
Set	
 Cover	
 Revisited:	
 Hypergraph	

Covering	
 with	
 Hard	
 Capaci7es	

Barna	
 Saha	
 	

AT&T	
 Labs	

Samir	
 Khuller	

U.	
 Maryland	

ICALP	
 2012	

	
 Set	
 Cover	

•  Central	
 problem	
 with	
 MANY	
 applica7ons.	

Basic	
 Set	
 Cover	

	

•  Extremely	
 well	
 studied,	
 with	
 O(log	
 n)	

approxima7ons	
 using	
 greedy	
 (Chvatal,	
 Lovasz,	

Johnson).	

•  Special	
 case	
 of	
 Vertex	
 Cover	
 (choose	
 nodes	
 to	

cover	
 all	
 edges),	
 has	
 factor	
 2	
 approxima7on.	

•  Extends	
 to	
 hypergraphs	
 with	
 hyper	
 edges	
 of	

size	
 at	
 most	
 f,	
 giving	
 f	
 approxima7on.	

Set	
 Cover	
 with	
 Capaci7es	

•  Suppose	
 in	
 addi7on,	
 each	
 edge	
 has	
 a	
 capacity	

on	
 the	
 number	
 of	
 elements	
 it	
 can	
 cover.	

3	

5	

4	

4	

One	
 Mo7va7on:	
 Saving	
 Energy	

Need	
 to	
 turn	
 on	
 machines	
 to	
 assign	
 jobs……	

Keep	
 load	
 on	
 machines	
 low.	

Well	
 studied	
 problem	
 for	
 a	
 given	
 set	
 of	

machines.	

JOBS	

Set	
 Cover	
 with	
 Capaci7es	

Machines	
 =	
 Sets	

Jobs	
 =	
 Elements	

Load	
 =	
 Capacity	

JOBS	

Machine	
 Ac7va7on	
 Problem	

	
 [KLS	
 SODA	
 2010]	

•  Related	
 to	
 Scheduling	
 Jobs	
 on	
 Unrelated	

Machines	
 [Lenstra,	
 Shmoys,	
 Tardos	
 90]	

•  We	
 have	
 N	
 jobs	
 and	
 M	
 machines	
 and	
 a	
 p(i,j)	
 is	

the	
 processing	
 7me	
 of	
 job	
 j	
 on	
 machine	
 i.	

•  Objec7ve:	
 Minimize	
 Makespan	
 (largest	

processing	
 7me	
 of	
 jobs	
 assigned	
 to	
 a	
 machine).	

•  Our	
 Problem:	
 In	
 addi7on	
 we	
 incur	
 cost	
 ci	
 to	
 buy	

machine	
 i.	

•  Objec7ve:	
 Minimize	
 makespan	
 by	
 spending	
 C	

units	
 to	
 buy	
 machines.	

Main	
 Result	
 [KLS	
 2010]	

•  Suppose	
 there	
 is	
 a	
 cost	
 C	
 solu7on	
 which	

assigns	
 all	
 jobs,	
 with	
 max	
 load	
 at	
 most	
 T.	

•  Our	
 algorithm	
 finds	
 a	
 solu7on	
 with	
 cost	
 	
 	
 	
 	
 	

C.log	
 n	
 and	
 max	
 load	
 at	
 most	
 2T.	

•  However,	
 if	
 a	
 job	
 can	
 only	
 be	
 done	
 on	
 a	
 small	

number	
 of	
 machines,	
 can	
 we	
 get	
 a	
 be`er	

approxima7on?	

A	
 greedy	
 approach	
 [KLS	
 2010]	

•  Given	
 a	
 set	
 of	
 machines	
 S	
 that	
 are	
 open,	
 and	
 a	

7me	
 bound	
 T,	
 let	
 f(S)	
 be	
 the	
 maximum	

number	
 of	
 jobs	
 that	
 can	
 be	
 done	
 on	
 machines	

in	
 S.	

•  What	
 is	
 the	
 incremental	
 benefit	
 of	
 opening	
 a	

new	
 machine	
 j?	

•  Not	
 easy	
 to	
 compute	
 this,	
 since	
 the	
 problem	

of	
 scheduling	
 is	
 NP-­‐hard!	

•  Let	
 f(S)	
 be	
 the	
 “frac7onal	
 benefit”	
 instead!	

At	
 each	
 step	
 make	
 a	
 greedy	
 choice!	

•  Ini7ally	
 S={	
 }	

•  In	
 each	
 step,	
 choose	
 the	
 machine	
 j	
 that	
 	
 maximizes	
 	
 	
 	
 	
 	

f(S	
 U	
 j).	

•  Repeat	
 un7l	
 f(S)>(n-­‐1)	

•  Works	
 when	
 all	
 machines	
 have	
 same	
 ac7va7on	
 cost,	

look	
 at	
 f(S)/ci	
 otherwise.	

	

When	
 >n-­‐1	
 jobs	
 are	
 frac7onally	
 scheduled,	
 can	
 use	

[ST93]	
 to	
 convert	
 it	
 into	
 an	
 integral	
 schedule!	

Assigning	
 N	
 unit	
 jobs	

•  Pick	
 as	
 few	
 sets	
 as	
 	

	
 	
 	
 	
 possible,	
 to	
 cover	
 	

	
 	
 	
 	
 all	
 elements	
 so	
 that	

	
 	
 	
 	
 each	
 set	
 covers	
 a	

	
 	
 	
 	
 small	
 number	
 of	
 	

	
 	
 	
 	
 elements.	

2

1

1

3

1

A	

B	

C	

D	

E	

Capacity	
 of	
 a	
 Set	

Wolsey’s	
 Approach	
 (1982)	

•  Let	
 f(S)	
 be	
 the	
 largest	
 number	
 of	
 elements	

that	
 can	
 be	
 covered	
 if	
 we	
 choose	
 a	
 collec7on	

of	
 sets	
 S	
 	
 (use	
 NETWORK	
 flow	
 to	
 compute	
 f)	

•  Ini7ally	
 S={}	

•  At	
 each	
 set	
 pick	
 a	
 new	
 set	
 Si	
 that	
 would	

increase	
 f(S+Si)	
 by	
 the	
 largest	
 possible	
 value.	

•  This	
 gives	
 a	
 O(log	
 n)	
 approxima7on.	

•  Can	
 we	
 do	
 be`er?	

Vertex	
 Cover	
 with	
 (son)	
 Capaci7es	

•  Given	
 G=(V,E),	
 and	
 a	
 capacity	
 func7on	
 k(v)	

pick	
 the	
 smallest	
 collec7on	
 of	
 ver7ces	
 to	

cover	
 all	
 edges	
 (covering	
 by	
 stars).	
 Nodes	
 have	

weights.	

•  If	
 we	
 can	
 pick	
 mul7ple	
 copies	
 of	
 a	
 node,	
 a	
 2-­‐
approxima7on	
 exists	
 [GHKO	
 SODA	
 02]	
 (works	

for	
 hyper-­‐graphs).	

•  NOTE:	
 each	
 element	
 belongs	
 to	
 at	
 most	
 2	
 sets.	

•  NOTE:	
 With	
 k(v)	
 unbounded,	
 easy	
 2	
 approx.	
 	

Weighted	
 (hard)	
 Capacitated	
 VC	
 is	
 Set-­‐
Cover	
 Hard	
 [Chuzhoy,	
 Naor	
 2002]!	

•  However,	
 they	
 show	
 a	
 factor	
 3	
 approxima7on	

for	
 the	
 unweighted	
 case,	
 separa7ng	
 the	
 two	

problems	
 in	
 difficulty.	

•  Improved	
 to	
 a	
 2	
 approx	
 [Gandhi,	
 Halperin,	

Khuller,	
 Kortsarz,	
 Srinivasan	
 ICALP	
 03]	

LP	
 Rounding	
 for	
 Unweighted	
 Vertex	

Cover	

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtainO(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑

v∈V

x(v) (LPVC)

subject to
y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)
y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)
∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V,∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise. Vari-
ables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 (y(e, v) = 1
) indicates edge e is assigned to vertex u (v). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertex v, if v is not chosen in the solution. The total number of edges covered by
a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)). We relax the
variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired LP-relaxation.
The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower bound on the
actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 3

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗
value 4. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).
3 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
4 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by
links

Rounding	
 the	
 LP	
 solu7on	

•  Pick	
 v	
 with	
 probability	
 2x(v).	

•  Add	
 more	
 ver7ces	
 to	
 cover	
 remaining	

uncovered	
 edges.	

•  Note	
 that	
 for	
 each	
 edge,	
 at	
 least	
 one	
 end	

point	
 is	
 chosen,	
 but	
 may	
 not	
 have	
 available	

capacity…….	

•  Proof	
 is	
 quite	
 difficult.	

•  However	
 it	
 is	
 easy	
 to	
 bound	
 the	
 expected	
 cost	

of	
 the	
 solu7on	
 vs	
 the	
 LP	
 cost.	

Back	
 to	
 our	
 Applica7on	

•  We	
 really	
 have	
 a	
 hyper-­‐graph	
 since	
 each	
 job	

(element/edge)	
 can	
 be	
 done	
 on	
 a	
 small	

number	
 of	
 machines	
 (typically	
 3).	

•  How	
 do	
 we	
 decide	
 which	
 machines	
 (set/node)	

to	
 pick,	
 so	
 that	
 all	
 jobs	
 can	
 be	
 assigned	

sa7sfying	
 the	
 load	
 constraint?	

•  Main	
 Difficulty:	
 CN	
 approach	
 does	
 not	
 even	

work	
 for	
 mul7-­‐graphs	
 (proof	
 breaks	
 down).	

•  Mul7-­‐graphs	
 men7oned	
 as	
 an	
 open	
 problem.	

Hypergraph	
 Cover	
 with	
 Capaci7es	

•  LP	
 Rounding	
 approach.	

•  Analyze	
 the	
 structure	
 of	
 an	
 op7mal	
 frac7onal	

solu7on.	
 	

•  Too	
 many	
 complica7ons,	
 lets	
 focus	
 on	
 the	

structure	
 first.	

•  In	
 fact,	
 we	
 redesign	
 a	
 new	
 algorithm	
 for	

Capacitated	
 VC	
 using	
 LProunding.	

•  This	
 works	
 for	
 mul7-­‐graphs	
 and	
 hyper-­‐edges	

of	
 size	
 f,	
 and	
 we	
 get	
 an	
 O(f)	
 approxima7on.	

A	
 Useful	
 Property	

•  Par77on	
 edges	
 of	
 the	
 graph	
 into	
 H1	
 and	
 H2	

based	
 on	
 whether	
 y(e,v)=x(v)	
 or	
 not.	

•  H2:	
 Only	
 edges	
 with	
 y(e,v)=x(v)	

•  H1:	
 rest	

•  In	
 H1,	
 we	
 can	
 perturb	
 the	
 y(e,v)	
 values	
 so	
 that	

we	
 “break”	
 cycles,	
 by	
 either	
 making	
 the	
 value	

0	
 or	
 by	
 moving	
 the	
 edge	
 into	
 H2.	

Example	
 Graph	

NODES	
 OF	
 G	
 EDGES	
 OF	
 G	

0.7	

0.6	

0.6	

0.5	

0.5	

0.5	

0.3	

0.9	

0.2	

0.8	

0.55	

0.45	

0.45	

0.55	

0.8	

0.2	

Rounding	
 the	
 LP	

•  H1	
 is	
 acyclic,	
 and	
 this	
 is	
 very	
 useful.	

•  Assigning	
 edges	
 in	
 H2	
 is	
 much	
 easier	

•  If	
 the	
 edge	
 is	
 in	
 H2	
 and	
 if	
 we	
 choose	
 v,	
 we	
 can	

“scale	
 up”	
 y(e,v)	
 and	
 fully	
 assign	
 the	
 edge.	

•  Example:	
 x(v)=0.7	
 and	
 k(v)=	
 6.	

•  Ex:	
 0.7+0.7+0.7+0.7+0.3+0.2+0.5+0.4	
 	
 ≤	
 6×0.7	

•  All	
 v	
 with	
 x(v)	
 larger	
 than	
 a	
 fixed	
 constant	
 can	
 be	

chosen	
 and	
 edges	
 of	
 H2	
 are	
 dealt	
 with!	

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtainO(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑

v∈V

x(v) (LPVC)

subject to
y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)
y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)
∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V,∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise. Vari-
ables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 (y(e, v) = 1
) indicates edge e is assigned to vertex u (v). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertex v, if v is not chosen in the solution. The total number of edges covered by
a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)). We relax the
variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired LP-relaxation.
The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower bound on the
actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 3

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗
value 4. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).
3 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
4 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by
links

Rounding	
 the	
 ver7ces	

!"#$%&'()*&+,)*&$-"./,(-)%&(-&!"

!"#$%&'()*&,-$&$-"&/,(-)&(-&!"

01(#(-23&4$1)(5$%

62-#3(-#&!"#$%

7(#&829&:)1;5);1$&,<&&!"=&"2-#3(-#&$"#$%&21$&5,3,1$"&+325>&2-"&
5,--$5)$"&+?&"2%*$"&3(-$%=&$"#$%&'()*&+,)*&$-"./,(-)%&(-& !"##
21$&&5,3,1$"&'*()$&2-"&5,--$5)$"&+?&%,3("&3(-$%9

!!!!!!!!!!!!!!!!!!!!!
!

"#$%&'()'!!" *+,*'+,-%')#*'.%%)'&%/%0*%$'()'#

1(2'3.4'5*670*76%'#8''$%"",8*%6'*+%'%$2%&'9(*+'*9#''
%)$':#()*&'()' $%""+,-%'.%%)',&&(2)%$4

Algorithm 1 Assigning edges with two links in H1

1: let D′ = {v ∈ A(H1) | x
∗(v) ≥ 1

η
}, select all the vertices in D′.

2: for each edge-vertex e with two links in H1 do
3: if the child vertex of e is selected inD′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned children edge-vertices incident on v ∈ A(H1) with
both links in H1.

8: select any t(v) = #
∑

e=(u,v)∈T(v) y
∗(e, u)$ vertices from the children of the edge-vertices

in T(v), and assign the corresponding t(v) edge-vertices in T(v) to these selected children
vertices. If v′ is a newly selected vertex in this step and there are edges that have links incident
on v′ in E(H2), then assign those edges to v′ as well.

9: assign the remaining edge-vertices from T(v) to v.

each vertex v ∈ A(H1), we use T(v) to denote the set of children edge-vertices that are
not assigned in step (4). We select t(v) = "

∑

e=(u,v)∈T(v) y
∗(e, u)# vertices from the

children of the edge-vertices in T(v). We assign the corresponding t(v) edge-vertices
in T(v) to these newly selected children vertices. Rest of the edges in T(v) are assigned
to v.

Rounding dangling edges, i.e., with one link in H1.

After Algorithm 1 finishes, let L(v) denote the set of unassigned dangling edge-vertices
connected to v, and let l(v) =

∑

e=(u,v),e∈L(v) y
∗(e, u). L(v) are the leaf edge-vertices

ofH1. We first prove a lemma that shows after the edge-assignment in Algorithm 1, we
still can safely assign at least |L(v)| − "l(v)# edges from L(v) to v without violating
its capacity. We show the residual capacity of v after assigning edges from E(H2) is at
least as high as 1 + |T(v)| − "t(v)# + |L(v)| − "l(v)#. The number of edges assigned
to v from Algorithm 1 is at most 1+ |T(v)|− "t(v)# and hence the following lemma is
established.

Lemma 1. Each vertex v ∈ A(H1) can be assigned |L(v)|− "l(v)# leaf edges-vertices
without violating its capacity.

Such	
 nodes	
 have	
 large	
 values	

If	
 a	
 child	
 has	
 a	
 large	
 value	

get	
 assigned	
 to	
 it	

Main	
 Difficulty	

•  Handling	
 nodes	
 with	
 many	
 dangling	
 edges,	

whose	
 other	
 ends	
 points	
 have	
 very	
 small	
 x(v)	

values.	
 	

•  Use	
 RANDOMIZED	
 ROUNDING	
 to	
 handle	
 this	

case,	
 very	
 involved	
 proofs.	
 	

•  	
 Key	
 is	
 that	
 we	
 can	
 cast	
 it	
 as	
 a	
 mul7-­‐set	
 mul7-­‐
cover	
 problem	
 with	
 no	
 capaci7es	
 and	
 take	

advantage	
 of	
 the	
 fact	
 that	
 each	
 node	
 with	

many	
 dangling	
 edges	
 have	
 large	
 	
 x(v)	
 values.	
 	

Main	
 Difficulty	

•  Reduc7on	
 to	
 Mul7-­‐set	
 Mul7-­‐cover	
 (MSMC)	
 Problem	

	

	
 Each	
 such	
 node	
 v	
 is	
 an	
 element	
 and	
 each	
 dangling	
 edge	
 (u,v)	
 is	
 a	

mul7-­‐set	
 Su	
 containing	
 v,	
 m(v)	
 7mes	
 where	
 m(v)	
 is	
 the	
 mul7plicity	

of	
 the	
 edge	
 (u,v).	
 If	
 v	
 has	
 L(v)	
 dangling	
 edges	
 incident	
 on	
 it	
 and	
 can	

cover	
 l(v)	
 dangling	
 edges	
 without	
 viola7ng	
 the	
 capacity,	
 then	
 in	
 the	

mul7-­‐set	
 mul7-­‐cover	
 problem,	
 v	
 needs	
 to	
 be	
 covered	
 L(v)-­‐l(v)	

7mes.	

	

•  	
 Par7ally	
 rounded	
 frac7onal	
 solu7on	
 is	
 feasible	
 for	
 the	
 natural	
 LP	

relaxa7on	
 of	
 MSMC.	

	

•  However,	
 the	
 randomized	
 rounding	
 algorithm	
 cannot	
 bound	
 the	

rounded	
 solu7on	
 in	
 terms	
 of	
 the	
 LP	
 objec7ve	
 of	
 MSMC,	
 but	
 can	

charge	
 the	
 cost	
 to	
 the	
 nodes	
 {v}	
 since	
 they	
 have	
 large	
 x(v)	
 values.	
 	

Conclusions	

•  We	
 conjecture	
 that	
 the	
 correct	
 answer	
 is	
 an	
 f	

approxima7on	
 (true	
 for	
 f=2!).	
 	

•  We	
 do	
 get	
 a	
 2f	
 approxima7on	
 but	
 not	
 for	

small	
 f……s7ll	
 trying	
 to	
 op7mize	
 the	
 bounds,	

we	
 think	
 we	
 can	
 make	
 them	
 much	
 be`er	

(journal	
 version).	

•  Combinatorial	
 Approxima7on	
 Algorithm?	

•  Online	
 versions	
 of	
 these	
 problems?	

Details	
 in	
 her	
 Ph.D.	
 thesis!	

Why	
 isnt	
 Barna	
 here?	

