

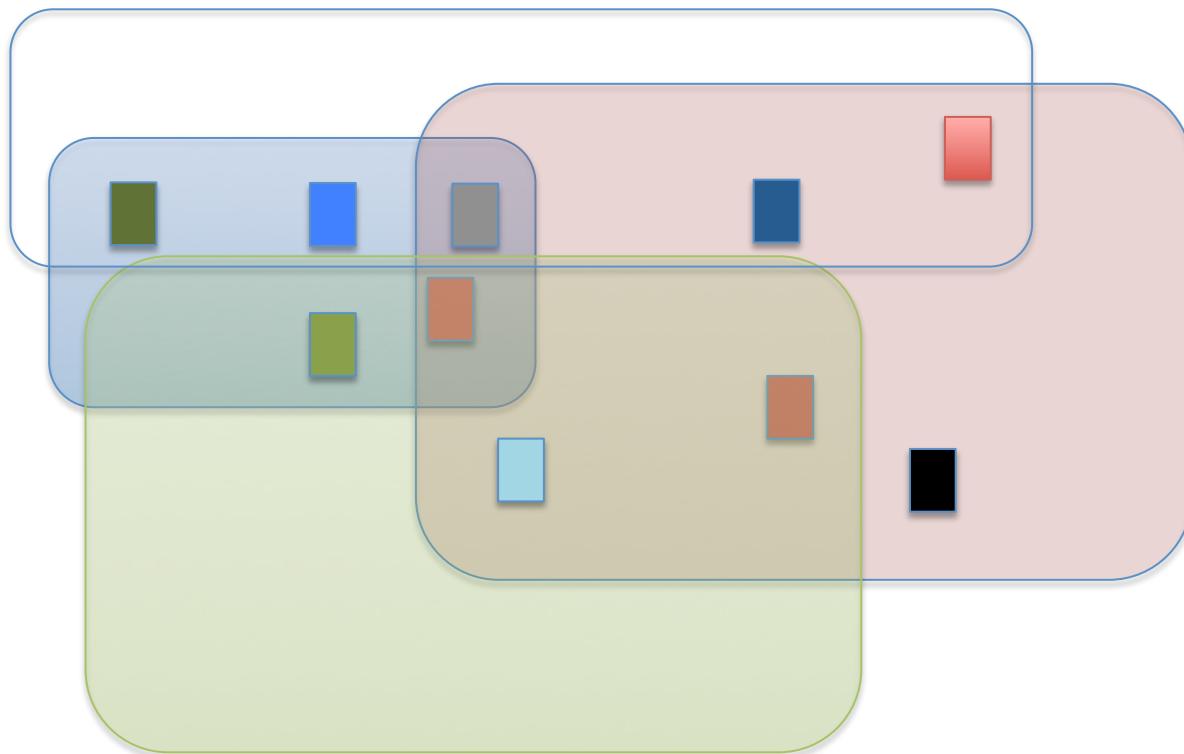
Set Cover Revisited: Hypergraph Covering with Hard Capacities

Barna Saha
AT&T Labs
Samir Khuller
U. Maryland

ICALP 2012

Set Cover

- Central problem with MANY applications.

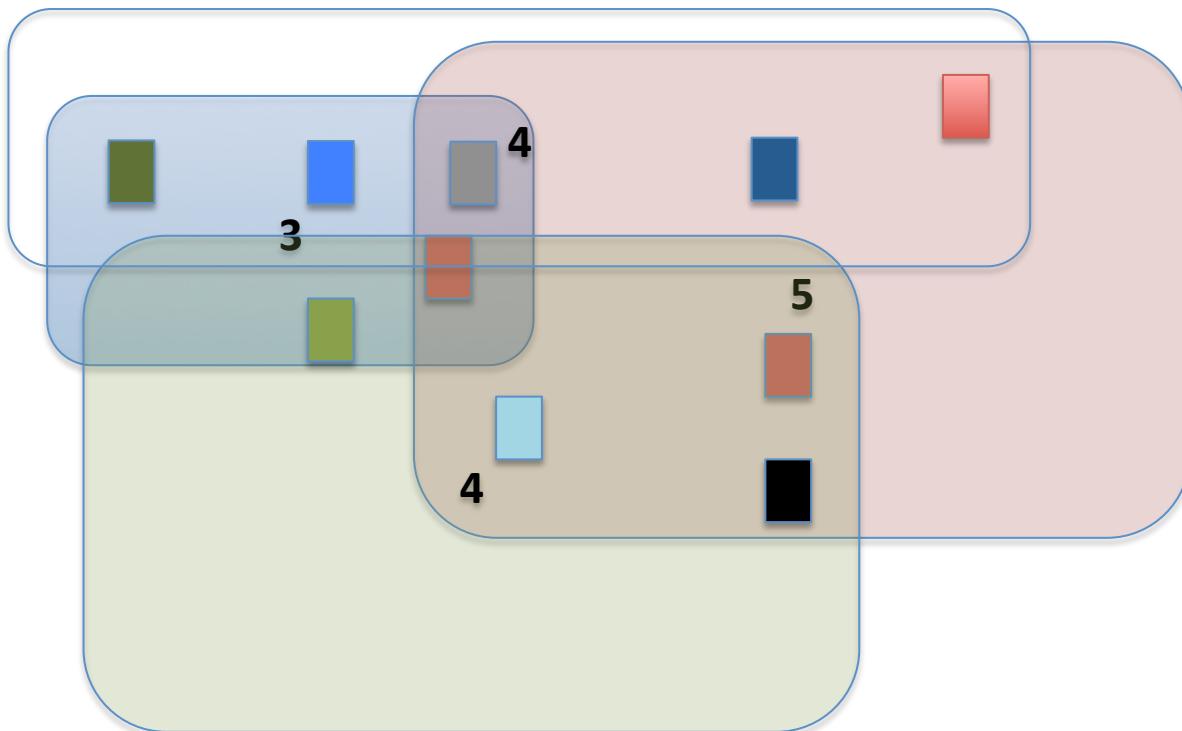


Basic Set Cover

- Extremely well studied, with $O(\log n)$ approximations using greedy (Chvatal, Lovasz, Johnson).
- Special case of Vertex Cover (choose nodes to cover all edges), has factor 2 approximation.
- Extends to hypergraphs with hyper edges of size at most f , giving f approximation.

Set Cover with Capacities

- Suppose in addition, each edge has a capacity on the number of elements it can cover.

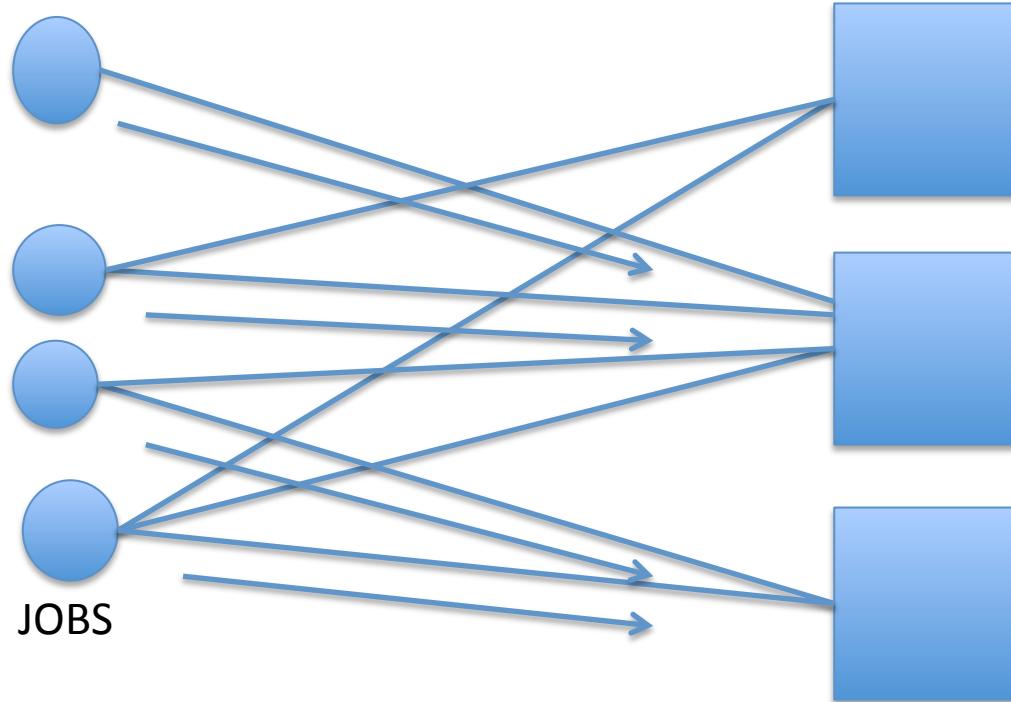


One Motivation: Saving Energy

Need to **turn on** machines to assign jobs.....

Keep load on machines low.

Well studied problem for a **given set** of machines.

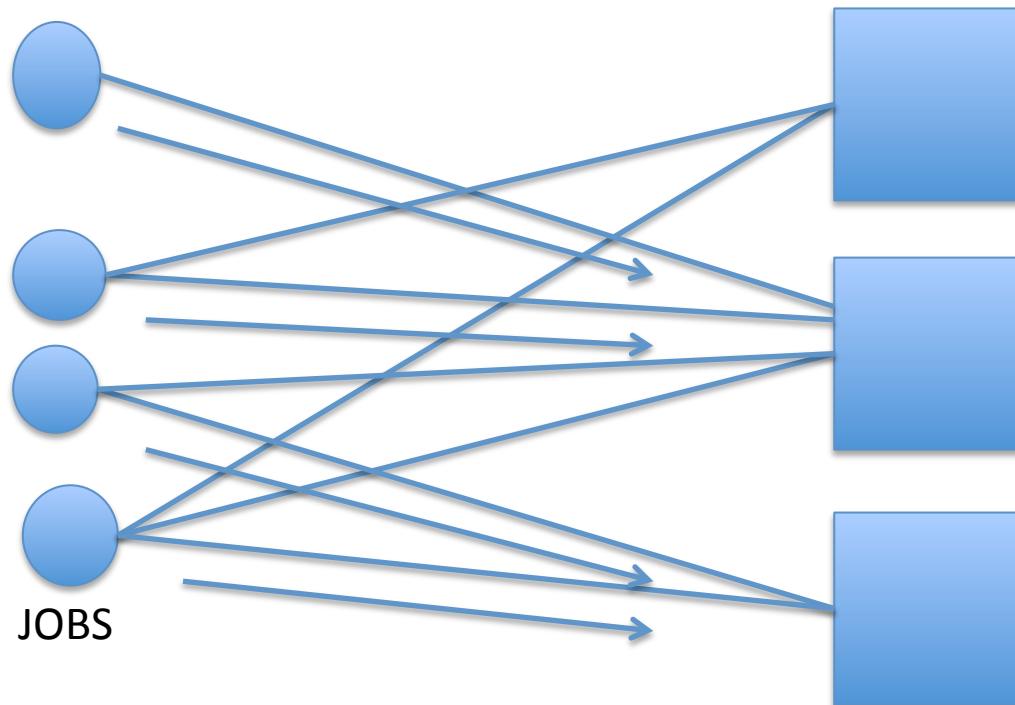


Set Cover with Capacities

Machines = Sets

Jobs = Elements

Load = Capacity



Machine Activation Problem

[KLS SODA 2010]

- Related to Scheduling Jobs on Unrelated Machines [Lenstra, Shmoys, Tardos 90]
- We have N jobs and M machines and a $p(i,j)$ is the processing time of job j on machine i .
- Objective: Minimize Makespan (largest processing time of jobs assigned to a machine).
- **Our Problem:** In addition we incur cost c_i to buy machine i .
- Objective: Minimize makespan by spending C units to buy machines.

Main Result [KLS 2010]

- Suppose there is a cost C solution which assigns all jobs, with max load at most T .
- Our algorithm finds a solution with cost $C \cdot \log n$ and max load at most $2T$.
- However, if a job can only be done on a small number of machines, can we get a better approximation?

A greedy approach [KLS 2010]

- Given a set of machines S that are open, and a time bound T , let $f(S)$ be the maximum number of jobs that can be done on machines in S .
- What is the **incremental benefit** of opening a new machine j ?
- Not easy to compute this, since the problem of scheduling is NP-hard!
- Let $f(S)$ be the “fractional benefit” instead!

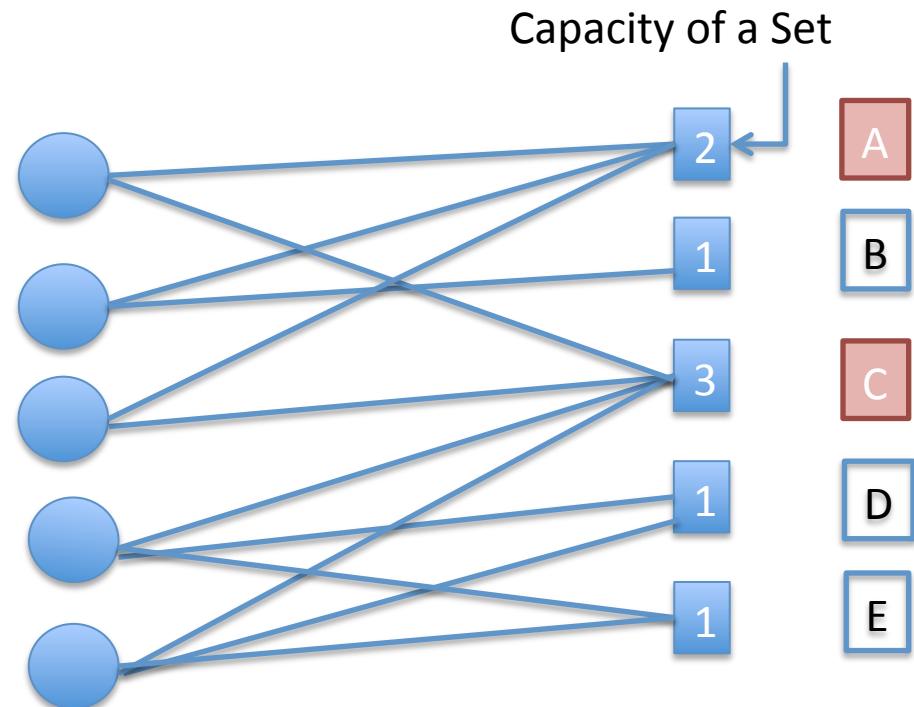
At each step make a greedy choice!

- Initially $S=\{ \}$
- In each step, choose the machine j that maximizes $f(S \cup j)$.
- Repeat until $f(S) > (n-1)$
- Works when all machines have same activation cost, look at $f(S)/c_i$ otherwise.

When $>n-1$ jobs are fractionally scheduled, can use [ST93] to convert it into an integral schedule!

Assigning N unit jobs

- Pick as few sets as possible, to cover all elements so that each set covers a small number of elements.



Wolsey's Approach (1982)

- Let $f(S)$ be the largest number of elements that can be covered if we choose a collection of sets S (use NETWORK flow to compute f)
- Initially $S=\{\}$
- At each step pick a new set S_i that would increase $f(S+S_i)$ by the largest possible value.
- This gives a $O(\log n)$ approximation.
- Can we do better?

Vertex Cover with (soft) Capacities

- Given $G=(V,E)$, and a capacity function $k(v)$ pick the smallest collection of vertices to cover all edges (**covering by stars**). Nodes have weights.
- If we can pick multiple copies of a node, a 2-approximation exists [GHKO SODA 02] (works for hyper-graphs).
- NOTE: each element belongs to at most 2 sets.
- NOTE: With $k(v)$ unbounded, easy 2 approx.

Weighted (hard) Capacitated VC is Set-Cover Hard [Chuzhoy, Naor 2002]!

- However, they show a factor 3 approximation for the unweighted case, separating the two problems in difficulty.
- Improved to a 2 approx [Gandhi, Halperin, Khuller, Kortsarz, Srinivasan ICALP 03]

LP Rounding for Unweighted Vertex Cover

$$\sum_{v \in V} x(v)$$

$$y(e, u) + y(e, v) = 1 \quad \forall e = (u, v)$$

$$y(e, v) \leq x(v), \quad y(e, u) \leq x(u) \quad \forall e = (u, v)$$

$$\sum_{e=(u,v)} y(e, v) \leq k(v)x(v) \quad \forall v$$

$$0 \leq x(v), y(e, v), y(e, u) \leq 1 \quad \forall v \in V, \forall e = (u, v)$$

Rounding the LP solution

- Pick v with probability $2x(v)$.
- Add more vertices to cover remaining uncovered edges.
- Note that for each edge, at least one end point is chosen, but may not have available capacity.....
- Proof is quite difficult.
- However it is easy to bound the expected cost of the solution vs the LP cost.

Back to our Application

- We really have a hyper-graph since each job (element/edge) can be done on a small number of machines (typically 3).
- How do we decide which machines (set/node) to pick, so that all jobs can be assigned satisfying the load constraint?
- Main Difficulty: CN approach does not even work for multi-graphs (proof breaks down).
- Multi-graphs mentioned as an open problem.

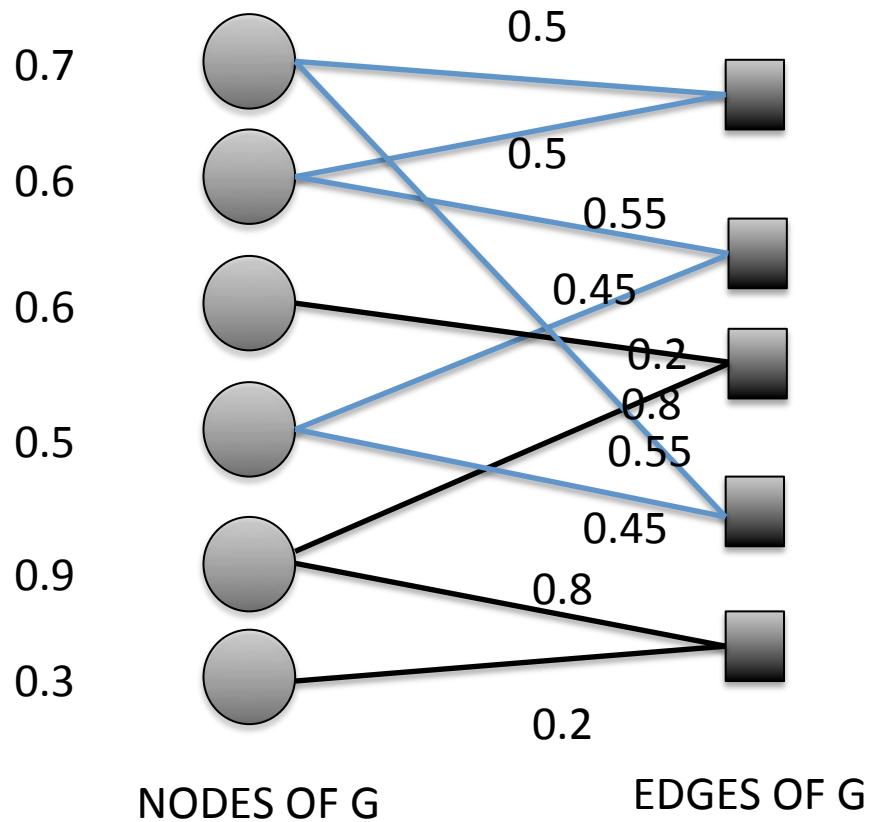
Hypergraph Cover with Capacities

- LP Rounding approach.
- Analyze **the structure** of an optimal fractional solution.
- Too many complications, lets focus on the structure first.
- In fact, we redesign a new algorithm for Capacitated VC using LProunding.
- This works for multi-graphs and hyper-edges of size f , and we get an $O(f)$ approximation.

A Useful Property

- Partition edges of the graph into H_1 and H_2 based on whether $y(e, v) = x(v)$ or not.
- H_2 : Only edges with $y(e, v) = x(v)$
- H_1 : rest
- In H_1 , we can perturb the $y(e, v)$ values so that we “break” cycles, by either making the value 0 or by moving the edge into H_2 .

Example Graph



Rounding the LP

- H_1 is acyclic, and this is very useful.
- Assigning edges in H_2 is much easier

$$\sum_{e=(u,v)} y(e, v) \leq k(v)x(v)$$

- If the edge is in H_2 and if we choose v , we can “scale up” $y(e, v)$ and fully assign the edge.
- Example: $x(v)=0.7$ and $k(v)= 6$.
- Ex: $0.7+0.7+0.7+0.7+0.3+0.2+0.5+0.4 \leq 6 \times 0.7$
- All v with $x(v)$ larger than a fixed constant can be chosen and edges of H_2 are dealt with!

Rounding the vertices

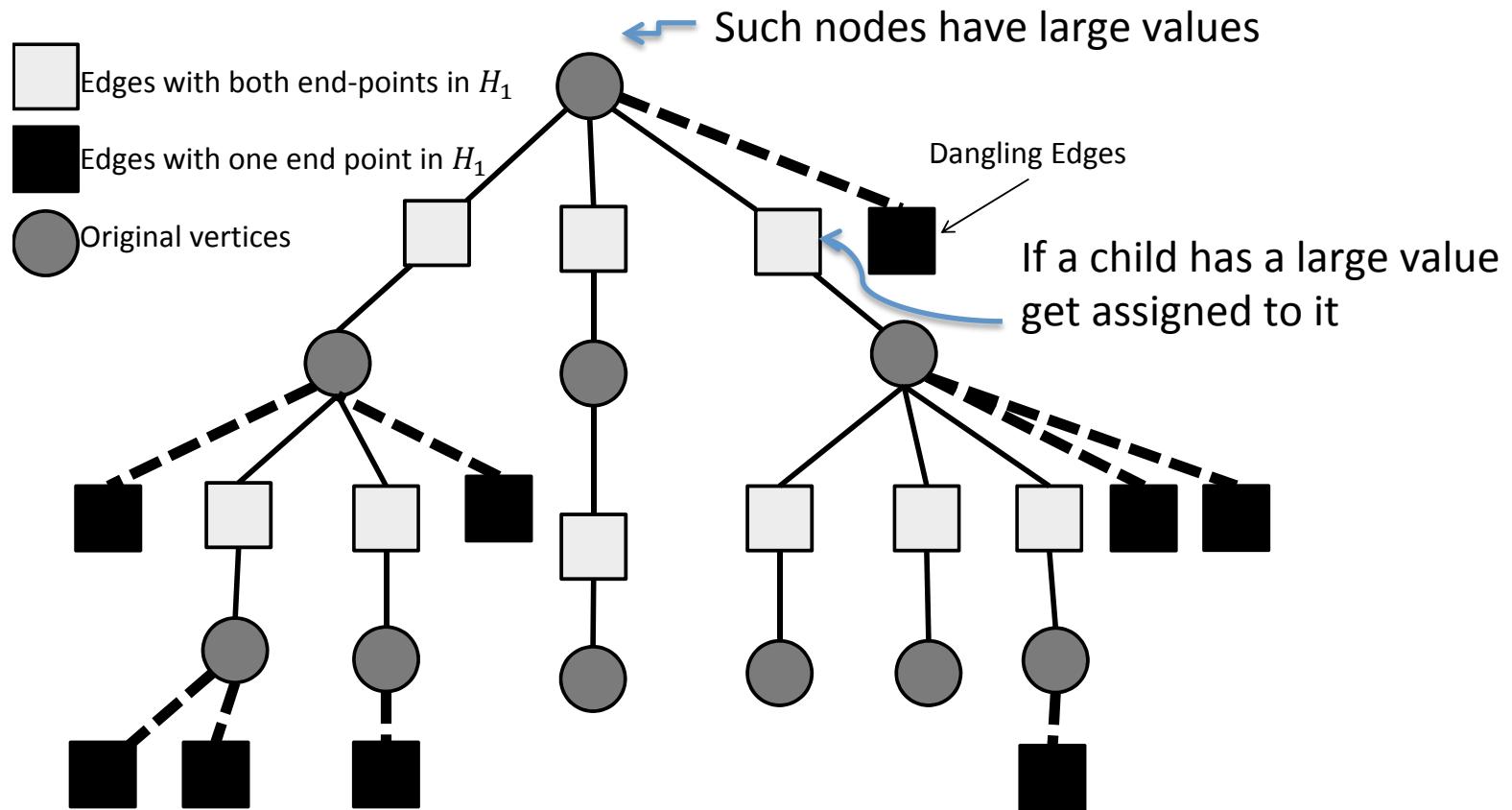


Fig 1a. Structure of H_1 , dangling edges are colored black and connected by dashed lines, edges with both end-points in H_1

Main Difficulty

- Handling nodes with many dangling edges, whose other ends points have very small $x(v)$ values.
- Use RANDOMIZED ROUNDING to handle this case, very involved proofs.
- Key is that we can cast it as a multi-set multi-cover problem with no capacities and take advantage of the fact that each node with many dangling edges have large $x(v)$ values.

Main Difficulty

- Reduction to Multi-set Multi-cover (MSMC) Problem

Each such node v is an element and each dangling edge (u, v) is a multi-set S_u containing v , $m(v)$ times where $m(v)$ is the multiplicity of the edge (u, v) . If v has $L(v)$ dangling edges incident on it and can cover $I(v)$ dangling edges without violating the capacity, then in the multi-set multi-cover problem, v needs to be covered $L(v)-I(v)$ times.

- Partially rounded fractional solution is feasible for the natural LP relaxation of MSMC.
- However, the randomized rounding algorithm cannot bound the rounded solution in terms of the LP objective of MSMC, but can charge the cost to the nodes $\{v\}$ since they have large $x(v)$ values.

Conclusions

- We conjecture that the correct answer is an f approximation (true for $f=2!$).
- We do get a $2f$ approximation but not for small fstill trying to optimize the bounds, we think we can make them much better (journal version).
- Combinatorial Approximation Algorithm?
- Online versions of these problems?

Details in her Ph.D. thesis!

Why isn't Barna here?

10.09.2010