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Abstract

Broadcast scheduling is a widely used mechanism for disseminating vast amounts of

information. In this model, information is discretized into “pages”, which clients

explicitly request. The primary advantage of broadcasting is that any number of

outstanding requests may be satisfied via only one broadcast. There are several ways

to measure the quality of a schedule. The majority of this paper is devoted to the

study of the FIFO algorithm for online broadcasting, in which the server does not know

anything about future requests at any given time, with the goal of minimizing the

maximum response time. In addition, an integrality gap for throughput maximization

and a few greedy approaches to the problem of broadcasting with fixed maximum

response times are described.

1 Introduction

Scheduling scenarios typically involve finding a way to satisfy numerous independent re-

quests for resources. In traditional scheduling, several jobs may arrive over a period of time,

each job with an independent deadline. The scheduler’s job is to schedule these jobs in such
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a way to create a ‘satisfactory’ schedule. In unicast scheduling, one job may be processed

at any given time. In multicast scheduling, several (but a limited number of) jobs may be

scheduled simultaneously.

Broadcast scheduling is a mechanism in which information is disseminated by means

of a server (e.g. radio or satellite) to a large number of users. In this model, clients

request information rather than the resources to complete a specific job. The information

is discretized into n discrete pieces, denoted as “pages” 1 to n and can be relayed to any

number of users via one broadcast, as opposed to individual and redundant information

transfers. Time is broken into discrete intervals, called “slots”. Time slot t will refer to the

unit of time between t− 1 and t and will henceforth be denoted as time t where the context

makes the meaning unambiguous. At each time t, the server is permitted to broadcast

exactly one page.

Each user issues a request for a particular page and waits for that request to be satisfied.

When we say that a user has requested a page at time t, we mean that the user requests the

page at the precise moment before time slot t begins. For instance, if the page scheduled at

time t is also the page requested at time t, then that request is considered to be satisfied at

time t. Once a page is broadcast, all outstanding requests for that page are satisfied. This

is the primary advantage over traditional scheduling, in which at most one request (or a

fixed number of requests) can be satisfied at a time.

This model becomes increasingly relevant as the demand for information continues to

grow exponentially with respect to time and service providers; information providers are

seeking ways to meet this demand without overloading their servers. Already, broadcasting

models have been implemented in commercial systems including the Hughes DirecPC System

[5] and the Intel Intercast System [9].

There are several ways to measure the quality of a broadcast schedule. Intuitively, the

“response time” for a request is the duration of time which that request has to wait for

its page to be scheduled. One common measure of quality is the sum (or, equivalently, the

average) of response times over all requests: the best schedule is that which minimizes this

this sum. Another measure, the maximum response time, is the primary focus of this paper.
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1.1 Related Work

The problem of minimizing the average response time has been proven by Erlebach and

Hall to be NP-complete1[6]. Gandhi et al. found a 2-speed 2-approximation [7] for this

objective function. A k-speed algorithm can broadcast up to k pages simultaneously and an

α-approximation algorithm for a minimization problem is guaranteed to perform no worse

than α times the optimal solution. Bartal et al. provided an algorithm that runs faster, but

does not yield a better approximation bound [2].

Another objective function is to minimize the maximum response time. It is known that

this problem is NP-complete [3], and a 2-approximation for the offline version (in which

all requests are known before any decisions are made about which pages to broadcast) was

provided in [2]. In this paper, we consider the online version, where at any time t, the server

has no knowledge of future requests when it makes a decision about what to schedule at

time t.

Another well-studied problem is throughput maximization, in which each request for a

page comes with a pre-defined deadline. The goal is to maximize the number of requests

satisfied before their given deadline. Bar-Noy et al. [1] gave a 1

2
-approximation for this

problem, i.e. if the optimal solution satisfies M requests, their algorithm is guaranteed to

satisfy at least 1

2
M requests. This approximation was later improved to 3

4
by Gandhi et al.

[8] and more recently, was proven to be NP-complete [3].

1.2 Problem Definition

We formally define the broadcasting scenario as follows: there are n possible pages, P =

{1, 2, . . . , n}. We assume that time is discrete and at time t, any subset of pages can be

requested. Let (p, t) represent a request for page p at time t. Let r
p
t denote number of

requests (p, t). A time slot t is the window of time between time t − 1 and time t. The

1A problem is NP-complete means that it cannot be solved in polynomial time unless all known NP-

complete problems can also be solved in polynomial time. It is generally accepted that NP-complete prob-

lems cannot be solved quickly, i.e. in polynomial time, and much research has been devoted to approximating

the solutions to these problems.
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server can broadcast a page in each time slot. When a page is broadcast in time-slot t, we

will simply say that it has been broadcast at time t. We say that a request (p, t) is satisfied

at time S
p
t , if S

p
t is the first time instance after t when page p is broadcast. The response

time of request (p, t) is S
p
t − t.

1.3 Summary of Results

The majority of this paper is devoted to the analysis of the online broadcasting model for

minimizing the maximum response time. We show that the FIFO algorithm yields a 2-

approximation and that there exists no online deterministic (2 − ε)-approximation for any

ε > 0. In addition, some greedy approaches are described as approximations for the problem

of maximizing the number of satisfied requests given a fixed maximum response time, though

none of these approaches is known to perform better than the current bound [8]. Finally,

we show that for throughput maximization, the LP-rounding technique cannot approximate

the optimal solution by more than 17

18
. This shows that the LP-rounding approach cannot

lend approximations that are arbitrarily close to the optimal solution, despite the fact that

the best known algorithm to date uses this technique [8].

2 Analysis of FIFO

The FIFO algorithm (First-In-First-Out) schedules pages in the order that they are re-

quested. If requests for multiple distinct pages arrive at the same time, FIFO schedules

these pages in arbitrary order. We define the ‘queue’ of a schedule at time t to be the set

of pages for which outstanding requests exist at time t.

For example, suppose that at time t = 0, pages A and B are requested, and at t = 1,

B and C are requested. One schedule may broadcast pages in the following order: [B, A,

B, C], with the maximum response time as 3 (for page C). Note that after page B has

been first broadcast, the queue contains only page A. After B and C are requested again

at t = 1, the queue contains pages A, B and C. A better schedule would broadcast page

A first so that both requests for page B can be satisfied via one broadcast. The optimal

schedule would be [A, B, C] with a maximum response time of 2. The maximum size of
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the queue over the entire schedule is 2. Note that the length of the queue at any time is a

lowerbound on the performance of the entire schedule.

We will prove that FIFO is 2-competitive and that no deterministic online algorithm

can perform better. These claims were made in [2], but their construction for the former

claim was incorrect and no proof was available for the latter.

Theorem 1. For any constant ε > 0, there exists no (2 − ε)-approximation for the online

model of minimizing the maximum response time.

Proof. Consider the following example. Let the client request pages 1, 2, . . . , n at time t = 0,

and then request whatever the online algorithm broadcasts immediately after that page is

broadcast. This is done for a total of n − 1 steps. At the point of this last request, we

see that OPT has nothing in its queue while the online algorithm has n − 1 outstanding

requests. Then, suppose that at time t = n−1, the client requests a set of n new pages, say

pages n + 1, . . . , 2n. OPT can schedule these items in the next n timeslots, but the online

algorithm now has n new pending requests in addition to the n− 1 pages that were already

in its queue. Even in the best case where the online algorithm continues to schedule what

was originally in its queue, the requests for the new n items will not begin to be satisfied

until n − 1 time units after the requests were made. Therefore, the last page scheduled by

the online algorithm would have waited a total of 2n− 1 time slots, while OPT would have

scheduled pages n+1, . . . , 2n within a maximum response time of n. The competitive ratio,

2n−1

n
, is arbitrarily close to 2.

Theorem 2. FIFO is 2-competitive online algorithm.

Proof. Let us denote FIFO’s and OPT ’s queues at time t as Ft and Ot respectively. Since

the particular advantage of broadcast scheduling over unicast scheduling is the ability to

satisfy more than one request at a time, we shall refer to such occasions as the “merging”

of requests. In other words, the merging of two requests (p, i) and (p, j), for i 6= j, refers to

the occasion where S
p
i = S

p
j .

Consider the difference between FIFO’s queue and OPT ’s queue, denoted as Ft\Ot.

If, at all times t, |Ft\Ot| is upper bounded by OPT , then the claim follows easily, since
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|Ft ∩ Ot| ≤ |Ot| ≤ OPT . Suppose that |Ft\Ot| first exceeds OPT at time t∗. We derive

the following contradiction: if |Ft∗\Ot∗| > OPT , then |Ft∗−δ\Ot∗−δ| > OPT for some earlier

time t∗ − δ.

Let P be the set of pages in Ft∗\Ot∗. In general, a page pi may have several outstanding

requests at a time t. Since their response times cannot exceed that of the earliest outstanding

request for pi, these subsequent requests can be ignored without changing the performance

of the schedule. Thus, without loss of generality, we can assume that there is exactly one

outstanding request at time t∗ for each page in P . Let the pages of P be ordered by the

time of their request, i.e. P = {p1, . . . , pk} such that the time of pi’s request ti is before or

equal to the time of pj’s request tj whenever i < j.

Let t∗ − δ be the time that the request for page p1 arrives, and define interval W as

the interval [t∗ − δ, t∗]. Note that δ ≥ k > OPT , since OPT satisfies all k requests for

the distinct pi’s in interval W , but may schedule other pages during that time also. At the

same time, FIFO satisfies no requests of P during interval W since these pages are still in

FIFO’s queue at time t∗. Let the set of pages scheduled by FIFO during interval W be

Q = {q1, . . . , qδ}, ordered by the time in which they were scheduled. All of these pages were

in FIFO’s queue at time t∗ − δ since we know that FIFO never scheduled p1 in interval

W . Therefore, all pages in Q must be distinct.

We want to prove that at most (δ − k) of these pages are also in OPT ’s queue at time

t∗ − δ, i.e., OPT can schedule at most (δ − k) of these pages in interval W . (Note that

given the length of window W , OPT cannot satisfy requests for the pages of Q after time

t∗, as this would increase the maximum response time beyond OPT .) If OPT does not

merge requests from Q and P , then it follows that OPT can schedule at most (δ − k)

pages of Q in interval W . Then, OPT must schedule the rest before time t∗ − δ, and

|Ft∗−δ\Ot∗−δ| ≥ k > OPT .

Lemma 1. OPT does not merge outstanding requests from sets P and Q.

Proof. Suppose OPT merges outstanding requests from set Q and set P in the interval W .

Consider the last merge, between the request(s) satisfied by FIFO in broadcasting page qi,

and the request not satisfied by FIFO in interval W for page p` (scheduled at some time
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Figure 1: OPT’s and FIFO’s schedules for interval W

t∗ − δ + j, j > i). Let Q′ be the set of pages {qi+1, . . . , qδ}. By assumption, no pages of

Q′ can be merged with pages of P by OPT . Therefore, OPT can schedule at most (δ − k)

pages of Q′ in interval W since OPT is busy scheduling the pages of P during the other k

time slots. Then, at least (δ − i) − (δ − k) = (k − i) pages of Q′ were scheduled by OPT

before interval W . Because of the nature of FIFO, everything in Q′ was scheduled after

page qi was requested, so the wait in OPT ’s schedule for qi is at least k− i+ j > k > OPT .

This is a contradiction.

3 Scheduling with Fixed Maximum Response Times

Consider the following variation of the broadcast scheduling problem: given that a request

may only be satisfied within T of its arrival, the goal is to create a schedule that maximizes

the number of requests satisfied. This is a restricted form of the throughput maximization

problem, since the problem can be re-defined as all requests (pi, ti) having deadlines of

ti + T . Thus throughput maximization 3

4
approximation applies [8]. However, this problem

is more specific than throughput maximization and the added structure may allow us to

improve the current bound. Some of the greedy approaches explored are described in this

section.

In an initial attempt to attain a approximation bound, a simple greedy algorithm was

explored, but did not yield a ratio comparable to existing approximations. The general

Maximum Coverage problem has a greedy (1 − 1

e
)-approximation algorithm and can be

applied in this broadcasting context.

7



Chekuri et al. provide a 2-approximation for Maximum Coverage with Groups(MCG)

[4]. Given a set of elements S, and a set of subsets of S where each subset belongs to

exactly one group, the goal is to pick at most one subset from each group, such that the

number of elements covered is maximized. In other words, maximize the size of the set

M = {e ε S| e ε (Sg1
∪ Sg2

∪ . . . ∪ Sgk
)}, where Sgi

is the subset picked from group gi.

MCG is actually a relaxation of this broadcast scheduling problem: we can look at each

time slot t as a group gt. At each time slot, we have a number of outstanding requests that

are still able to be satisfied; these requests correspond to the subsets. The distinct pages

of information are the elements of the set, and may be part of more than one subset, since

there may be multiple outstanding requests for a page at any given time. The algorithm

proposed in [4] yields a 1

2
-approximation and we were unable to improve this bound for the

broadcast scheduling problem.

4 Integrality Gap for Throughput Maximization

The best known approximation for the throughput maximization problem uses an LP-

rounding technique. First, the problem is redefined as a linear program, for which optimal

solutions may be fractional and can be found in polynomial time. However, in the original

problem we do not allow the server to schedule a fraction of a page during one time slot.

(At any given time t, a page is either broadcast or not broadcast.) So the approximation

rounds the fractional solution into a valid integral one. We show by the following example

that no LP-rounding approach can yield an approximation ratio better than 17

18
.

Three pages A, B and C are requested repeatedly in the following way: at each time t,

page A is requested with deadline t+2, page B is requested with deadline t+3, and page C

is requested with deadline t+6. It is not difficult to see that the optimal fractional solution

satisfies all requests before their given deadlines: in each time slot, schedule 1

2
of page A, 1

3

of page B and 1

6
of page C.

The optimal integral solution must lose at least 1 request for every 18 requests by the

following argument: if a schedule broadcasts α pages of C, at most 6α requests for C can

be satisfied. At the same time, for every page C scheduled, at least one request for page A

8



A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

A1
2

B1
3

C1
6

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

...

A B A B A C A B A B A C ...

... Optimal fractional solution

Optimal integral solution

t = 0 1 2 3 ...4

Figure 2: Optimum fractional and integral solutions for throughput maximization instance

or B is not satisfied. This is true, even for pages C scheduled close to each other.

Consider a time interval of length 6T . Any schedule that broadcasts fewer than T pages

for C, say T − β pages, will lose at least T + 5β > T requests. (The schedule can satisfy at

most 6(T − β) requests for C, and so will lose at least 6β requests for C, in addition to the

T − β requests lost for either A or B.) However, any schedule that broadcasts more than T

pages of C will lose more than T requests for A or B. All schedules that broadcast exactly

T pages of C lose at least T of the 18T requests. Thus, all schedules must lose at least

T of the 18T requests, regardless of how many times page C is scheduled. The schedule

that repeatedly broadcasts [A, B, A, B, A, C] loses exactly T of 18T requests and is optimal.
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