
Brief Announcement: A greedy 2 approximation for the active

time problem

Saurabh Kumar
University of Maryland, College Park

kumarsa@cs.umd.edu

Samir Khuller∗

University of Maryland, College Park

samir@cs.umd.edu

ABSTRACT
In this note, we give a very simple 2 approximation for
the active time problem - we are given a set of pre-emptible
jobs, each with an integral release time, deadline and required
processing length. The jobs need to be scheduled on a machine
that can process at most g distinct job units at any given
integral time slot in such a way that we minimize the time
the machine is on i.e the active time. Our algorithm matches
the state of the art bound obtained by a significantly more
involved LP rounding scheme.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms;

1 INTRODUCTION
In this paper, we consider the problem of scheduling jobs on
a machine while minimizing the total time that the machine
is on. This is captured by the active time model.

Active Time Model: We have a set of n jobs say J =
{1, 2, ..., n} where each job j has a processing time pj and
must be scheduled in a window defined by a release time
rj and deadline dj (pj , rj , dj are integers). Jobs are pre-
emptible at integral points within their window. Time is
divided into integral units. We are given a single machine
that can process at most g distinct job units in parallel. The
machine is considered on i.e active in a particular time unit
when it is processing at least one job in that time unit. Our
goal is to feasibly schedule the jobs in J while minimizing the
active time (i.e the number of time units that the machine is
on).

Chang et. al. [2] solve the problem exactly when jobs
all have unit length. They show that the problem is NP
hard when a job can have multiple disjoint windows but the
complexity of the case where each job has a single contiguous
window is unknown. The unit length version of this problem
has been considered in other contexts such as in scheduling

∗Supported by NSF REU Award CNS 156019

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA’18, July 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

jobs with precedence constraints [6], finding a minimum b-
clique cover in an interval graph [1], and rectangle stabbing
[4].

The general problem with arbitrary integral job lengths
was considered by Chang et. al. [3] where the authors show
that a minimal feasible solution is a 3 approximation. The
authors also describe a significantly more complicated 2 ap-
proximation based on LP rounding which is the current best
known upper bound for the problem.

The main result in this paper is a simple combinatorial
algorithm which achieves a 2 approximation for the active
time problem, matching the upper bound obtained by the
LP rounding scheme described by Chang et. al. [3].

2 PRELIMINARIES
A job j is said to be live at slot t if t 2 [rj , dj]. A slot is
open if a job can be scheduled in it. It is closed otherwise.
An open slot is full if there are g jobs assigned to it. It is
non-full otherwise.

A feasible solution is given by a set of open time slots into
which the jobs can be feasibly scheduled. Given a set of slots,
we can find a feasible assignment of jobs or determine that no
schedule is possible by performing a simple flow computation
(described in the appendix).

3 GREEDY ALGORITHM
All time slots are assumed to be open initially. Consider time
slots from left to right. At a given time slot, close the slot
and check if a feasible schedule exists in the open slots. If so,
leave the slot closed, otherwise, open it again. Continue to
the next slot.

Theorem 3.1. The greedy algorithm described above gives

a 2 approximation to the active time problem.

The remainder of this section is devoted to proving Theo-
rem 3.1. We will bound the number of full and non-full slots
separately. Let S and S⇤ denote the final greedy and optimal
schedules respectively. Let |S| and |S⇤| denote the number of
open slots in S and S⇤ respectively. We first left shift the job
units in S as much as possible while maintaining feasibility.
This is captured by the following lemma.

Lemma 3.1. For any job j in time slot t, j must be present

in every non-full slot in the window of j earlier than t i.e in

the interval [rj , t].

Proof. The proof follows from left shifting. For any non-
full slot t0 earlier than t in the window of job j, a unit of
j must be present in t0 since otherwise we would have left

SPAA’18, July 2018, Vienna, Austria Saurabh Kumar and Samir Khuller

shifted the unit from t into t0 (this would be feasible since t0

is in j’s window and non-full). ⇤

For the proofs of the remaining lemmas and the definitions
of a, b, a⇤ and b⇤, we assume that all job units have been
left shifted as much as possible in S. Let bt[j] and b⇤t [j]
denote the number of units of any job j 2 J scheduled by S
and S⇤ respectively at or before t i.e in time interval [rj , t].
Let at[j] and a⇤

t [j] denote the amount of job j scheduled
by S and S⇤ respectively in the time interval [t, dj]. So,
bt[j] + at+1[j] = b⇤t [j] + a⇤

t+1[j] = pj . Let T be the latest
deadline of all the jobs.

Lemma 3.2. For any non-full slot t opened by S, there
must exist at least one job j scheduled by S in t such that

b⇤t [j] � bt[j].

Proof. If possible, suppose b⇤t [j] < bt[j] for all j scheduled
by S in t (as depicted in Figure 1). While moving left to right
in our greedy algorithm, we would encounter t. At this point,
by definition, we have already scheduled bt[j] of each job in
[1, t]. We still need to schedule at+1[j] of each job j in the
interval [t+ 1, T].

Now, if we were to close t, then we would need to feasibly
schedule the following in the interval [t+ 1, T]:

(1) at+1[j] + 1 units1 of each j scheduled by S in t.
By our assumption, since b⇤t [j] < bt[j] we have a

⇤
t+1[j] >

at+1[j] and so at+1[j] + 1 a⇤
t+1[j].

(2) at+1[j] units of each j live at t but not scheduled by S
in t.
Since j is not scheduled in t, all units of j must have
been scheduled by S earlier than t since otherwise
we could have left shifted j into t as it is non-full2.
Therefore, bt[j] = pj and at+1[j] = 0. So at+1[j]
a⇤
t+1[j].

(3) at+1[j] units of each j with rj > t.
Clearly at+1[j] = pj = a⇤

t+1[j]. So at+1[j] a⇤
t+1[j].

It can be seen that the mass of each job j that ALG would
need to schedule in [t + 1, T] (either at+1[j] or at+1[j] + 1
units) is less than or equal to the mass of that job that
OPT feasibly schedules in that interval (a⇤

t+1[j] units). When
moving from left to right in our algorithm, when we reached
t, all the slots in [t+ 1, T] were open to schedule jobs. This
means that, had we closed t in S, we would still have been
able to find a feasible schedule of the remaining job units in
[t+1, T], since OPT could find an optimal schedule for them
in [t+1, T]. Therefore, we would have closed t greedily while
constructing S. Since we did not, our original assumption
must have been incorrect. ⇤

Lemma 3.3. The number of non-full slots in S cannot

exceed |S⇤|.

1The extra unit comes from the slot t which we are attempting to
close.
2Here, we crucially use the fact that t is non-full. If t was full, this
point may not have been true since the left shifting argument would
not hold, and the lemma breaks down.

t

Greedy

OPT

b
t
(u) a

t+1
(u)

b*
t
(u) a*

t+1
(u)

a
t+1
(v) = p

v

a*
t+1
(v) = p

v

T

u

u

v

v

Figure 1: The top half depicts S and the bottom half

S⇤
. Job u is scheduled by S in t such that b⇤t [u] < bt[u].

If this was true for all such jobs u scheduled by S in

t, then in [t+ 1, T], S⇤
would schedule as much as or

more of every job that S would have scheduled there

even after closing t.

Proof. Start at the right most non-full slot in S, say
t. From Lemma 3.2, we can find one job j in t such that
b⇤t [j] � bt[j]. By Lemma 3.1, j must be present in every
non-full slot in [rj , t]. This means that the number of non-full
slots in [rj , t] cannot exceed bt[j] (b⇤t [j]). So we can charge
every non-full slot of S in [rj , t] to a distinct slot in S⇤ in
[rj , t]. Now, move to the latest non-full slot opened by S
strictly earlier than rj and repeat this process. In this way,
we can charge every non-full slot in S to distinct slots in
S⇤. ⇤

Lemma 3.4. The number of full slots in S cannot exceed

|S⇤|.

Proof. Let the number of full slots in S be |Sf |. Since the
maximum amount of job mass in any slot is g, the amount of
job mass present in Sf is g|Sf |. Similarly, the total job mass
OPT scheduled is at most g|S⇤|. By the conservation of job
mass, g|Sf | g|S⇤| and the lemma follows. ⇤

The total cost of our schedule is the sum of the full and
non-full slots, and therefore, from Lemmas 3.3 and 3.4, this
sum cannot exceed 2|S⇤|. This proves Theorem 3.1.

4 CONCLUSION
In this paper, we prove that a simple greedy algorithm
matches the best known approximation ratio for the active
time problem.

Crucially, the complexity status of this problem is still
open as is breaking the 2 upper bound barrier. A possible
avenue to achieving this is via a local search technique which
we briefly sketch in the appendix.

Brief Announcement: A greedy 2 approximation for the active time problem SPAA’18, July 2018, Vienna, Austria

᭾

ᮈ

Cap = p
j

j

Cap = 1

Cap = g

s d

Figure 2: Flow network Gfeas. An integral flow of

value

P
j2J pj corresponds to a feasible schedule.

REFERENCES
[1] Hans L Bodlaender and Klaus Jansen. 1995. Restrictions of graph

partition problems. Part I. Theoretical Computer Science 148, 1
(1995), 93–109.

[2] Jessica Chang, Harold N Gabow, and Samir Khuller. 2012. A model
for minimizing active processor time. In European Symposium on

Algorithms. Springer, 289–300.
[3] Jessica Chang, Samir Khuller, and Koyel Mukherjee. 2014. LP

rounding and combinatorial algorithms for minimizing active and
busy time. In Proceedings of the 26th ACM symposium on Paral-

lelism in algorithms and architectures. ACM, 118–127.
[4] Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Moni

Shahar, and Maxim Sviridenko. 2008. Algorithms for capacitated
rectangle stabbing and lot sizing with joint set-up costs. ACM

Transactions on Algorithms (TALG) 4, 3 (2008), 34.
[5] Saurabh Kumar. 2016. Combinatorial Algorithms for the Active

Time and Busy Time Problems. Master’s thesis. University of
Maryland, College Park.

[6] Christos H. Papadimitriou and Mihalis Yannakakis. 1979. Schedul-
ing interval-ordered tasks. SIAM J. Comput. 8, 3 (1979), 405–409.

A APPENDIX

A.1 Verifying a feasible schedule exists
Define a graph G with vertex set consisting of one node for
every job j, one node for every open time slot t and a source
and destination node (s and d respectively). Add edges from
s to each job node j with capacity pj . Add edges from each
open time slot node t to d with capacity g. For each job j,
for any time slot t in its window, add an edge from job node
j to time slot node t with unit capacity. The graph structure
is shown in Figure 2. An active time instance has a feasible
schedule on the set of open time slots i↵ the maximum flow
from s to d has value

P
j2J pj . Furthermore, if a feasible

schedule is possible, the unit capacity edges with non-zero
flow give the mapping of job units to time slots.

A.2 Tight Example
The tight example consists of the following set of jobs - one
job of length g with window [1, 2g], g unit length jobs with
window [1, g+1] and g�1 rigid jobs of length g with window

Rigid Jobs

Rigid Jobs

Greedy

OPT

g

g

1

Figure 3: Tight Example for the Greedy Algorithm.

g

((b - 1)g + 1) / b
Local(b)

OPT

Figure 4: Lower bound for Local Search with param-

eter b.

[2, g + 1]. OPT would have opened time slot t = 1, scheduled
all unit jobs there and therefore been able to schedule the
g length job above the rigid jobs. This gives a total cost of
g + 1. However, our greedy algorithm closes time slot t = 1
since that is still feasible. Therefore, the unit jobs are forced
to be scheduled above the rigid job, thereby pushing the long
job out. This gives a total cost of 2g. Thus, we get a lower
bound of 2g

g+1 which equals 2 as g becomes large. The two

schedules are depicted in Figure 3 (reprinted from [5]).

A.3 Local Search
A possible approach to breaking the 2 barrier for this problem
is local search. Local search parametrized by a constant b
involves repeatedly performing local optimizations of the
form - close b open slots and open at most b� 1 new slots.
We believe that this could provide a PTAS for this problem.
Indeed, the best lower bound we currently have for local
search is 1+1/(b�1). This is illustrated in Figure 4 (reprinted
from [5]). Here, each column has g � (g � 1)/b job mass in it
(where g is the capacity of the time slot) so that if we take
any b columns, the total job mass amounts to (b � 1)g + 1
which clearly cannot be scheduled in at most b � 1 slots.
This gives a lower bound of g/(g � (g � 1)/b) which tends to
1 + 1/(b� 1) as g becomes very large.

