[Va 87] V.V.Vazirani, ‘NC Algorithms for computing the number of perfect matchings in K3 3-

free graphs and related problems’, Information and Computation 80, No. 2 (1989), pp.
152-164.

the CRCW PRAM. This algorithm improves almost all the results presented in this paper, in
terms of time and processor efficiency. This algorithm also improves the results in [KMV 88].
The parallel algorithm for the triangle problem can also be implemented in the stated time and
processor bounds on the weaker CREW PRAM model (with no concurrent writes permitted).

Acknowledgements: Thanks to Vasant Shanbhogue for listening to my ideas in the mid-
dle of the night and especially to Estie Arkin for valuable comments on an earlier draft of the
paper.

References

[As 85] T.Asano, ‘An approach to the subgraph homeomorphism problem’, Theoretical Com-
puter Science, 38 (1985), pp. 249-267.

[BM 77] J.A.Bondy and U.S.R.Murty, ‘Graph Theory with applications,” American Elsevier,
New York (1977).

[FHW 80] S.Fortune, J.E.Hopcroft and J.Wyllie, ‘The directed subgraph homeomorphism
problem’, Theoretical Computer Science, 10 (1980), pp. 111-121.

[FT 88] D.Fussel and R.Thurimella, ‘Separation pair detection’, Proceedings of AWOC 88,
LNCS 319, (1988), pp. 149-159.

[GJ 78] M.R.Garey and D.S.Johnson, ‘Computers and Intractability: A guide to the theory of
N P-completeness’, Freeman, San Francisco.

[Ha 43] D.W.Hall, ‘A note on primitive skew curves’, Bull. Amer. Math. Soc., 49 (1943), pp.
935-937.

M Khuller, 5.G.Mitchell, V.V.Vazirani, orithms for the two disjoint paths

KMV 88] S.Khuller, S.G.Mitchell, V.V.Vazirani, ‘NC Algorithms for th disjoi h
problem and for finding a Kuratowski homeomorph’, Technical Report TR 88-960, Com-
puter Science Department, Cornell University, (1988).

[KR 86] P.N.Klein and J.H.Reif, ‘An efficient parallel algorithm for planarity’, Proceedings of
FOCS conference, (1986), pp. 465-477.

[KS 89] S.Khuller and B.Schieber, ‘Efficient parallel algorithms for testing connectivity and
finding disjoint s-t paths’, in preparation.

[LR 80] A.S.LaPaugh and R.L.Rivest, ‘The subgraph homeomorphism problem’, Journal of
Computer and System Sciences, 20, (1980), pp. 133— 149.

[MSV 86] Y.Maon, B.Schieber and U.Vishkin, ‘Parallel ear decomposition search (EDS) and
st-numbering in graphs’, Theoretical Computer Science, 47 (1986), pp. 277-298.

[PS 78] Y.Perl and Y.Shiloach, ‘Finding two disjoint paths between two pairs of vertices in a
graph’, Journal of the Association for Computing Machinery, 25, (1978), pp. 1-9.

[RS 86] N.Robertson and P.D.Seymour, ‘The disjoint paths problem’, manuscript, (1986).

[Sh 80] Y.Shiloach, ‘A polynomial solution to the undirected two path problem’, Journal of
the Association for Computing Machinery, 27, (1980), pp. 445-456.

[SV 82] Y.Shiloach and U.Vishkin, ‘An O(log n) parallel connectivity algorithm’, Journal of
Algorithms, vol.3, (1982), pp 57-63.

[TV 85] R.E.Tarjan and U.Vishkin, ‘An efficient parallel biconnectivity algorithm’, SIAM
Journal on Computing, 14 (1985), pp. 862-874.

Step 3: In G; —{v}, find a cycle C of length > 3. Since G is triconnected we can find three vertex
disjoint paths from v to three distinct vertices on the cycle C'. Consider the segments of
these paths upto their first point of intersection with C'. The graph obtained from the
three disjoint paths together with C' is homeomorphic to K4. We may need to replace
virtual edges by paths in the original graph using ideas from the proof of Lemma 5.

Analysis: We can find cycle C' after obtaining a spanning tree of G and adding one non-tree
edge. This takes O(log n) time using O(n) processors. The main bottleneck in the algorithm
is finding the three disjoint paths, which takes O(log?n) time using M (n) processors.

Our algorithm to obtain a subgraph of G homeomorphic to K3 is based on the proof of
Lemma 7 in [As 85]. Again, we assume that G has O(n) edges and a triconnected component
G; satisfying one of the conditions in Lemma 7. The bottleneck in the algorithm is in finding
the three disjoint paths which takes O(log?n) time using M (n) processors.

Algorithm-Find- K 3:
Step 1: Consider G;; we consider all the three cases which it may satisfy.

1. G, has five or more vertices: Use the algorithm Find- K4 to construct G, a subgraph
homeomorphic to K4. Let the vertices in G’ of degree three be called vy, vy, v3, v4.
If G' is exactly the graph K4, then (G; must have another vertex u ¢ G'. Find three
disjoint paths from u to any three vertices of the K4. From the three paths and the
K4 we can find a subgraph homeomorphic to K 3.
If G’ was a subdivision of K4, then consider a vertex u on the path P(vy,v2). Since
G is triconnected, there must be a path from u to some other vertex w of G’ in
G — {vy,v2}. Using this path and the K, it becomes easy to extract the subgraph
homeomorphic to Ky 3.

2. G; is K4 with a virtual edge: We can replace the virtual edge by a path of length
> 2 and obtain a subgraph homeomorphic to K 3.

3. G is a triple bond of virtual edges: We replace all three virtual edges by paths of
length > 2 and obtain a subgraph homeomorphic to K3 3.

Thus we conclude:

Theorem 6 For a given graph G, we can find a subgraph homeomorphic to Ky 3 or K4, if G
has such a subgraph in O(log?n) time using M(n) processors.

Using similar ideas to the ones discussed above we can develop parallel algorithms for several
other pattern graphs considered in [As 85]. There are a few cases which need to be considered
and we leave these for the reader.

Theorem 7 There is an O(logn) time algorithm using n processors to test whether a given
graph G, contains a subgraph homeomorphic to Cy or Cs (where Cy, is a simple cycle of length
k) and to obtain the homeomorph.

7 Conclusions

Recent work by Baruch Schieber and the author has resulted in a parallel algorithm to solve
the k-vertex disjoint paths problem in O(logn) time using (n+ m)/logn processors [KS 89] on

Theorem 4 A graph is outer-planar if and only if it has no subgraph homeomorphic to K4 or
1(273.

Lemma 6 (Asano) A graph G has a subgraph homeomorphic to K4 if and only if there is a
triconnected component of G with four or more vertices.

From Lemma 3 and Lemma 6 we are able to develop an efficient algorithm for testing
whether a given graph G contains a subgraph homeomorphic to Kjy.

Algorithm Test-for- K4:
Step 1: For any simple graph G if | V(G) |> 2 and | E(G) |> 2| V(G) | —2 then output ‘yes’.

Step 2: Decompose G into its triconnected components; if G has no triconnected component with
four or more vertices, then output ‘no’ otherwise output ‘yes’.

Analysis: We use the O(logn) time parallel algorithm of [F'T 88] to decompose the graph into
its triconnected components using O(n) processors.

Lemma 7 (Asano) A simple graph G has a subgraph homeomorphic to K, 3, if and only if
there is a triconnected component of G satisfying one of the following:

(i) It has five or more vertices.

(i) It is the graph K4 with at least one virtual edge.

(iii) It is a triple bond of three virtual edges.

This characterization enables us to efficiently test if a given graph G contains a subgraph
homeomorphic to K3 3 via an algorithm almost identical to Algorithm Test-for- K4. Combining
these two, we get an efficient parallel algorithm to test whether a given graph is outer-planar.
Thus we conclude:

Theorem 5 There is an O(logn) time algorithm using n processors to test if a given graph G
is outerplanar.

Remark: This does not yield an algorithm to obtain the planar embedding of the graph if it is
outer-planar. To obtain a planar embedding, we add one artificial vertex v to G, and an edge
from v to every vertex in the graph. The new graph is planar if and only if G was outerplanar
and using the O(log® n) time algorithm of [KR 86] we can obtain a planar embedding for G.
The addition of v ensures that all the vertices are on the same face in the obtained embedding.

Finding K4 and K33 Homeomorphs:

Our algorithm for obtaining a subgraph of G homeomorphic to K4 is based on the proof
of Lemma 6 in [As 85]. Assume G has O(n) edges (if not, we can choose a subgraph of G
having O(n) edges and a K4 homeomorph) and has a triconnected component with four or
more vertices.

Algorithm Find- K 4:
Step 1: Consider the triconnected component of G having four or more vertices, and call it G;.

Step 2: Choose any vertex v of GG; and consider the subgraph G; — {v} (which is biconnected).

(a) If there is a bridge B, in the set Quter-skewc which is also skew to B. and has
attachment vertices z1,z, skew to two attachment vertices of B. (say ¢; and ¢z
distinct from {z1,22}) such that {e1,21} ({c2,22}) belong to the upper (lower)
chain. There are various cases to consider of which we illustrate only one (see Fig.
7). Here ¢; = ¢, and ¢3 = ¢;,. We find a path from z, to ¢; in By, and a path from
c1 to z9 via @ on C'. We also find a path from z5 to z1 in B, and complete the cycle
by finding a path from z; to ¢3 via b on C and a path from ¢ to ¢ via z;.

(b) If there is no such bridge then there is no solution. The removal of vertices {cy, e}
separate the graph into a connected component G, containing ¢ and G, containing
b and c¢. Any path from ¢ to @ must enter GG, through c,; or ¢;;. Assume it is ¢.
Now we need to find a simple path from ¢,; to b via a and avoiding ¢;, (since any
path from ¢ to b will go through ¢;,). Clearly this is impossible (see Fig. 8). There
may be a bridge in the set Quter-skewc which is skew to B, but does not have the
vertices z1 and x5 as required. Again it can be seen that there is no solution to the
problem (see Fig. 9).

Using the algorithms in [KR 86], [F'T 88], [SV 82] and [TV 85] we can implement the above
algorithm in O(log®n) time using O(n) processors. Thus we conclude:

Theorem 2 [In an undirected planar graph G, given three vertices a,b and ¢ we can find a
cycle (if it exists) containing these three vertices in O(log*n) time using O(n) processors.

Using a lemma of Hall’s [Ha 43] we can extend this algorithm to K5 3-free graphs (the class
of graphs which do not contain a subgraph homeomorphic to K3 3) easily.

Theorem 3 (Hall) Each triconnected component of a K3 3-free graph is either planar or ex-
actly the graph Ks.

6 Finding other homeomorphs

In this section we consider the ‘non-fixed vertex’ version of the SHP for undirected graphs.
We first state the following lemmas which prove some useful properties about graphs. The
proofs may be found in [As 85].

Lemma 2 For a triconnected graph H, a graph G has a subgraph homeomorphic to H if and
only if there is a triconnected component of G' that has a subgraph homeomorphic to H.

Lemma 3 If a simple graph G with two or more vertices has no subgraph homeomorphic to

Ky, then | E(G)|< 2| V(G) | -3.

Lemma 4 If a simple graph G with two or more vertices has no subgraph homeomorphic to

Kas, then | E(G)|< 2| V(G)] —2.

Lemma 5 Let D be a decomposition of a graph G into triconnected components. Let {eq, e, ...,€,}
be the set of all virtual edges of a triconnected component G' in D. Then there is a set of vertex-
disjoint paths in G, say {Py, P, ..., P;} such that each P; (j = 1,2,...,7) connects the two end
vertices of e;, and contains no edge of G'.

A planar graph is outer-planar if it can be embedded in the plane so that all its vertices lie
on the same face. The following theorem is an easy corollary to Kuratowski’s theorem.

Cul Cur

Ci Clr

Figure 8: No solution possible

Figure 9: No solution possible

subgraph B, by adding the lower attachment vertices to the internal vertices of B.. We now

consider the following cases:

1. There are two disjoint paths from ¢ to {cyi, cur } in By, (assuming {cy, ¢y, } are distinct).
A cycle containing all three vertices a, b, ¢ can now be found as shown in Fig. 6.

Figure 6: Construction of required cycle using ¢,; and ¢,

2. There are two disjoint paths from ¢ to {¢y,¢;} in Bj.. This case is identical to the
previous case.

Figure 7: Construction of required cycle using B,

3. If neither of the above two cases apply, then there are cut-vertices z, and z; separating
¢ from the attachment vertices. (If ¢y and ¢, are identical then z; may be the lower
attachment vertex.) Decompose B. into its biconnected components and obtain the cut-
vertices closest to ¢ (z, and ;). Construct two disjoint paths Pi[c; 2,] and Pylc; 2] from
¢ to {z,,2;}. There are two cases to check:

~ desired cycle

Figure 4: Bridge B, is skew to {¢1, 2}

(b) Bridge B is skew to {a,b} as well as to {¢1,c2} then a solution easily follows by
constructing two disjoint paths P; and P from ¢ to {¢1,c2} (see Fig. 4). Let B,
have attachment vertices z; and z3 skew to (¢1,¢2) and (a,b). We illustrate one of
the cases in Fig. 4. The cycle is now easy to construct by splicing in the appropriate
segments as shown.

Now we consider the case when B, has three or more vertices of attachment. We orient the
cycle clockwise and call Cla;b] the upper chain of C. We call C[b; a] the lower chain of C. By
C(a;b) we refer to the path C[a;b] —{a,b}. Similarly we define C(b;a). We need to consider
the various ways in which B, could be attached to C. We define upper attachment vertices and
lower attachment vertices to be the attachment vertices of B, on the upper and lower chains
of C' respectively.

B.

Figure 5: The subgraph B,

The extreme vertices of attachment on the upper chain are called upper-left and upper-right
vertices respectively. These are denoted by ¢,; and ¢, (see Fig. 5). (When B. has only one
attachment vertex they are not distinct.) Similarly define ¢; and ¢, to be the lower-left and
lower-right vertices. We denote by B,. the subgraph of B, induced by the internal vertices of
B, together with the upper attachment vertices and the chain Cf[ey; ¢yr]. Similarly define the

simple cycle C!. Let Pi(z!,z¥) be the subpath of C/ from z! to 2™ avoiding the the attachment
bar of B;.

In C’, replace all the segments which are attachment bars of some bridge B; € Quter-non-
skewcs by the path Pi[z}; :L’f’] The new cycle C' contains both a and b, and all its outer bridges
are skew to (a,b).

The above steps can be implemented efficiently in parallel using the parallel algorithms in
[KR 86], and [SV 82], and standard pointer doubling techniques. The parallel algorithm takes
O(log*n) time using O(n) processors.]

Now consider the cycle C' as constructed in Lemma 1. If vertex ¢ is on C, then C is the
required cycle. Assume that ¢ is an interior vertex of some bridge B.. Since G is biconnected,
B, has at least two vertices of attachment on C.

If B. has only two vertices of attachment (¢q, ¢2) on C' then there are two cases to consider.

1. If the two vertices of attachment are on one of C[a;b] or C[b;a] then in B. we can find
two disjoint paths from ¢ to {¢1,¢2} and a solution easily follows using these two paths
along with the appropriate segment of C' (see Fig. 2).

Figure 2: Two attachment vertices on C[a;b]

Figure 3: No solution to problem

2. If ¢1 is on C(a;b) and ¢3 on C(b; a) then there are two cases to consider.

(a) If there is no bridge in the set Outer-skewc which is also skew to {¢1,¢2} then there
is no solution since {cq, ¢o} separate all three of a,b, ¢ into three separate connected
components (see Fig. 3).

by IntC and FztC respectively. In a plane graph G, each bridge of G relative to C' is entirely
contained in IntCor EztC. A bridge in IntC (EztC) is called an inner (outer) bridge.
Consider a planar embedding of . Since (G is biconnected, we can find a cycle ¢’ in
G containing ¢ and b by finding two disjoint a-b paths. The disjoint a-b paths are found in
parallel by using the s, ¢-numbering of the graph [MSV 86]. (This technique is only useful for
constructing 2 disjoint paths, and does not extend to finding & paths.) Now consider the set
of bridges of G with respect to the cycle C’. Given a planar embedding of &, the bridges may
be partitioned into two sets:
Outercr = {B; | B; is embedded in FztC" }
Innercr = {B; | Bj is embedded in IntC" }
A bridge B; € Outercs is in the set Quter-skewer if B; is skew to (a,b); B; is in the set
Outer-non-skewes if it is not skew to (a,b). Ensure that in the embedding, vertex c is in the
interior of C”.

Lemma 1 In a planar graph G we can find a cycle C' through two specified vertices a and b
such that there is no bridge in the set Quter-non-skewc. Moreover, this cycle may be found
in O(log® n) time using O(n) processors.

Proof: Start by finding a cycle ¢’ through a and b as described above. Ensure that vertex ¢
is in the interior of cycle C’ in the planar embedding (else modify the embedding). We now
modify the cycle C’ to obtain a cycle C' containing @ and b such that there are no bridges in
the set Quter-non-skewc with respect to the cycle C.

Since G is biconnected, each bridge has at least two vertices of attachment on C’. Let the
attachment vertices of B; on C' be z}, 22, ...,:L‘fi (considered in clockwise order on C’). We
call z}(z) the first (last) attachment vertex of B; on C’. The segment (’[z}; 2] is called
the attachment bar of B; on C’. It is easy to see that outer bridges avoid one another. Hence,
the attachment bar of each outer bridge can overlap with the attachment bar of another outer
bridge only at an end-vertex, and not at any internal vertex.

Fach bridge in the set Quter-non-skewc: has all of its attachment vertices (and thus its

attachment bar) on the segment C’[a;b] or C'[b;a].

' attachment bar of B;

Figure 1: The graph B!

Consider the planar embedding of B; and its attachment bar, and call the resultant graph
B! (see Fig. 1). Note that B is biconnected and planar. In B! the vertices z} and z'* are on
the outermost face in the planar embedding. Since B} is biconnected, the outer face of B; is a

4 A parallel algorithm for the triangle problem

We give a parallel algorithm for the following problem: given an undirected graph G, and
three specified vertices a, b, ¢ of G, determine whether the three vertices lie on a common simple
cycle, and construct such a cycle if one exists.

Our parallel algorithm is a parallelization of the sequential algorithm developed by LaPaugh
and Rivest [LR 80] to solve the problem. We assume that G is biconnected, since a,b and ¢
must be in the same biconnected component if the cycle exists.

The main idea is to decompose G into pieces and to look for paths which must exist in these
pieces if the cycle is to exist in G. Using the k-disjoint paths algorithm developed in section 2,
we can either construct the desired cycle from these paths, or conclude that such a cycle does
not exist.

The bottleneck in the algorithm is obtaining three vertex disjoint paths which can be done
in O(log®n) time using M (n) processors. All the other steps can be implemented in parallel
using the algorithms in [SV 82], [TV 85] and [FT 88]. Thus we conclude:

Theorem 1 In an undirected graph G, given three vertices a,b and ¢ we can find a cycle
containing these three vertices in O(log?n) time using M(n) processors.

5 The triangle problem for planar graphs

In the previous section we developed a parallel algorithm for solving the triangle problem
in an arbitrary graph GG. Unfortunately the algorithm is inefficient in the number of processors
it uses. In this section we concentrate our attention on planar graphs and present an O(n)
time sequential algorithm for the problem. We are also able to provide a very efficient parallel
algorithm for the problem that uses n processors and O(log?n) time.

We assume that G is biconnected since a,b and ¢ must be in the same biconnected com-

ponent if the cycle exists. Note that if any of the edges (a,b),(a,c),(b,c) are in G then the
problem can be solved easily. Say, (a,c) is in G, now the problem is reduced to finding a
path from a to ¢ containing b which can be done by finding disjoint paths from b to {a,c}.
Henceforth, we assume that none of the edges (a,b),(a,c),(b,c) are in G. Before we present
the algorithm we review some definitions.
Definitions: Let C' be a cycle in GG, and let e and f be edges of G not in C. Define the
equivalence relation =¢ by e =¢ f if and only if there is a path in G that includes e and f
and has no internal vertices in common with €. The subgraphs induced by the edges of the
equivalence classes of E(G) — E(C) under =¢ are called the bridges of G relative to C'. The
vertices of attachment of bridge B to cycle C' are the vertices in V(B) N V(C). The remaining
vertices of bridge B are called the interior vertices of B.

A bridge with k vertices of attachment is called a k-bridge. Two k-bridges with the same
vertices of attachment are equivalent k-bridges. The vertices of attachment of a k-bridge B
with k£ > 2 effect a partition of (' into edge-disjoint paths, called the segments of B. Two
bridges avoid one another if all the vertices of attachment of one bridge lie in a single segment
of the other bridge; otherwise they overlap. Two bridges B and B’ are skew if there are four
distinct vertices u, v, u’, v’ of C' such that v and v are vertices of attachment of B, v’ and v’
are vertices of attachment of B’, and the four vertices appear in the order u,u’,v,v on C. It is
shown in [BM 77] that if two bridges overlap, then they are either skew or equivalent 3-bridges.

If C' is a closed Jordan curve in the plane, then the rest of the plane is partitioned into two
disjoint open sets called the interior and exterior of C'. We denote the closures of the regions

shared memory. In each time unit, a processor can read from a memory cell, perform an arith-
metic or logical computation, and write into a memory cell. Concurrent reads and concurrent
writes into the same memory cell by different processors are permitted. If a write conflict
occurs, an arbitrary processor succeeds.

2 Finding % disjoint s-t paths

We present a parallel algorithm for finding k-vertex disjoint paths (for any constant k)
between a pair of vertices in an undirected graph G, using flow techniques.
Given the graph G(V, E) we construct the directed graph G'(V’, E’) as follows:

V= {vlvv" | veV - {57t}} U {37t}

E' = {0 o} u{(",), (", u) | (u,v) € E,{u,0} SV — {s,t}}U
{(s,0") | (s,0) € B} U{(v", 1) | (v,1) € E}

In the directed graph G’ we treat the node s as a ‘source’ and the node t as a ‘sink’. All
the edges in the directed graph are treated as unit capacity edges.

It is easy to see that a flow of size k& in G’ corresponds to k-vertex disjoint s-¢ paths in
G. The paths in GG are vertex disjoint since corresponding to each vertex v € G we have two
vertices (v and v”) in G’ connected by an edge of unit capacity, ensuring that only a single
unit of flow is pushed through each vertex of G. Moreover, the maximum flow in G’ is equal to
the number of vertex disjoint s-t paths in G. A flow of size k in G’ is obtained by & successive
augmentations; each augmentation corresponding to finding a s-¢ path in G. Menger’s theorem
guarantees the existence of k-vertex disjoint s-t paths in a k-vertex connected graph. Fach flow
augmenting path can be found by matrix multiplication, and since we only need a constant
number of flow augmenting paths this can be efficiently implemented in parallel.

Thus the k paths may be found in O(log?n) time using M (n) processors. We first used this
technique in [KMV 88].

3 SHP for directed graphs

In this section we deal with the ‘fixed vertex’ version of the SHP for directed graphs. If
the pattern graph H has the property that all the arcs share a common tail (head), then we
can obtain a parallel algorithm to obtain a subgraph of G homeomorphic to a subgraph of H,
by a parallelization of the algorithm in [FHW 80] using the flow augmenting path ideas (see
section 2).

When G is a directed acyclic graph and H is any fixed pattern graph, Fortune, Hopcroft
and Wyllie [FHW 80] give a polynomial time algorithm via a ‘pebbling game’. Assuming that
H has k arcs; they show how to construct another graph G’ with O(nk) vertices that encodes
the configurations of the pebbling game. In G’, a path finding algorithm is used to find a
path from the starting configuration to any winning configuration. We observe that the graph
may be constructed in parallel and the path finding can also be implemented in parallel using
matrix multiplication.

1. H is a graph, all of whose arcs share a common head or tail,
2. (G is acyclic.

For the case of undirected graphs, the problem was known to be in polynomial time for only
a few non-trivial graphs until recently, when Robertson and Seymour in [RS 86] showed that
the problem is solvable in polynomial time for all fixed graphs H. Unfortunately, the constants
whose height
(number of levels of exponentiation) is worse than exponential in | V(H) |). For special pattern

involved in their algorithm are forbiddingly large (larger than a “tower of 2’s”

graphs the only non-trivial results known were for the cases when H is a cycle of length three
[LR 80], or when H consists of two independent edges [Sh 80], [PS 78]. These problems can
also be stated as follows: determine, if there exists a simple cycle containing three given vertices
in an undirected graph G} or, given pairs of vertices {(s;,%;)} (¢ = 1,2) in an undirected graph,
find two vertex-disjoint paths connecting s; with #;,(¢ = 1,2). Both these problems are basic
problems for all fixed SHP’s for undirected graphs, since any undirected graph which has at
least two edges and is not a tree of height one, contains a cycle of length three, or two disjoint
edges. Thus, the fixed SHP contains one of the above two problems as a subproblem unless it
is a tree of height one. Khuller, Mitchell and Vazirani [KMV 88] developed an NC' algorithm
that solves the two disjoint paths problem. In this paper, we present an N (' algorithm for
the problem of finding a simple cycle containing three fixed vertices in the graph. For the
case of planar graphs we develop a linear time algorithm which yields a more efficient parallel
algorithm.

Now consider the ‘non-fixed vertex’ version of the SHP. This problem not only polynomially
reduces, but also NC reduces to the ‘fixed vertex’ version of the problem. For the case of
undirected graphs, for special pattern graphs H, Asano [As 85] gives efficient algorithms to
test whether a graph G contains a subgraph homeomorphic to H, and also provides algorithms
to obtain these homeomorphs. In particular, a sequential algorithm is given for the fixed
graph K53 (also called the Thomsen graph). The parallel complexity of this problem was first
studied by Vazirani [Va 87], and he developed an O(log® n) time algorithm using n processors
for checking whether a given graph G contains a subgraph homeomorphic to K33, but the
question of obtaining the homeomorph was left open. In [KMV 88] the problem of obtaining
a subgraph homeomorphic to K33 was solved by presenting an O(log?n) time algorithm using
M (n) processors (where M (n) is the number of arithmetic operations required to multiply two
n X n matrices).

We consider several other pattern graphs H, for each of which we give an O(logn) time
algorithm using n processors to determine whether an input graph G has a subgraph homeo-
morphic to H. Included among these are the graphs K4 and K 3 which are used to characterize
outerplanar graphs. Thus, we provide an O(logn) time algorithm using n processors to test, if
a given graph G is outerplanar (which is faster than the O(log® n) time algorithm of [KR 86]
for planarity testing). We can also find subgraphs of G that are homeomorphic to these graphs,
if G has such a homeomorph, in O(log? n) time using M (n) processors.

In this paper we restrict our attention to the SHP for which, the images of edges of H, are
paths which are required to be vertex disjoint. In [LR 80] a reduction from the edge-disjoint
problem to the vertex-disjoint problem was given; we observe that the reduction can be carried
out efficiently in parallel. Thus a parallel algorithm for the vertex-disjoint version implies a
parallel algorithm for the edge-disjoint version. Most of our algorithms are based on a parallel
algorithm to find k-vertex disjoint paths between a pair of vertices in a graph G.

The model of computation assumed is the CRCW (Concurrent Read Concurrent Write)
PRAM model. The model consists of a number of identical processors and a common globally

Parallel Algorithms for the Subgraph
Homeomorphism Problem

Samir Khuller *
Computer Science Department
Cornell University

Ithaca, NY 14853

Abstract

The subgraph homeomorphism problem for a fixed graph H is stated as follows: given
a graph G, determine whether G has a subgraph homeomorphic to H, and obtain it. We
study the parallel complexity of this problem for various pattern graphs H, and present
fast NC' algorithms for various versions of this problem. We also present an efficient NC'
algorithm to check if a given graph is outer-planar and to obtain its forbidden homeomorphs
K4 or K 3, if it is not.

1 Introduction

The subgraph homeomorphism problem (SHP) for a fixed graph H (the pattern graph) is
stated as follows: given a graph G(V, F), determine whether G has a subgraph homeomorphic
to H; i.e., a pair of one-to-one mappings, (v, a), the first from vertices of H to vertices of G}
the second from edges of H to simple paths of G. We require a path in G which corresponds to
edge (z,y) in H, to go from v(z) to v(y) in G. The images of vertices of H, which are vertices
of G, may be specified a priori and the images of edges of H (which are paths in '), may be
required to be vertex-disjoint or edge-disjoint. Graphs G and H are either both directed or
both undirected.

If G and H are both part of the input, then the SHPis N P-complete [GJ 78]. In this paper
we restrict our attention to various SHP’s derived by fixing H. The main question for such
SHP’s is, “For a given pattern graph H,is there a polynomial time algorithm, which given an
input graph G, will determine whether there is a homeomorphic image of H occurring in G 7”
The complexity of this problem was left open in [GJ 78]. Recently, Robertson and Seymour
[RS 86] have shown that for undirected graphs this problem is solvable in polynomial time for
all fixed graphs H. In this paper, we are interested in the parallel complexity of the SHP for
some fixed pattern graphs.

First consider the ‘fixed vertex’ version of the problem (the input specifies which vertex of
H corresponds to which vertex of G). For the case of directed graphs, the sequential complexity
of the problem has been characterized by Fortune, Hopcroft and Wyllie [FHW 80]. They show
that if H is a fixed graph, all of whose arcs share a common tail, or all of whose arcs share a
common head, it is solvable in polynomial time and is N P-complete for all other fixed graphs
H. They also show that the problem is solvable in polynomial time when G is a directed acyclic
graph. In this paper, we develop NC' algorithms for the following cases:

*supported by NSF grant DCR 85-52938 and PYI matching funds from AT&T Bell Labs.

