Brief Announcement: A greedy 2 approximation for the active time problem

Saurabh Kumar
University of Maryland, College Park
kumarsa@cs.umd.edu

Samir Khuller*
University of Maryland, College Park
samir@cs.umd.edu

ABSTRACT
In this note, we give a very simple 2 approximation for the active time problem - we are given a set of pre-emptible jobs, each with an integral release time, deadline and required processing length. The jobs need to be scheduled on a machine that can process at most \(g \) distinct job units at any given integral time slot in such a way that we minimize the time the machine is on i.e the active time. Our algorithm matches the state of the art bound obtained by a significantly more involved LP rounding scheme.

1 INTRODUCTION
In this paper, we consider the problem of scheduling jobs on a machine while minimizing the total time that the machine is on. This is captured by the active time model.

Active Time Model: We have a set of \(n \) jobs say \(J = \{1, 2, ..., n\} \) where each job \(j \) has a processing time \(p_j \) and must be scheduled in a window defined by a release time \(r_j \) and deadline \(d_j \) (\(p_j, r_j, d_j \) are integers). Jobs are pre-emptible at integral points within their window. Time is divided into integral units. We are given a single machine that can process at most \(g \) distinct job units in parallel. The machine is considered on i.e active in a particular time unit when it is processing at least one job in that time unit. Our goal is to feasibly schedule the jobs in \(J \) while minimizing the active time (i.e the number of time units that the machine is on).

Chang et. al. [2] solve the problem exactly when jobs all have unit length. They show that the problem is NP hard when a job can have multiple disjoint windows but the complexity of the case where each job has a single contiguous window is unknown. The unit length version of this problem has been considered in other contexts such as in scheduling jobs with precedence constraints [6], finding a minimum b-clique cover in an interval graph [1], and rectangle stabbing [4].

The general problem with arbitrary integral job lengths was considered by Chang et al. [3] where the authors show that a minimal feasible solution is a 3 approximation. The authors also describe a significantly more complicated 2 approximation based on LP rounding which is the current best known upper bound for the problem.

The main result in this paper is a simple combinatorial algorithm which achieves a 2 approximation for the active time problem, matching the upper bound obtained by the LP rounding scheme described by Chang et. al. [3].

2 PRELIMINARIES
A job \(j \) is said to be live at slot \(t \) if \(t \in [r_j, d_j] \). A slot is open if a job can be scheduled in it. It is closed otherwise. An open slot is full if there are \(g \) jobs assigned to it. It is non-full otherwise.

A feasible solution is given by a set of open time slots into which the jobs can be feasibly scheduled. Given a set of slots, we can find a feasible assignment of jobs or determine that no schedule is possible by performing a simple flow computation (described in the appendix).

3 GREEDY ALGORITHM
All time slots are assumed to be open initially. Consider time slots from left to right. At a given time slot, close the slot and check if a feasible schedule exists in the open slots. If so, leave the slot closed, otherwise, open it again. Continue to the next slot.

THEOREM 3.1. The greedy algorithm described above gives a 2 approximation to the active time problem.

The remainder of this section is devoted to proving Theorem 3.1. We will bound the number of full and non-full slots separately. Let \(S \) and \(S^* \) denote the final greedy and optimal schedules respectively. Let \(|S| \) and \(|S^*| \) denote the number of open slots in \(S \) and \(S^* \) respectively. We first left shift the job units in \(S \) as much as possible while maintaining feasibility. This is captured by the following lemma.

LEMMA 3.1. For any job \(j \) in time slot \(t \), \(j \) must be present in every non-full slot in the interval \([r_j, t] \) earlier than \(t \) i.e in the interval \([r_j, t]\).

Proof. The proof follows from left shifting. For any non-full slot \(t' \) earlier than \(t \) in the window of job \(j \), a unit of \(j \) must be present in \(t' \) since otherwise we would have left
shifted the unit from t into t' (this would be feasible since t' is in j's window and non-full).

For the proofs of the remaining lemmas and the definitions of a, b, a^* and b^*, we assume that all job units have been left shifted as much as possible in S. Let $b_t[j]$ and $b^*_t[j]$ denote the number of units of any job $j \in J$ scheduled by S and S^* respectively at or before t i.e in time interval $[r_j, t]$. Let $a_t[j]$ and $a^*_t[j]$ denote the amount of job j scheduled by S and S^* respectively in the time interval $[t, d_j]$. So, $b_t[j] + a^*_{t+1}[j] = b^*_t[j] + a^*_{t+1}[j] = p_j$. Let T be the latest deadline of all the jobs.

Lemma 3.2. For any non-full slot t opened by S, there must exist at least one job j scheduled by S in t such that $b^*_t[j] \geq b_t[j]$.

Proof. If possible, suppose $b^*_t[j] < b_t[j]$ for all j scheduled by S in t (as depicted in Figure 1). While moving left to right in our greedy algorithm, we would encounter t. At this point, by definition, we have already scheduled $b_t[j]$ of each job in $[1, t]$. We still need to schedule $a^*_{t+1}[j]$ of each job j in the interval $[t + 1, T]$.

Now, if we were to close t, then we would need to feasibly schedule the following in the interval $[t + 1, T]$:

1. $a^*_{t+1}[j] + 1$ units1 of each j scheduled by S in t.

 By our assumption, since $b^*_t[j] < b_t[j]$ we have $a^*_{t+1}[j] > a_{t+1}[j]$ and so $a^*_{t+1}[j] + 1 \leq a_{t+1}[j]$.

2. $a^*_{t+1}[j]$ units of each j live at t but not scheduled by S in t.

 Since j is not scheduled in t, all units of j must have been scheduled by S earlier than t since otherwise we could have left shifted j into t as it is non-full2.

 Therefore, $b_t[j] = b^*_t[j]$ and $a^*_{t+1}[j] = 0$. So $a_{t+1}[j] \leq a^*_{t+1}[j]$.

3. $a_{t+1}[j]$ units of each j with $r_j > t$.

 Clearly $a^*_{t+1}[j] = p_j = a_{t+1}[j]$. So $a^*_{t+1}[j] \leq a_{t+1}[j]$.

 It can be seen that the mass of each job j that ALG would need to schedule in $[t + 1, T]$ (either $a_{t+1}[j]$ or $a^*_{t+1}[j] + 1$ units) is less than or equal to the mass of that job that OPT feasibly schedules in that interval ($a_t^*[j]$ units). When moving from left to right in our algorithm, when we reached t, all the slots in $[t + 1, T]$ were open to schedule jobs. This means that, had we closed t in S, we would still have been able to find a feasible schedule of the remaining job units in $[t + 1, T]$, since OPT could find an optimal schedule for them in $[t + 1, T]$. Therefore, we would have closed t greedily while constructing S. Since we did not, our original assumption must have been incorrect.

Lemma 3.3. The number of non-full slots in S cannot exceed $|S^*|$.

1The extra unit comes from the slot t which we are attempting to close.

2Here, we crucially use the fact that t is non-full. If t was full, this point may not have been true since the left shifting argument would not hold, and the lemma breaks down.

![Figure 1: The top half depicts S and the bottom half S^*. Job u is scheduled by S in t such that $b^*_t[u] < b_t[u]$. If this was true for all such jobs u scheduled by S in t, then in $[t + 1, T]$, S^* would schedule as much as or more of every job that S would have scheduled there even after closing t.](image)

Proof. Start at the right most non-full slot in S, say t. From Lemma 3.2, we can find one job j in t such that $b^*_t[j] > b_t[j]$. By Lemma 3.1, job j must be present in every non-full slot in $[r_j, t]$. This means that the number of non-full slots in $[r_j, t]$ cannot exceed $b^*_t[j]$. So we can charge every non-full slot of S in $[r_j, t]$ to a distinct slot in S^* in $[r_j, t]$. Now, move to the latest non-full slot opened by S strictly earlier than r_j and repeat this process. In this way, we can charge every non-full slot in S to distinct slots in S^*.

Lemma 3.4. The number of full slots in S cannot exceed $|S^*|$.

Proof. Let the number of full slots in S be $|S_f|$. Since the maximum amount of job mass in any slot is g, the amount of job mass present in S_f is $g|S_f|$. Similarly, the total job mass OPT scheduled is at most $g|S^*|$. By the conservation of job mass, $g|S_f| \leq g|S^*|$ and the lemma follows.

The total cost of our schedule is the sum of the full and non-full slots, and therefore, from Lemmas 3.3 and 3.4, this sum cannot exceed $2|S^*|$. This proves Theorem 3.1.

4 CONCLUSION

In this paper, we prove that a simple greedy algorithm matches the best known approximation ratio for the active time problem.

Crucially, the complexity status of this problem is still open as is breaking the 2 upper bound barrier. A possible avenue to achieving this is via a local search technique which we briefly sketch in the appendix.
A.1 Verifying a feasible schedule exists

Define a graph G with vertex set consisting of one node for every job j, one node for every open time slot t and a source and destination node (s and d respectively). Add edges from s to each job node j with capacity p_j. Add edges from each open time slot node t to d with capacity g. For each job j, for any time slot t in its window, add an edge from job node j to time slot node t with unit capacity. The graph structure is shown in Figure 2. An active time instance has a feasible schedule on the set of open time slots iff the maximum flow from s to d has value $\sum_{j}\sum_{t} p_j$. Furthermore, if a feasible schedule is possible, the unit capacity edges with non-zero flow give the mapping of job units to time slots.

A.2 Tight Example

The tight example consists of the following set of jobs - one job of length g with window $[1, 2g]$, g unit length jobs with window $[1, g+1]$ and $g - 1$ rigid jobs of length g with window $[2, g+1]$. OPT would have opened time slot $t = 1$, scheduled all unit jobs there and therefore been able to schedule the g length job above the rigid jobs. This gives a total cost of $2g$. However, our greedy algorithm closes time slot $t = 1$ since that is still feasible. Therefore, the unit jobs are forced to be scheduled above the rigid job, thereby pushing the long job out. This gives a total cost of $2g$. Thus, we get a lower bound of $\frac{2g}{g+1}$ which equals 2 as g becomes large. The two schedules are depicted in Figure 3 (reprinted from [5]).

A.3 Local Search

A possible approach to breaking the 2 barrier for this problem is local search. Local search parametrized by a constant b involves repeatedly performing local optimizations of the form - close b open slots and open at most $b - 1$ new slots. We believe that this could provide a PTAS for this problem. Indeed, the best lower bound we currently have for local search is $1+1/(b-1)$. This is illustrated in Figure 4 (reprinted from [5]). Here, each column has $g - (g - 1)/b$ job mass in it (where g is the capacity of the time slot) so that if we take any b columns, the total job mass amounts to $(b - 1)g + 1$ which clearly cannot be scheduled in at most $b - 1$ slots. This gives a lower bound of $g/(g - (g - 1)/b)$ which tends to $1 + 1/(b-1)$ as g becomes very large.

REFERENCES

