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ABSTRACT
In this note, we give a very simple 2 approximation for
the active time problem - we are given a set of pre-emptible
jobs, each with an integral release time, deadline and required
processing length. The jobs need to be scheduled on a machine
that can process at most g distinct job units at any given
integral time slot in such a way that we minimize the time
the machine is on i.e the active time. Our algorithm matches
the state of the art bound obtained by a significantly more
involved LP rounding scheme.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms;

1 INTRODUCTION
In this paper, we consider the problem of scheduling jobs on
a machine while minimizing the total time that the machine
is on. This is captured by the active time model.

Active Time Model: We have a set of n jobs say J =
{1, 2, ..., n} where each job j has a processing time pj and
must be scheduled in a window defined by a release time
rj and deadline dj (pj , rj , dj are integers). Jobs are pre-
emptible at integral points within their window. Time is
divided into integral units. We are given a single machine
that can process at most g distinct job units in parallel. The
machine is considered on i.e active in a particular time unit
when it is processing at least one job in that time unit. Our
goal is to feasibly schedule the jobs in J while minimizing the
active time (i.e the number of time units that the machine is
on).

Chang et. al. [2] solve the problem exactly when jobs
all have unit length. They show that the problem is NP
hard when a job can have multiple disjoint windows but the
complexity of the case where each job has a single contiguous
window is unknown. The unit length version of this problem
has been considered in other contexts such as in scheduling
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jobs with precedence constraints [6], finding a minimum b-
clique cover in an interval graph [1], and rectangle stabbing
[4].

The general problem with arbitrary integral job lengths
was considered by Chang et. al. [3] where the authors show
that a minimal feasible solution is a 3 approximation. The
authors also describe a significantly more complicated 2 ap-
proximation based on LP rounding which is the current best
known upper bound for the problem.

The main result in this paper is a simple combinatorial
algorithm which achieves a 2 approximation for the active
time problem, matching the upper bound obtained by the
LP rounding scheme described by Chang et. al. [3].

2 PRELIMINARIES
A job j is said to be live at slot t if t 2 [rj , dj ]. A slot is
open if a job can be scheduled in it. It is closed otherwise.
An open slot is full if there are g jobs assigned to it. It is
non-full otherwise.

A feasible solution is given by a set of open time slots into
which the jobs can be feasibly scheduled. Given a set of slots,
we can find a feasible assignment of jobs or determine that no
schedule is possible by performing a simple flow computation
(described in the appendix).

3 GREEDY ALGORITHM
All time slots are assumed to be open initially. Consider time
slots from left to right. At a given time slot, close the slot
and check if a feasible schedule exists in the open slots. If so,
leave the slot closed, otherwise, open it again. Continue to
the next slot.

Theorem 3.1. The greedy algorithm described above gives

a 2 approximation to the active time problem.

The remainder of this section is devoted to proving Theo-
rem 3.1. We will bound the number of full and non-full slots
separately. Let S and S⇤ denote the final greedy and optimal
schedules respectively. Let |S| and |S⇤| denote the number of
open slots in S and S⇤ respectively. We first left shift the job
units in S as much as possible while maintaining feasibility.
This is captured by the following lemma.

Lemma 3.1. For any job j in time slot t, j must be present

in every non-full slot in the window of j earlier than t i.e in

the interval [rj , t].

Proof. The proof follows from left shifting. For any non-
full slot t0 earlier than t in the window of job j, a unit of
j must be present in t0 since otherwise we would have left
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shifted the unit from t into t0 (this would be feasible since t0

is in j’s window and non-full). ⇤

For the proofs of the remaining lemmas and the definitions
of a, b, a⇤ and b⇤, we assume that all job units have been
left shifted as much as possible in S. Let bt[j] and b⇤t [j]
denote the number of units of any job j 2 J scheduled by S
and S⇤ respectively at or before t i.e in time interval [rj , t].
Let at[j] and a⇤

t [j] denote the amount of job j scheduled
by S and S⇤ respectively in the time interval [t, dj ]. So,
bt[j] + at+1[j] = b⇤t [j] + a⇤

t+1[j] = pj . Let T be the latest
deadline of all the jobs.

Lemma 3.2. For any non-full slot t opened by S, there
must exist at least one job j scheduled by S in t such that

b⇤t [j] � bt[j].

Proof. If possible, suppose b⇤t [j] < bt[j] for all j scheduled
by S in t (as depicted in Figure 1). While moving left to right
in our greedy algorithm, we would encounter t. At this point,
by definition, we have already scheduled bt[j] of each job in
[1, t]. We still need to schedule at+1[j] of each job j in the
interval [t+ 1, T ].

Now, if we were to close t, then we would need to feasibly
schedule the following in the interval [t+ 1, T ]:

(1) at+1[j] + 1 units1 of each j scheduled by S in t.
By our assumption, since b⇤t [j] < bt[j] we have a

⇤
t+1[j] >

at+1[j] and so at+1[j] + 1  a⇤
t+1[j].

(2) at+1[j] units of each j live at t but not scheduled by S
in t.
Since j is not scheduled in t, all units of j must have
been scheduled by S earlier than t since otherwise
we could have left shifted j into t as it is non-full2.
Therefore, bt[j] = pj and at+1[j] = 0. So at+1[j] 
a⇤
t+1[j].

(3) at+1[j] units of each j with rj > t.
Clearly at+1[j] = pj = a⇤

t+1[j]. So at+1[j]  a⇤
t+1[j].

It can be seen that the mass of each job j that ALG would
need to schedule in [t + 1, T ] (either at+1[j] or at+1[j] + 1
units) is less than or equal to the mass of that job that
OPT feasibly schedules in that interval (a⇤

t+1[j] units). When
moving from left to right in our algorithm, when we reached
t, all the slots in [t+ 1, T ] were open to schedule jobs. This
means that, had we closed t in S, we would still have been
able to find a feasible schedule of the remaining job units in
[t+1, T ], since OPT could find an optimal schedule for them
in [t+1, T ]. Therefore, we would have closed t greedily while
constructing S. Since we did not, our original assumption
must have been incorrect. ⇤

Lemma 3.3. The number of non-full slots in S cannot

exceed |S⇤|.

1The extra unit comes from the slot t which we are attempting to
close.
2Here, we crucially use the fact that t is non-full. If t was full, this
point may not have been true since the left shifting argument would
not hold, and the lemma breaks down.
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Figure 1: The top half depicts S and the bottom half

S⇤
. Job u is scheduled by S in t such that b⇤t [u] < bt[u].

If this was true for all such jobs u scheduled by S in

t, then in [t+ 1, T ], S⇤
would schedule as much as or

more of every job that S would have scheduled there

even after closing t.

Proof. Start at the right most non-full slot in S, say
t. From Lemma 3.2, we can find one job j in t such that
b⇤t [j] � bt[j]. By Lemma 3.1, j must be present in every
non-full slot in [rj , t]. This means that the number of non-full
slots in [rj , t] cannot exceed bt[j] ( b⇤t [j]). So we can charge
every non-full slot of S in [rj , t] to a distinct slot in S⇤ in
[rj , t]. Now, move to the latest non-full slot opened by S
strictly earlier than rj and repeat this process. In this way,
we can charge every non-full slot in S to distinct slots in
S⇤. ⇤

Lemma 3.4. The number of full slots in S cannot exceed

|S⇤|.

Proof. Let the number of full slots in S be |Sf |. Since the
maximum amount of job mass in any slot is g, the amount of
job mass present in Sf is g|Sf |. Similarly, the total job mass
OPT scheduled is at most g|S⇤|. By the conservation of job
mass, g|Sf |  g|S⇤| and the lemma follows. ⇤

The total cost of our schedule is the sum of the full and
non-full slots, and therefore, from Lemmas 3.3 and 3.4, this
sum cannot exceed 2|S⇤|. This proves Theorem 3.1.

4 CONCLUSION
In this paper, we prove that a simple greedy algorithm
matches the best known approximation ratio for the active
time problem.

Crucially, the complexity status of this problem is still
open as is breaking the 2 upper bound barrier. A possible
avenue to achieving this is via a local search technique which
we briefly sketch in the appendix.
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A APPENDIX

A.1 Verifying a feasible schedule exists
Define a graph G with vertex set consisting of one node for
every job j, one node for every open time slot t and a source
and destination node (s and d respectively). Add edges from
s to each job node j with capacity pj . Add edges from each
open time slot node t to d with capacity g. For each job j,
for any time slot t in its window, add an edge from job node
j to time slot node t with unit capacity. The graph structure
is shown in Figure 2. An active time instance has a feasible
schedule on the set of open time slots i↵ the maximum flow
from s to d has value

P
j2J pj . Furthermore, if a feasible

schedule is possible, the unit capacity edges with non-zero
flow give the mapping of job units to time slots.

A.2 Tight Example
The tight example consists of the following set of jobs - one
job of length g with window [1, 2g], g unit length jobs with
window [1, g+1] and g�1 rigid jobs of length g with window
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1

Figure 3: Tight Example for the Greedy Algorithm.
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eter b.

[2, g + 1]. OPT would have opened time slot t = 1, scheduled
all unit jobs there and therefore been able to schedule the
g length job above the rigid jobs. This gives a total cost of
g + 1. However, our greedy algorithm closes time slot t = 1
since that is still feasible. Therefore, the unit jobs are forced
to be scheduled above the rigid job, thereby pushing the long
job out. This gives a total cost of 2g. Thus, we get a lower
bound of 2g

g+1 which equals 2 as g becomes large. The two

schedules are depicted in Figure 3 (reprinted from [5]).

A.3 Local Search
A possible approach to breaking the 2 barrier for this problem
is local search. Local search parametrized by a constant b
involves repeatedly performing local optimizations of the
form - close b open slots and open at most b� 1 new slots.
We believe that this could provide a PTAS for this problem.
Indeed, the best lower bound we currently have for local
search is 1+1/(b�1). This is illustrated in Figure 4 (reprinted
from [5]). Here, each column has g � (g � 1)/b job mass in it
(where g is the capacity of the time slot) so that if we take
any b columns, the total job mass amounts to (b � 1)g + 1
which clearly cannot be scheduled in at most b � 1 slots.
This gives a lower bound of g/(g � (g � 1)/b) which tends to
1 + 1/(b� 1) as g becomes very large.


