireless channels). Broadcast scheduling is
becoming extremely relevant due to the proliferation of wireless technologies.

A key consideration is the design of a good broadcast schedule. The challenge is in
designing an algorithm that guarantees good response time [Bartal and Muthukrish-
nan 2000]. While the practical problem is clearly online [Aksoy and Franklin 1999;
Kim and Chwa 2004; Edmonds and Pruhs 2002; Zheng et al. 2006], it is interest-
ing to study the complexity of the offline problem as well. In fact, a lot of recent
algorithmic work has focused on minimizing the sum of response times [Kalyana-
sundaram et al. 2000; Erlebach and Hall 2002; Gandhi et al. 2002a; Gandhi et al.
2002b; Bansal et al. 2005; Bansal et al. 2006] as well as minimizing the maximum
response time [Bartal and Muthukrishnan 2000; Charikar and Khuller 2006].

In trying to evaluate the performance of online algorithms, it is useful to compare
them to an optimal offline solution. In addition, when the demands are known
for a small window of time into the future (also called the look-ahead model in
online algorithms), being able to quickly compute an optimal offline solution can
be extremely useful. Many kinds of demands for data (e.g., web traffic) exhibit good
predictability over the short term, and thus knowledge of requests in the immediate
future leads to a situation where one is trying to compute a good offline solution.

The informal description of the problem is as follows. There are n data items,
1, . . . , n, called pages. Time is broken into “slots”. A time slot is defined as the
unit of time to transmit one page on the wireless channel. Time slot t is the unit
of time between time t− 1 and t. A request for a page j arrives at time t and then
waits. When page j has been transmitted, this request has been satisfied. The
response time of a request is its waiting time. Several different objective functions
can be considered. The one that has been the most studied is the one in which we
wish to minimize the sum of response times. A sample schedule is shown in Fig. 1.

In this paper we present the following results.

—For the offline problem of minimizing the maximum response time we show that
the problem is NP -complete. Even though a simple 2-approximation algorithm
was given by Bartal and Muthukrishnan [Bartal and Muthukrishnan 2000] for
the offline problem, there was no known proof that the offline version is NP-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 3

complete. Moreover this also shows that the problem of scheduling a pre-specified
number of requests within a certain delay is NP -complete (a 5-approximation was
presented for this problem by Charikar and Khuller [2006]). This closes a central
open problem in this area.

—We also show a much simpler NP -completeness proof of the problem of mini-
mizing the sum of response times. This problem was previously shown to be
NP -complete by Erlebach and Hall [2002], but by a much more complicated
proof.

—For minimizing the maximum response time we give a proof that FIFO is 2-
competitive in the online model where requests are not known in advance. This
result was claimed in the paper by Bartal and Muthukrishnan [Bartal and Muthukr-
ishnan 2000] several years back, but no proof of this claim has been provided
since. We also give a construction showing that there is no (2 − ε)-competitive
deterministic online algorithm for any ε > 0. This was also claimed in [Bartal
and Muthukrishnan 2000], but the construction given is incorrect.

—In addition, we are interested in the problem of scheduling the maximum number
of requests with pre-specified windows. In other words, each request is released
at a certain time and gives a specific deadline by which it should be satisfied. For
this maximization problem a 3

4
-approximation was developed by Gandhi et al.

[Gandhi et al. 2002b], which is still the best known bound (an improved bound
of 5

6
was claimed by Bansal et al. [Bansal et al. 2006], but has since been with-

drawn). This algorithm works by rounding an LP relaxation of a natural Integer
Program (IP) formulation. We show that this LP formulation has a gap of 12

13
.

This suggests that this is the limit of any LP rounding approach that uses this IP
formulation. In addition, using standard LP rounding techniques [Gandhi et al.
2002a] we can show that all requests can be met by their deadlines using a 2-speed
server, provided a fractional solution meeting all deadlines exists. Furthermore,
we show that this problem has a very simple NP-completeness proof. In con-
trast, in the traditional scheduling version, even when requests are not limited
to integral times, the problem can be solved in O(n5) time [Chrobak et al. 2006].

—Another way to relax the problem of scheduling requests within windows is to
find a minimum delay factor α such that there is a broadcast schedule in which
every request (j, t) is satisfied by time t+α(Dj

t − t), where Dj
t is the deadline for

request for page j made at time t. We show that if there is a 2− ε approximation
for the minimum delay factor, then P = NP .

It is important to note that all the problems described above are completely
trivial in the standard scheduling model where at each time step only one unit
length job can be scheduled, and the server cannot handle multiple requests by
scheduling the job once. For example, one can set up a bipartite graph with time
slots on one side and job requests on the other side and solve the problem using
matchings.

The main contribution here is a unified approach to proving NP-completeness for
several different objective functions for broadcast scheduling. Previously, the only

version that was shown to be NP-complete was the min-sum version, and for that
too the proof is extremely complex and is the primary result of the SODA 2002
paper by Erlebach and Hall [Erlebach and Hall 2002]. In contrast, our proofs are

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Chang, Erlebach, Gailis, Khuller

B A C

B C

A B A B

A B

C

A B

t=0 1 2 3 4

Fig. 1. The schedule produced by FIFO, and an optimal offline schedule to minimize the maximum
response time.

very short and elementary. The paper by Bartal and Muthukrishnan [Bartal and
Muthukrishnan 2000] has several claims without proof, and no full version has ever
appeared. Moreover as we show, the proof for the lower bound on the competitive
ratio was actually incorrect. The proof for FIFO is interesting for that reason.

1.1 Formal Problem Definition.

The problem is formally stated as follows. There are n possible pages, P =
{1, 2, . . . , n}. We assume that time is discrete and at time t, any subset of pages
can be requested. Let (p, t) represent a request for page p at time t. Let rp

t denote
the number of requests (p, t). A time slot t is the window of time between time t−1
and time t. The server can broadcast a page in each time slot (see Fig. 1). When
a page is broadcast in time slot t, we will simply say that it has been broadcast at
time t. We say that a request (p, t) is satisfied at time Sp

t , if Sp
t is the first time

instance after t when page p is broadcast. The response time of request (p, t) is
Sp

t − t.

1.2 Related Work.

For the problem of minimizing the total response time, Kalyanasundaram et al.
[Kalyanasundaram et al. 2000] showed that for any fixed ε, 0 < ε ≤ 1

3
, it is possi-

ble to obtain a 1
ε
-speed 1

1−2ε
-approximation algorithm for minimizing the average

response time, where a k-speed algorithm is one where the server is allowed to
broadcast k pages in each time slot. For example by setting ε = 1

3
they obtain a 3-

speed, 3-approximation. The approximation factor bounds the cost of the k-speed
solution compared to the cost of an optimal 1-speed solution. (This kind of approx-
imation guarantee is also referred to as a “bicriteria” bound in many papers.) Note
that we cannot set ε = 1

2
to get a 2-speed, constant approximation. Their algorithm

is based on rounding a fractional solution for a “network-flow” like problem that
is obtained from an integer programming formulation (see [Khuller and Kim 2004]
for the equivalence between the formulations in [Kalyanasundaram et al. 2000] and
[Gandhi et al. 2002a]). This problem has been shown to be NP-hard by Erlebach
and Hall [Erlebach and Hall 2002]. Gandhi et al. (see [Gandhi et al. 2006]) obtained
a 2-speed 1-approximation, improving the results given earlier [Gandhi et al. 2002a;
Erlebach and Hall 2002; Gandhi et al. 2002b]. A 1+ε speed, O(1/ε) approximation
for any ε > 0 is also presented [Bansal et al. 2005]. Bansal et al. [Bansal et al.
2006] recently obtained an O(log2 n) approximation for this measure without any
increase in the speed, improving on the previous best result of O(

√
n) [Bansal et al.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 5

2005].
Another problem that has been considered before is that of maximizing through-

put in broadcast scheduling. Here, the model is that every request is associated
with a deadline and some requests can be dropped by the algorithm. The goal is to
maximize the number of requests satisfied by their deadlines. The results of Bar-
Noy et al. [Bar-Noy et al. 2002] imply a 1/2-approximation for this problem. This
was improved to factor 3/4 by Gandhi et al. [Gandhi et al. 2002b]. Even though
approximation algorithms were developed, the complexity of the problem was not
known. We show that this problem is NP -complete.

For the problem of minimizing the average response time, online competitive
algorithms were given by [Edmonds and Pruhs 2002]. These have an O(1) compet-
itive ratio, using O(1) speed. In the online model a 1

2
-competitive algorithm was

given when each request has a release time and deadline [Kim and Chwa 2004], and
the objective is to maximize the throughput. If time is not slotted (i.e. arrival and
broadcast times are not limited to integral times), they also show that if preemption
is allowed and pages have unit length, a competitive ratio of 5.828 can be achieved
[Kim and Chwa 2004]. This bound was later improved to 5 by [Chan et al. 2004]
and again to 4.56 by [Zheng et al. 2006].

2. NP-HARDNESS OF MINIMIZING THE MAXIMUM RESPONSE TIME

We now consider the problem of minimizing the maximum response time.

Theorem 2.1. Broadcast scheduling with the objective of minimizing the maxi-

mum response time is NP-hard.

Proof. We consider the decision version of the problem where a bound R on
the maximum response time is given as part of the input and the task is to decide
whether a schedule with maximum response time at most R exists. We show that
this decision problem is NP -complete. It is easy to see that the problem is contained
in NP . We prove that the problem is NP -hard by a polynomial reduction from the
vertex cover problem.

Let an instance of the vertex cover problem be given by a graph G = (V, E) and a
bound k on the size of the vertex cover. The goal is to decide whether G has a vertex
cover of size k. Let n = |V | and m = |E|. We construct an instance of the decision
version of broadcast scheduling with a bound of R = 2n on the maximum response
time. The bound on the maximum response time can be viewed as assigning to
each request (p, t) a deadline of t + 2n.

First, we outline the basic idea behind the construction. There is a page corre-
sponding to each vertex in V . We refer to these pages as vertex pages, and to all
other pages used in the construction as extra pages. We specify requests for extra
pages and vertex pages in such a way that any schedule with maximum response
time R = 2n must partition the set of vertex pages into a subset Vk of size k and a
subset Vn−k of size n− k. Furthermore, any such schedule must repeatedly broad-
cast all pages from Vk , then n extra pages, then all pages from Vn−k, and then again
n extra pages. This structure is repeated m times, and the partition (Vk , Vn−k) is
forced to be the same in all repetitions (but the order in which the pages in each
part of the partition are broadcast is arbitrary in each repetition of the structure).

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Chang, Erlebach, Gailis, Khuller

X,Y X Y X Y

V V V V V V

Y
X X

Y
X

Y
X

Y
ee e

2n+k 3n+k
0 n 2n 3n 4n 7n6n5n 8n 9n

Vn−k Vn−k Vn−k

Vk Vk Vk

X

Fig. 2. Illustration of the construction used in the NP -completeness proof for
minimizing the maximum response time. The boxes correspond to broadcasts of
the pages of the respective set (X , Y , Vk, or Vn−k). The letters above the boxes,
together with the dotted vertical lines, indicate the times when requests for the
pages in the corresponding set are made; the letter ‘e’ indicates a pair of edge
requests.

Finally, in each of the repetitions of this structure, we pick a different edge
{u, v} ∈ E and add requests for u and v, called edge requests, a suitable number of
time steps before the schedule begins broadcasting the pages of Vk. Here, “suitable”
means that the deadline for the edge requests is exactly when the schedule broad-
casts the first page of Vn−k. If Vk corresponds to a vertex cover, the broadcast of
the pages in Vk will satisfy at least one of the two edge requests, and the other one
can be satisfied by the first page of Vn−k that is broadcast just before the deadline
of the edge requests. If G does not have a vertex cover of size k, the broadcast of
Vk will satisfy none of the two edge requests for some edge {u, v}, and the schedule
will have a maximum response time of at least R + 1.

Now we give the formal proof. Denote the pages corresponding to the vertices
of G by v1, . . . , vn. We use two sets of extra pages, X = {x1, . . . , xn} and Y =
{y1, . . . , yn}, thus 2n extra pages in total. We create the following requests (referred
to as basic requests) to force the periodic structure (as discussed above) of the
schedule. See Fig. 2 for an illustration.

—At time 0, all 2n extra pages are requested.

—At time n, all n vertex pages are requested.

—At time 2n + k + 3ni, for 0 ≤ i < m, and at time n + 3ni, for 1 ≤ i ≤ m, all n
vertex pages are requested.

—At time 2n + 3ni, for 0 ≤ i ≤ m, extra pages x1, . . . , xn are requested.

—At time k + 3ni, for 1 ≤ i ≤ m, extra pages y1, . . . , yn are requested.

Finally, we add the edge requests: Let e1, . . . , em be the edges of G in arbitrary
order, and let ei = {vi1 , vi2}. For 1 ≤ i ≤ m, we request pages vi1 and vi2 at time
k + 1 + 3ni. This completes the description of the construction.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 7

Now we prove correctness of the construction. First, consider the basic requests
and any schedule that meets all deadlines. From time 1 to 2n, all 2n extra pages
must be broadcast. As the vertex pages are requested at time n, they must be
broadcast from time 2n + 1 to 3n to meet their deadlines. Denote by Vk the set
of vertex pages broadcast from time 2n + 1 to 2n + k, and by Vn−k the remaining
vertex pages. The extra pages x1, . . . , xn requested at time 2n must be broadcast
from time 3n + 1 to 4n. As the vertex pages were requested again at time 2n + k,
the requests for pages from Vk are still not satisfied by time 4n, and so they must
be broadcast from time 4n + 1 to 4n + k. The extra pages y1, . . . , yn requested at
time 3n + k must then be broadcast from time 4n + k + 1 to 5n + k. The vertex
pages were again requested at time 4n, and only the requests for pages in Vk are
already satisfied by time 5n + k. Hence, the pages in Vn−k must be broadcast from
time 5n + k + 1 to 6n. The extra pages x1, . . . , xn that were requested at time 5n
must then be broadcast from time 6n+1 to 7n. Note that the situation at time 6n
is identical to the situation at 3n. Hence, the structure of the schedule from time
3n + 1 to 6n repeats every 3n time steps, with m repetitions in total.

We see that a schedule meets all deadlines of the basic requests if and only if it
has the described structure. In particular, for 1 ≤ i ≤ m, the schedule from time
3ni + 1 to 3n(i + 1) must broadcast pages as follows:

—first, extra pages x1, . . . , xn in arbitrary order,

—then, the pages in Vk in arbitrary order,

—then, extra pages y1, . . . , yn in arbitrary order,

—then, the pages in Vn−k in arbitrary order.

Finally, consider the edge requests for the endpoints of edge ei = {vi1 , vi2}. They
are made at time 3ni+k+1. The only broadcasts that can potentially satisfy these
two edge requests are the broadcasts of pages from Vk in time steps 3ni + n + 1 to
3ni+n+k, and the broadcast of a page from Vn−k in time step 3ni+2n+k+1. If at
least one of the endpoints of ei is in Vk , a feasible schedule that meets all deadlines
can be obtained (since the page of Vn−k that is broadcast at time 3ni + 2n + k + 1
can be chosen arbitrarily). If for some edge none of its endpoints are in Vk, at least
one request will not meet its deadline. Hence, a schedule with response time 2n
exists if and only if G has a vertex cover of size k.

3. NP-HARDNESS OF MINIMIZING THE TOTAL RESPONSE TIME

The total response time is defined as
∑

t

∑
p rp

t (Sp
t − t). The aim is to minimize

this sum.

Theorem 3.1. Broadcast scheduling with the objective of minimizing the total

response time is NP-hard.

Proof. We again reduce the vertex cover problem to the broadcast scheduling
problem. If the optimal objective function of the formulated schedule falls into a
certain range, then the vertex cover exists, and vice versa. An illustration of the
reduction is given in Fig. 3.

Let an instance of the vertex cover problem be given by a graph G = (V, E) and
a bound k on the size of the vertex cover. The goal is to decide whether G has a

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Chang, Erlebach, Gailis, Khuller

k k

�� ��
�� ��

�����
�

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �	 	 	 	 	 	 	 		 	 	 	 	 	 	 	

V V V VX2m+1

.

.

.

X1

X2m+1

.

.

.

X1

V

dead block

u1, v1 u2, v2

n`

dead block edge e2 = (u2, v2)edge e1 = (u1, v1)

n + 2m + 10 (n + 2m + 1) + n 2(n + 2m + 1)

Fig. 3. V denotes the set of vertex pages. Each of the m vertex blocks corresponds
to an edge ei and is followed by a dead block, i.e., an interval when pages Xi must
be scheduled.

vertex cover of size k. Let n = |V |, m = |E| and ` = n− k. For each node in V we
will associate a vertex page; we will also use extra pages X1, . . . , X2m+1 to ensure
that either requests are satisfied in a particular way or the total response time is
higher than the specified range.

Suppose that at time t = 0, we request each of the n vertex pages 2m + 1 times.
Then the best schedule will contribute to the total response time a quantity of
(2m + 1)(

∑n
i=1 i). Note that the best schedule (as defined thus far) is not unique;

all permutations of the n vertex pages will yield the same quantity. This will
allow us some freedom in changing the order of pages broadcast. This will be our
building block (call it a “vertex block”). Within this block, we want all vertex
pages scheduled in interval [0, `] to correspond to vertices that are not in our vertex
cover; similarly, vertex pages in [`, n] should form a vertex cover of size k.

We will place m vertex blocks, with each pair of blocks separated by a “dead
block” of length 2m + 1. At the beginning of each dead block, we request the
2m + 1 extra pages X1, . . . , X2m+1. Each extra page will be requested (2m + 1)4

times; i.e. rXi

t = (2m + 1)4. The intuition behind the insertion of dead blocks is
that these extra pages are requested in such high quantity that the optimal schedule
must schedule them right away or else pay too high a cost to the objective function;
hence no requests for the vertex pages can be satisfied during this interval.

For each vertex block, we make another 2m+1 requests for each of the n distinct
pages at the block offset `. Note that waiting until after the dead block to satisfy
a request made before the dead block is expensive, especially since each time a
vertex page is requested, it is requested 2m + 1 times. However, such a situation
is unavoidable given that all n vertex pages are requested at block offset `. The
optimal schedule should minimize the number of requests for which this occurs.

The best schedule will have the following properties:

1. Each vertex page is scheduled exactly once in every vertex block;

2. If a vertex page is scheduled in [0, `], then it must be scheduled in all vertex
blocks in offset [0, `];

3. Likewise, if a vertex page appears in [`, n], then it is also in all blocks in offset
[`, n].

The first property must be satisfied in the optimal solution. If it is not, then we
will pay an extra penalty of at least (2m + 1) to the objective function, which will

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 9

be too much. If either the second or third property is not satisfied, we will pay
an extra penalty at least 2m + 1: suppose a vertex page ni is scheduled in offset
[0, `]. Then it is not scheduled in offset [`, n]. The second 2m + 1 requests for ni

made at block offset ` will remain unsatisfied until after the dead-block. If in the
next vertex block, ni is scheduled after offset [0, `], we pay an extra cost of at least
2m + 1 to the objective function. The argument is similar for the third property.
Let K be the objective function of the optimal schedule for the construction thus
far.

We now add requests specific to the edges in G. Let each edge e = (u, v) in G
correspond to a vertex block. Add 2 more requests at offset ` − 1 of this block:
one request for vertex page u and one for vertex page v. Since the permutation of
scheduled vertex pages within each interval does not matter, they can be arranged
as pleased. For each edge and its corresponding vertex block, there are three cases
that can occur:

1. Both vertex pages u and v appear in block offset [0, `]. Then one of the requests
will be satisfied no earlier than in the next vertex block, which is at least
2m + 1 + k time-slots away, therefore paying this as an extra amount to the
objective function.

2. One vertex page is in offset [0, `] and the other is in [`, n]. Then both requests
can be satisfied paying 3 to objective function.

3. Both pages are in [`, n]; then both requests can be satisfied paying 5 to the
objective function.

If the vertex cover exists, the resulting optimal objective function will be between
K + 3m and K + 5m. If no such vertex cover exists, then there exists an edge that
falls into case 1, and we pay an extra 2m + 1 to the objective function, pushing it
above the K + 5m limit.

Conversely, if there is a schedule with an objective function less than or equal
to K + 5m, then it is impossible for case 1 to be true for any vertex block in the
schedule. Thus for every edge, at least one of the incident vertices must be in block
offset [`, n] and so it is in the vertex cover.

4. BROADCAST SCHEDULING WITH DEADLINES

Theorem 4.1. Broadcast scheduling with windows is NP-hard.

Proof. The NP-completeness of this problem follows from the proof that Broad-
cast scheduling to minimize the maximum response time is NP-hard, since that is
a special case when all the requests have identical length windows.

However, for the windows scheduling problem there is a very simple reduction
from vertex cover which is given next. As before, the instance of the vertex cover
problem is described by a graph G = (V, E) and a bound k. We construct an in-
stance of broadcast scheduling with windows, and ask if this instance has a schedule
satisfying all the requests. This will be shown to be the case if and only if G has
a vertex cover of size k. Each request (p, t) should be satisfied by its deadline Dp

t .
The window is the time between t and Dp

t . We only use two window sizes – n and
3. Let ` = n − k (see Fig. 4).

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Chang, Erlebach, Gailis, Khuller

V V V

0

V V VV

k k

n

For edge e2 = (u2, v2)

u1, v1 u2, v2

For edge e1 = (u1, v1)

2n

k

Fig. 4. Reduction from Vertex Cover to Broadcast Scheduling with windows. V
denotes the set of all n vertex pages, where n is the number of vertices of the given
graph.

There is a distinct page for each vertex in V . We refer to these pages as vertex

pages. We request the entire set of pages in V at times 0, n, 2n, 3n, . . . , (m − 1)n.
Each block of requests for V will be referred to as an edge block. We also request
the entire set V again at times `, n+`, 2n+` etc., once in each of the m edge blocks.
Each vertex request has a window size of n. We now add a set of edge requests. For
the ith edge (ui, vi) we add a request at time n(i − 1) + ` − 1 for both the pages
ui, vi with a window size of 3.

We first argue that if the graph has a vertex cover of size k then a feasible solution
exists that satisfies all the requests. Let Vk be the k nodes forming a vertex cover.
Let V` be the remaining vertices. In each edge block we first schedule V`, and then
schedule Vk. Thus all the requests at time 0 are satisfied within their windows.
Note that the requests made at time ` for all pages in V are also satisfied since first
Vk is broadcast and then V` is broadcast from the next edge block. Notice that
within the group V` and Vk we have control over the precise permutation of pages
within each group.

Consider the requests made for ui, vi at time n(i − 1) + ` − 1. Note that the
window length is 3. If both ui and vi are in Vk (nodes forming the vertex cover)
then we can schedule these two pages as the first two pages in Vk. If ui ∈ V` and
vi ∈ Vk then we schedule ui as the last page broadcast in V` and vi as the first
page broadcast in Vk . The other case is identical. We can thus argue that if every
edge has at least one end point in Vk, then within its window of size 3 the request
is satisfied.

The proof in the other direction is not difficult and left for the reader.

The above proof can be modified to show the following.

Theorem 4.2. If there is a (2−ε) approximation for minimizing the delay factor

for the broadcast scheduling problem with deadlines, then P = NP .

Proof. We show that it is NP-hard to distinguish instances where the optimal
solution has delay factor α = 1 from instances where any solution has α ≥ 2. The
reduction is similar to the proof of Theorem 4.1. Again, we start with an instance
of vertex cover given by a graph G = (V, E) and an integer k. Let n = |V | and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 11

m = |E|. We construct an instance of broadcast scheduling with deadlines such
that a schedule with α = 1 exists if and only if G has a vertex cover of size at most
k, and α ≥ 2 for any schedule otherwise. An approximation algorithm with ratio
2− ε would thus allow to distinguish between yes-instances and no-instances of the
vertex cover problem.

Compared to the proof of Theorem 4.1, the main additional trick is to block
parts of the schedule using requests that have window size 1. In any schedule with
α < 2, one cannot afford to delay such a request, and so no other request can be
scheduled in such a step.

The set of pages contains a vertex page v for every v ∈ V , and a blocking page
b. We force a schedule structure (for any schedule with α < 2) that consists of
m repetitions of a basic structure. The r-th repetition of the basic structure is as
follows:

(1) A schedule of a set S of n − k pages from V .

(2) A blocked part of length 2rn − 2n.

(3) A schedule of the set C = V \ S of k pages from V .

(4) A blocked part of length 2rn − n.

In each time step of a blocked part, the blocking page b is requested with a window
of size 1. This ensures that no vertex page can be scheduled in a blocked part. Note
that the length of the blocked parts grows linearly with r. All pages V are requested
just before (1) and just before (3) in each repetition. The deadline for the pages
requested just before (1) is just before (4) in the same repetition (so the window
length for these requests is 2rn− n), and the deadline for the pages requested just
before (3) is just before (2) in the next repetition (window length 2rn). Note that
delaying a request beyond the blocked part after its deadline increases the delay
factor to at least 2. Thus, as in the proof of Theorem 4.1, it is ensured that the sets
S and C of vertex pages scheduled in (1) and (3) are the same in each repetition.
Furthermore, the pages in S and C can be scheduled in an arbitrary permutation
in each repetition.

Assign each edge of the graph G to a distinct repetition. In the repetition to
which the edge {u, v} is assigned, we request u and v one time step before the end
of (1), with deadline two steps after the beginning of (3) (and thus a window length
of 1 + (2rn − 2n) + 2 = 2rn − 2n + 3). If C is a vertex cover, then at most one of
u, v is not in C, and that page can be served in the last time step of (1). The one
or two remaining requests among {u, v} can be satisfied in the first two time steps
of (3), thus meeting the deadline. If C is not a vertex cover, then there is an edge
{u, v} both of whose endpoints are not in C. For that edge {u, v}, one of the two
requests u, v can be satisfied immediately, but the other request cannot be served
before the beginning of (1) in the next repetition, thus incurring a response time
of at least 1 + (2rn− 2n) + k + (2rn− n) + 1 ≥ 2(2rn− 2n + 3) (where we assume
n ≥ 4, without loss of generality), again forcing α ≥ 2.

4.1 Converting a fractional solution to a 2-speed integral solution

In this section we refer to the IP and LP formulation from [Gandhi et al. 2002b].
We assume that a fractional LP solution exists in which each request (p, t) receives

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Chang, Erlebach, Gailis, Khuller

at least one unit of page p by its deadline. In [Gandhi et al. 2002b] it was shown
that this can be converted into an intgral schedule that satisfies at least a 3

4
fraction

of the total number of requests.

Theorem 4.3. Using a 2-speed server, one can satisfy all requests before their

deadlines, given a fractional 1-speed solution that satisfies all requests.

Proof. For a given instance I , we consider a fractional solution which, by
assumption, satisfies all requests before their deadlines. For each page p, let
Np = {t1, t2, . . . , tfp

} be the times in I at which requests for p are made.

We will create an instance I which is a subset of the requests of I such that
finding a 2-speed integral solution to I will also immediately lend a 2-speed integral
solution to the instance I . This is similar to the approach used in [Gandhi et al.
2002a], for the min-sum version of broadcast scheduling.

Let I initially be equal to the set of requests corresponding to the tfp
times, for

each page p. Then, let ft(p, t) be the first time that at least half of the request (p, t)
has been satisfied in the fractional solution to I , and let the interval [t, ft(p, t)] be
denoted as (p, t)’s α-window (for α = 1

2
). We consider requests ti in Np from right

to left and determine whether to add them to I depending on the request (in Np)
most recently added to I. Denote the latter request by tj .

If ti’s α-window intersects that of tj , then ti is more than half satisfied (frac-
tionally) between the time of tj ’s request and ti’s deadline. This implies that tj ’s
α-window ends before ti’s deadline. Then, if we allow a 2-speed server to service
this fractional solution (by simply doubling the amount of each page broadcast at
each time), ti would be completely satisfied by the broadcast that satisfies tj . Thus,
we leave out request ti.

In the case where ti’s α-window does not intersect tj ’s α-window, we add request
ti to I. After determining whether request ti is added to I, we move to the
preceding request in Np.

Satisfying all of the remaining requests (i.e. I) by their deadlines also satisfies
all removed requests before their deadlines. For a fixed page p, the requests in Np

which remain in I have α-windows which are completely disjoint, and by doubling
the speed of the server, these requests can be completely and fractionally satisfied
by ft(p, t). Because the α-windows for a single page are now disjoint, one can use
a simple matching based argument to find a 2-speed integral solution for I.

For example, suppose that the latest requests for a page A arrive at times 7
and 8, both with deadline 3. Suppose that the fractional solution broadcasts A in
the following way: .4 of A at time slot 8, .1 of A at time slot 9, .5 of A at time
slot 10 and .4 of A at time slot 11. In this fractional solution, the first request is
completely satisfied by timeslot 10 and its α-window is [7, 9]. The later request for
A is completely satisfied by time 11, and its α-window, [8, 10], intersects with that
of the first request. It is easy to see that between times 8 and 10, at least half of A
is broadcast. Thus, servicing the later request before the end of its α-window (on
a server with double the speed) will also satisfy the first request entirely within its
window, so we can safely ignore the first request.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 13

5. ANALYSIS OF FIFO

Consider the online problem of minimizing the maximum response time for a sched-
ule, given a set of requests. Recall that the FIFO algorithm schedules pages in the
order that they are requested. If requests for multiple distinct pages arrive at the
same time, FIFO schedules these pages in arbitrary order.

We will prove that FIFO is 2-competitive and that no deterministic online
scheme can do better.

Before we proceed, first a definition. The queue at time t of the schedule pro-
duced by algorithm ALG, denoted as At, shall refer to the set of pages for which
outstanding requests exist at time t.

Theorem 5.1. For any constant ε > 0, there exists no (2− ε)-competitive algo-

rithm for the online model of minimizing the maximum response time.

Proof. Consider the following example. Let the client request pages 1, 2, . . . , n
at time t = 0, and then request whatever the online algorithm broadcasts immedi-
ately after that page is broadcast. This is done for a total of n − 1 steps. At time
t = n, we see that OPT has nothing in its queue while the online algorithm has
n − 1 outstanding requests. The construction in [Bartal and Muthukrishnan 2000]
stops here, and as is evident the maximum response time is n for both FIFO, and
the optimal solution. Then, suppose that at time t = n, the client requests a set of
n new pages, say pages n + 1, . . . , 2n. OPT can schedule these items in the next
n time slots, but the online algorithm now has n new pending requests in addition
to the n− 1 pages that were already in its queue. Even in the best case where the
online algorithm continues to schedule what was originally in its queue, the requests
for the new n items will not begin to be satisfied until n − 1 time units after the
requests were made. Therefore, the last page scheduled by the online algorithm
would have waited a total of 2n − 1 time slots, while OPT would have scheduled
pages n + 1, . . . , 2n within a maximum response time of n. The competitive ratio,
2n−1

n
, approaches 2 as n increases.

Theorem 5.2. FIFO is a 2-competitive online algorithm.

Proof. Since the particular advantage of broadcast scheduling over unicast
scheduling is the ability to satisfy more than one request at a time, we shall refer
to such occasions as the “merging” of requests. In other words, the merging of two
requests (p, i) and (p, j), for i 6= j, refers to the occasion where Sp

i = Sp
j .

Consider the difference between FIFO’s queue and OPT ’s queue at time t,
denoted as |Ft\Ot|. If, at all times t, |Ft\Ot| is upper bounded by OPT , then
the claim follows easily, since |Ft ∩ Ot| ≤ |Ot| ≤ OPT . Suppose that |Ft\Ot| first
exceeds OPT at time t∗. We derive the following contradiction: if |Ft∗\Ot∗ | >
OPT , then |Ft∗−δ\Ot∗−δ| > OPT for some earlier time t∗ − δ.

Let P be the set of pages in Ft∗\Ot∗ . In general, a page pi may have several
outstanding requests at a time t. Since their response times cannot exceed that of
the earliest outstanding request for pi, these subsequent requests can be ignored
without changing the performance of the schedule. Thus, without loss of gener-
ality, we can assume that there is exactly one outstanding request at time t∗ for
each page in P . Let the pages of P be ordered by the time of their request, i.e.
{(p1, t1), . . . , (pk, tk)} such that t1 ≤ t2 ≤ . . . ≤ tk.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Chang, Erlebach, Gailis, Khuller

p1 p`

.

q1 qi

ojo1

qδ

oδ

.

. . .

FIFO’s schedule

OPT’s schedule

Ft∗\Ot∗ = {p1, . . . , pk} = P

. . .

Ft∗−δ ⊇ {q1, . . . , qδ} = Q

t∗ − δ t∗

Fig. 5. Proof of Lemma 5.3.

Let t∗ − δ be the time that the request for page p1 arrives, and define interval
W as the interval [t∗ − δ, t∗]. Note that δ ≥ k > OPT , since OPT satisfies all k
requests for the distinct pi’s in interval W , but may schedule other pages during
that time also. At the same time, FIFO satisfies no requests of P during interval
W since these requests are still in FIFO’s queue at time t∗. Let the set of pages
scheduled by FIFO during interval W be Q = {q1, . . . , qδ}, ordered by the time in
which they were scheduled. All of these pages were in FIFO’s queue at time t∗− δ
since we know that FIFO never scheduled p1 in interval W . Therefore, all pages
in Q must be distinct.

We want to prove that at most (δ − k) of these pages are also in OPT ’s queue
at time t∗ − δ, i.e., OPT can schedule at most (δ − k) of these pages in interval
W . (Note that given the length of window W , OPT cannot satisfy requests for the
pages of Q after time t∗, as this would increase the maximum response time beyond
OPT .) If OPT does not merge requests from set Q and set P , then it follows that
OPT can schedule at most (δ− k) pages of Q in interval W and must schedule the
rest before time t∗ − δ. Then, |Ft∗−δ\Ot∗−δ | ≥ k > OPT . Lemma 5.3, which we
prove below, shows that OPT does not merge requests from Q and P , concluding
the proof.

Lemma 5.3. OPT does not merge outstanding requests from sets P and Q.

Proof. Suppose OPT merges outstanding requests from set Q and set P in the
interval W . Consider the merge, for maximum i (see Fig. 5), between the request(s)
satisfied by FIFO in broadcasting page qi and the request not satisfied by FIFO
in interval W for page p` (scheduled by OPT at some time t∗−δ+j, j > i). Let Q′

be the set of pages {qi+1, . . . , qδ}. Note that since k > OPT and j ≤ OPT , i must
be strictly less than k. By assumption, no pages of Q′ can be merged with pages of
P by OPT . Therefore, OPT can schedule at most (δ−k) pages of Q′ in interval W
since OPT is busy scheduling the pages of P during the other k time slots. Then,
at least (δ−i)−(δ−k) = (k−i) pages of Q′ were scheduled by OPT before interval
W . Because of the nature of FIFO, everything in Q′ was scheduled after page qi

was requested, so the wait in OPT ’s schedule for qi is at least k− i+j > k > OPT ,
a contradiction.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 15

6. LP GAP EXAMPLE

In this section we refer to the IP formulation from [Gandhi et al. 2002b]. The
binary variable yp

t′ = 1 iff page p is broadcast at time t′. The binary variable
xp

t = 1 iff request (p, t) is satisfied at some time t′, t < t′ ≤ Dp
t . The first set of

constraints ensure that whenever a request (p, t) is satisfied, page p is broadcast
at t′, t < t′ ≤ Dp

t . The second set of constraints ensure that at most one page is
broadcast at any given time. The last two constraints ensure that the variables
assume integral values. By letting the domain of xp

t and yp
t′ be 0 ≤ xp

t , y
p
t′ ≤ 1, we

obtain the LP relaxation for the problem.

Maximize
∑

(p,t)

r
p
t · x

p
t

D
p

t∑

t′=t+1

y
p

t′
− x

p
t ≥ 0 ∀p, t

∑

p

y
p

t′
≤ 1 ∀t′

(1)

We now consider the following instance with three pages A, B, C. Pages A and B
are requested at each time slot t = 0, 1, . . . 6T −1. Page C is requested every 6 time
slots, i.e. at t = 0, 6, 12, . . . , 6(T − 1). The window length for each request for A
is 2, the window length of each request for B is 3 and the window length for each
request for C is 6. Thus, in each “block” of 6 timesteps, 13 requests are made. We
split the entire instance into T > 1 such blocks.

By broadcasting 1/2 unit of page A at each time slot, 1/3 unit of page B and
1/6 unit of page C, we obtain a fractional solution where all requests are satisfied
and 1 unit is transmitted in each time slot. We now show that any integral solution
can satisfy at most 12T + 1 out of the 13T requests.

Consider a time slot t > 1 in which we schedule C. Then, if we want to avoid
dropping a request for A, we must schedule an A in the time slots before and after
we schedule C, since we cannot have two adjacent slots without an A. Now we have
a consecutive block of 3 pages without a B, thus at least one B will get dropped.
Thus, each time we schedule C (except possibly in the very first time slot of the
schedule), we must drop at least one request for A or B. This holds even if C is
scheduled in two or more consecutive time slots.

Let x be the number of times that OPT schedules C. If x ≥ T , then OPT loses
at least x−1 requests of either A or B, satisfying C. If x < T , then OPT loses T−x
requests of C (since there are at least T −x intervals of the form [6i, 6(i+1)] where
no C is scheduled), and at least x − 1 requests for A or B. Therefore, OPT must
lose at least T − 1 of the total 13T requests, satisfying at most a 12T+1

13T
fraction of

the total requests. As T increases, the integrality gap gets arbitrarily close to 12
13

.

7. CONCLUSION

We close several open problems in the area of broadcast scheduling – both the
problem of minimizing the maximum response time, as well as the problem of
maximizing throughput. It is possible that there is a better offline algorithm for
minimizing the maximum response time, namely one with an approximation factor
better than 2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Chang, Erlebach, Gailis, Khuller

For some recent results, motivated by this new definition of minimum delay factor
see the work by [Chekuri and Moseley 2009].
Acknowledgments. We would like to thank Moses Charikar, Sudipto Guha, Seffi
Naor, Kirk Pruhs and Jiri Sgall for useful discussions.

REFERENCES

D. Aksoy, and M. Franklin. RxW: A scheduling approach for large-scale on-demand data broad-
cast. In IEEE/ACM Transactions On Networking, Volume 7, Number 6, 846-860, 1999.

N. Bansal, M. Charikar, S. Khanna, and J. Naor. Approximating the average response time
in broadcast scheduling. In Proceedings of 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, 215–221, 2005.

N. Bansal, D. Coppersmith, and M. Sviridenko. Improved approximation algorithms for broadcast

scheduling. In Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
344–353, 2006.

A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation costs of peri-
odic scheduling. In Proceedings of 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
11-20, 1998.

A. Bar-Noy, S. Guha, Y. Katz, J. Naor, B. Schieber and H. Schachnai. Throughput Maximization
of Real-Time Scheduling with Batching, in Proceedings of 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, 742-751, 2002.

Y. Bartal and S. Muthukrishnan. Minimizing maximum response time in scheduling broadcasts.
Proceedings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 558-559, 2000.

W. Chan, T. Lam, H. Ting, and P. Wong. New results on on-demand broadcasting with deadline
via job scheduling with cancellation. In 10th COCOON, LNCS 3106, Springer-Verlag, 210-218,
2004.

M. Charikar, S. Khuller. A robust maximum completion time measure for scheduling Proceedings
of 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 324–333, 2006.

C. Chekuri and B. Moseley. Online scheduling to minimize the maximum delay factor. To appear,
Proceedings of 20th Annual ACM-SIAM Symposium on Discrete Algorithms, 2009.

M. Chrobak, C. Durr, W. Jawor, L. Kowalik, M. Kurowski. A note on scheduling equal-length
jobs to maximize throughput. Journal of Scheduling, Vol 9(1):71–73, 2006.

J. Edmonds and K. Pruhs. Multicast pull scheduling: when fairness is fine. In Proc. of 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, 421-430, 2002.

J. Edmonds and K. Pruhs. A maiden analysis of longest wait first. In Proc. of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, 811-820, 2004.

T. Erlebach, A. Hall. NP-Hardness of broadcast scheduling and inapproximability of single-source
unsplittable min-cost flow. In Proc. of 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 194-202, 2002.

R. Gandhi, S. Khuller, Y. Kim, and Y.C. Wan. Algorithms for minimizing response time in
broadcast scheduling. In Proc. Ninth Conference on Integer Programming and Combinatorial
Optimization (May 2002), vol. 2337 of Lecture Notes in Computer Science, Springer, pp. 415–
424.

R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding in bipartite
graphs. In Proc. IEEE Symposium on Foundations of Computer Science 2002, pp. 323–332.

R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding and its appli-
cations to approximation algorithms. Journal of the ACM Vol 53(3):324–360, 2006.

B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in wireless net-
works. In European Symposium of Algorithms, LNCS 1879, Springer-Verlag, 290-301, 2000.

S. Khuller and Y. Kim. Equivalence of two linear programming relaxations for broadcast schedul-
ing, Operations Research Letters, Vol 32 (5): 473–478, 2004.

J. Kim and K. Chwa. Scheduling broadcasts with deadlines. Theoretical Computer Science, Vol
325(3):479–488, 2004.

J. Wong. Broadcast Delivery. In Proc. of the IEEE, 76(12):1566-1577, 1988.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Broadcast Scheduling · 17

F. Zheng, S. Fung, W. Chan, F. Chin, C. Poon and P. Wong. Improved online broadcast scheduling

with deadlines. Proc. of the 11th International Computing and Combinatorics Conference
(COCOON), pp. 320–329, 2006.

ACM Journal Name, Vol. V, No. N, Month 20YY.

