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  Set	
  Cover	
  

•  Central	
  problem	
  with	
  MANY	
  applica7ons.	
  



Basic	
  Set	
  Cover	
  

	
  
•  Extremely	
  well	
  studied,	
  with	
  O(log	
  n)	
  
approxima7ons	
  using	
  greedy	
  (Chvatal,	
  Lovasz,	
  
Johnson).	
  

•  Special	
  case	
  of	
  Vertex	
  Cover	
  (choose	
  nodes	
  to	
  
cover	
  all	
  edges),	
  has	
  factor	
  2	
  approxima7on.	
  

•  Extends	
  to	
  hypergraphs	
  with	
  hyper	
  edges	
  of	
  
size	
  at	
  most	
  f,	
  giving	
  f	
  approxima7on.	
  



Set	
  Cover	
  with	
  Capaci7es	
  

•  Suppose	
  in	
  addi7on,	
  each	
  edge	
  has	
  a	
  capacity	
  
on	
  the	
  number	
  of	
  elements	
  it	
  can	
  cover.	
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One	
  Mo7va7on:	
  Saving	
  Energy	
  
Need	
  to	
  turn	
  on	
  machines	
  to	
  assign	
  jobs……	
  
Keep	
  load	
  on	
  machines	
  low.	
  
Well	
  studied	
  problem	
  for	
  a	
  given	
  set	
  of	
  
machines.	
  

JOBS	
  



Set	
  Cover	
  with	
  Capaci7es	
  
Machines	
  =	
  Sets	
  
Jobs	
  =	
  Elements	
  
Load	
  =	
  Capacity	
  

JOBS	
  



Machine	
  Ac7va7on	
  Problem	
  
	
  [KLS	
  SODA	
  2010]	
  

•  Related	
  to	
  Scheduling	
  Jobs	
  on	
  Unrelated	
  
Machines	
  [Lenstra,	
  Shmoys,	
  Tardos	
  90]	
  

•  We	
  have	
  N	
  jobs	
  and	
  M	
  machines	
  and	
  a	
  p(i,j)	
  is	
  
the	
  processing	
  7me	
  of	
  job	
  j	
  on	
  machine	
  i.	
  

•  Objec7ve:	
  Minimize	
  Makespan	
  (largest	
  
processing	
  7me	
  of	
  jobs	
  assigned	
  to	
  a	
  machine).	
  

•  Our	
  Problem:	
  In	
  addi7on	
  we	
  incur	
  cost	
  ci	
  to	
  buy	
  
machine	
  i.	
  

•  Objec7ve:	
  Minimize	
  makespan	
  by	
  spending	
  C	
  
units	
  to	
  buy	
  machines.	
  



Main	
  Result	
  [KLS	
  2010]	
  

•  Suppose	
  there	
  is	
  a	
  cost	
  C	
  solu7on	
  which	
  
assigns	
  all	
  jobs,	
  with	
  max	
  load	
  at	
  most	
  T.	
  

•  Our	
  algorithm	
  finds	
  a	
  solu7on	
  with	
  cost	
  	
  	
  	
  	
  	
  
C.log	
  n	
  and	
  max	
  load	
  at	
  most	
  2T.	
  

•  However,	
  if	
  a	
  job	
  can	
  only	
  be	
  done	
  on	
  a	
  small	
  
number	
  of	
  machines,	
  can	
  we	
  get	
  a	
  be`er	
  
approxima7on?	
  



A	
  greedy	
  approach	
  [KLS	
  2010]	
  

•  Given	
  a	
  set	
  of	
  machines	
  S	
  that	
  are	
  open,	
  and	
  a	
  
7me	
  bound	
  T,	
  let	
  f(S)	
  be	
  the	
  maximum	
  
number	
  of	
  jobs	
  that	
  can	
  be	
  done	
  on	
  machines	
  
in	
  S.	
  

•  What	
  is	
  the	
  incremental	
  benefit	
  of	
  opening	
  a	
  
new	
  machine	
  j?	
  

•  Not	
  easy	
  to	
  compute	
  this,	
  since	
  the	
  problem	
  
of	
  scheduling	
  is	
  NP-­‐hard!	
  

•  Let	
  f(S)	
  be	
  the	
  “frac7onal	
  benefit”	
  instead!	
  



At	
  each	
  step	
  make	
  a	
  greedy	
  choice!	
  

•  Ini7ally	
  S={	
  }	
  
•  In	
  each	
  step,	
  choose	
  the	
  machine	
  j	
  that	
  	
  maximizes	
  	
  	
  	
  	
  	
  
f(S	
  U	
  j).	
  

•  Repeat	
  un7l	
  f(S)>(n-­‐1)	
  
•  Works	
  when	
  all	
  machines	
  have	
  same	
  ac7va7on	
  cost,	
  
look	
  at	
  f(S)/ci	
  otherwise.	
  

	
  
When	
  >n-­‐1	
  jobs	
  are	
  frac7onally	
  scheduled,	
  can	
  use	
  
[ST93]	
  to	
  convert	
  it	
  into	
  an	
  integral	
  schedule!	
  



Assigning	
  N	
  unit	
  jobs	
  

•  Pick	
  as	
  few	
  sets	
  as	
  	
  
	
  	
  	
  	
  possible,	
  to	
  cover	
  	
  
	
  	
  	
  	
  all	
  elements	
  so	
  that	
  
	
  	
  	
  	
  each	
  set	
  covers	
  a	
  
	
  	
  	
  	
  small	
  number	
  of	
  	
  
	
  	
  	
  	
  elements.	
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Capacity	
  of	
  a	
  Set	
  



Wolsey’s	
  Approach	
  (1982)	
  

•  Let	
  f(S)	
  be	
  the	
  largest	
  number	
  of	
  elements	
  
that	
  can	
  be	
  covered	
  if	
  we	
  choose	
  a	
  collec7on	
  
of	
  sets	
  S	
  	
  (use	
  NETWORK	
  flow	
  to	
  compute	
  f)	
  

•  Ini7ally	
  S={}	
  
•  At	
  each	
  set	
  pick	
  a	
  new	
  set	
  Si	
  that	
  would	
  
increase	
  f(S+Si)	
  by	
  the	
  largest	
  possible	
  value.	
  

•  This	
  gives	
  a	
  O(log	
  n)	
  approxima7on.	
  
•  Can	
  we	
  do	
  be`er?	
  



Vertex	
  Cover	
  with	
  (son)	
  Capaci7es	
  

•  Given	
  G=(V,E),	
  and	
  a	
  capacity	
  func7on	
  k(v)	
  
pick	
  the	
  smallest	
  collec7on	
  of	
  ver7ces	
  to	
  
cover	
  all	
  edges	
  (covering	
  by	
  stars).	
  Nodes	
  have	
  
weights.	
  

•  If	
  we	
  can	
  pick	
  mul7ple	
  copies	
  of	
  a	
  node,	
  a	
  2-­‐
approxima7on	
  exists	
  [GHKO	
  SODA	
  02]	
  (works	
  
for	
  hyper-­‐graphs).	
  

•  NOTE:	
  each	
  element	
  belongs	
  to	
  at	
  most	
  2	
  sets.	
  
•  NOTE:	
  With	
  k(v)	
  unbounded,	
  easy	
  2	
  approx.	
  	
  



Weighted	
  (hard)	
  Capacitated	
  VC	
  is	
  Set-­‐
Cover	
  Hard	
  [Chuzhoy,	
  Naor	
  2002]!	
  

•  However,	
  they	
  show	
  a	
  factor	
  3	
  approxima7on	
  
for	
  the	
  unweighted	
  case,	
  separa7ng	
  the	
  two	
  
problems	
  in	
  difficulty.	
  

•  Improved	
  to	
  a	
  2	
  approx	
  [Gandhi,	
  Halperin,	
  
Khuller,	
  Kortsarz,	
  Srinivasan	
  ICALP	
  03]	
  



LP	
  Rounding	
  for	
  Unweighted	
  Vertex	
  
Cover	
  

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtainO(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑

v∈V

x(v) (LPVC)

subject to
y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)
y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)
∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V,∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise. Vari-
ables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 ( y(e, v) = 1
) indicates edge e is assigned to vertex u ( v ). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertex v, if v is not chosen in the solution. The total number of edges covered by
a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)). We relax the
variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired LP-relaxation.
The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower bound on the
actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 3

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗
value 4. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).
3 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
4 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by
links



Rounding	
  the	
  LP	
  solu7on	
  

•  Pick	
  v	
  with	
  probability	
  2x(v).	
  
•  Add	
  more	
  ver7ces	
  to	
  cover	
  remaining	
  
uncovered	
  edges.	
  

•  Note	
  that	
  for	
  each	
  edge,	
  at	
  least	
  one	
  end	
  
point	
  is	
  chosen,	
  but	
  may	
  not	
  have	
  available	
  
capacity…….	
  

•  Proof	
  is	
  quite	
  difficult.	
  
•  However	
  it	
  is	
  easy	
  to	
  bound	
  the	
  expected	
  cost	
  
of	
  the	
  solu7on	
  vs	
  the	
  LP	
  cost.	
  



Back	
  to	
  our	
  Applica7on	
  

•  We	
  really	
  have	
  a	
  hyper-­‐graph	
  since	
  each	
  job	
  
(element/edge)	
  can	
  be	
  done	
  on	
  a	
  small	
  
number	
  of	
  machines	
  (typically	
  3).	
  

•  How	
  do	
  we	
  decide	
  which	
  machines	
  (set/node)	
  
to	
  pick,	
  so	
  that	
  all	
  jobs	
  can	
  be	
  assigned	
  
sa7sfying	
  the	
  load	
  constraint?	
  

•  Main	
  Difficulty:	
  CN	
  approach	
  does	
  not	
  even	
  
work	
  for	
  mul7-­‐graphs	
  (proof	
  breaks	
  down).	
  

•  Mul7-­‐graphs	
  men7oned	
  as	
  an	
  open	
  problem.	
  



Hypergraph	
  Cover	
  with	
  Capaci7es	
  

•  LP	
  Rounding	
  approach.	
  
•  Analyze	
  the	
  structure	
  of	
  an	
  op7mal	
  frac7onal	
  
solu7on.	
  	
  

•  Too	
  many	
  complica7ons,	
  lets	
  focus	
  on	
  the	
  
structure	
  first.	
  

•  In	
  fact,	
  we	
  redesign	
  a	
  new	
  algorithm	
  for	
  
Capacitated	
  VC	
  using	
  LProunding.	
  

•  This	
  works	
  for	
  mul7-­‐graphs	
  and	
  hyper-­‐edges	
  
of	
  size	
  f,	
  and	
  we	
  get	
  an	
  O(f)	
  approxima7on.	
  



A	
  Useful	
  Property	
  

•  Par77on	
  edges	
  of	
  the	
  graph	
  into	
  H1	
  and	
  H2	
  
based	
  on	
  whether	
  y(e,v)=x(v)	
  or	
  not.	
  

•  H2:	
  Only	
  edges	
  with	
  y(e,v)=x(v)	
  
•  H1:	
  rest	
  
•  In	
  H1,	
  we	
  can	
  perturb	
  the	
  y(e,v)	
  values	
  so	
  that	
  
we	
  “break”	
  cycles,	
  by	
  either	
  making	
  the	
  value	
  
0	
  or	
  by	
  moving	
  the	
  edge	
  into	
  H2.	
  



Example	
  Graph	
  

NODES	
  OF	
  G	
   EDGES	
  OF	
  G	
  

0.7	
  

0.6	
  

0.6	
  

0.5	
  

0.5	
  

0.5	
  

0.3	
  

0.9	
  

0.2	
  

0.8	
  

0.55	
  

0.45	
  

0.45	
  

0.55	
  
0.8	
  
0.2	
  



Rounding	
  the	
  LP	
  
•  H1	
  is	
  acyclic,	
  and	
  this	
  is	
  very	
  useful.	
  
•  Assigning	
  edges	
  in	
  H2	
  is	
  much	
  easier	
  

•  If	
  the	
  edge	
  is	
  in	
  H2	
  and	
  if	
  we	
  choose	
  v,	
  we	
  can	
  
“scale	
  up”	
  y(e,v)	
  and	
  fully	
  assign	
  the	
  edge.	
  

•  Example:	
  x(v)=0.7	
  and	
  k(v)=	
  6.	
  
•  Ex:	
  0.7+0.7+0.7+0.7+0.3+0.2+0.5+0.4	
  	
  ≤	
  6×0.7	
  
•  All	
  v	
  with	
  x(v)	
  larger	
  than	
  a	
  fixed	
  constant	
  can	
  be	
  
chosen	
  and	
  edges	
  of	
  H2	
  are	
  dealt	
  with!	
  

1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtainO(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑

v∈V

x(v) (LPVC)

subject to
y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)
y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)
∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V,∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise. Vari-
ables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 ( y(e, v) = 1
) indicates edge e is assigned to vertex u ( v ). Constraints (1) ensure each edge is cov-
ered by at least one of its end-vertices. Constraints (2) imply an edge cannot be covered
by a vertex v, if v is not chosen in the solution. The total number of edges covered by
a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)). We relax the
variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired LP-relaxation.
The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower bound on the
actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 3

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗
value 4. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).
3 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
4 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by
links



Rounding	
  the	
  ver7ces	
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Algorithm 1 Assigning edges with two links in H1

1: let D′ = {v ∈ A(H1) | x
∗(v) ≥ 1

η
}, select all the vertices in D′.

2: for each edge-vertex e with two links in H1 do
3: if the child vertex of e is selected inD′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned children edge-vertices incident on v ∈ A(H1) with
both links in H1.

8: select any t(v) = #
∑

e=(u,v)∈T(v) y
∗(e, u)$ vertices from the children of the edge-vertices

in T(v), and assign the corresponding t(v) edge-vertices in T(v) to these selected children
vertices. If v′ is a newly selected vertex in this step and there are edges that have links incident
on v′ in E(H2), then assign those edges to v′ as well.

9: assign the remaining edge-vertices from T(v) to v.

each vertex v ∈ A(H1), we use T(v) to denote the set of children edge-vertices that are
not assigned in step (4). We select t(v) = "

∑

e=(u,v)∈T(v) y
∗(e, u)# vertices from the

children of the edge-vertices in T(v). We assign the corresponding t(v) edge-vertices
in T(v) to these newly selected children vertices. Rest of the edges in T(v) are assigned
to v.

Rounding dangling edges, i.e., with one link in H1.

After Algorithm 1 finishes, let L(v) denote the set of unassigned dangling edge-vertices
connected to v, and let l(v) =

∑

e=(u,v),e∈L(v) y
∗(e, u). L(v) are the leaf edge-vertices

ofH1. We first prove a lemma that shows after the edge-assignment in Algorithm 1, we
still can safely assign at least |L(v)| − "l(v)# edges from L(v) to v without violating
its capacity. We show the residual capacity of v after assigning edges from E(H2) is at
least as high as 1 + |T(v)| − "t(v)# + |L(v)| − "l(v)#. The number of edges assigned
to v from Algorithm 1 is at most 1+ |T(v)|− "t(v)# and hence the following lemma is
established.

Lemma 1. Each vertex v ∈ A(H1) can be assigned |L(v)|− "l(v)# leaf edges-vertices
without violating its capacity.

Such	
  nodes	
  have	
  large	
  values	
  

If	
  a	
  child	
  has	
  a	
  large	
  value	
  
get	
  assigned	
  to	
  it	
  



Main	
  Difficulty	
  

•  Handling	
  nodes	
  with	
  many	
  dangling	
  edges,	
  
whose	
  other	
  ends	
  points	
  have	
  very	
  small	
  x(v)	
  
values.	
  	
  

•  Use	
  RANDOMIZED	
  ROUNDING	
  to	
  handle	
  this	
  
case,	
  very	
  involved	
  proofs.	
  	
  

•  	
  Key	
  is	
  that	
  we	
  can	
  cast	
  it	
  as	
  a	
  mul7-­‐set	
  mul7-­‐
cover	
  problem	
  with	
  no	
  capaci7es	
  and	
  take	
  
advantage	
  of	
  the	
  fact	
  that	
  each	
  node	
  with	
  
many	
  dangling	
  edges	
  have	
  large	
  	
  x(v)	
  values.	
  	
  



Main	
  Difficulty	
  
•  Reduc7on	
  to	
  Mul7-­‐set	
  Mul7-­‐cover	
  (MSMC)	
  Problem	
  
	
  
	
  Each	
  such	
  node	
  v	
  is	
  an	
  element	
  and	
  each	
  dangling	
  edge	
  (u,v)	
  is	
  a	
  
mul7-­‐set	
  Su	
  containing	
  v,	
  m(v)	
  7mes	
  where	
  m(v)	
  is	
  the	
  mul7plicity	
  
of	
  the	
  edge	
  (u,v).	
  If	
  v	
  has	
  L(v)	
  dangling	
  edges	
  incident	
  on	
  it	
  and	
  can	
  
cover	
  l(v)	
  dangling	
  edges	
  without	
  viola7ng	
  the	
  capacity,	
  then	
  in	
  the	
  
mul7-­‐set	
  mul7-­‐cover	
  problem,	
  v	
  needs	
  to	
  be	
  covered	
  L(v)-­‐l(v)	
  
7mes.	
  

	
  
•  	
  Par7ally	
  rounded	
  frac7onal	
  solu7on	
  is	
  feasible	
  for	
  the	
  natural	
  LP	
  

relaxa7on	
  of	
  MSMC.	
  
	
  
•  However,	
  the	
  randomized	
  rounding	
  algorithm	
  cannot	
  bound	
  the	
  

rounded	
  solu7on	
  in	
  terms	
  of	
  the	
  LP	
  objec7ve	
  of	
  MSMC,	
  but	
  can	
  
charge	
  the	
  cost	
  to	
  the	
  nodes	
  {v}	
  since	
  they	
  have	
  large	
  x(v)	
  values.	
  	
  



Conclusions	
  

•  We	
  conjecture	
  that	
  the	
  correct	
  answer	
  is	
  an	
  f	
  
approxima7on	
  (true	
  for	
  f=2!).	
  	
  

•  We	
  do	
  get	
  a	
  2f	
  approxima7on	
  but	
  not	
  for	
  
small	
  f……s7ll	
  trying	
  to	
  op7mize	
  the	
  bounds,	
  
we	
  think	
  we	
  can	
  make	
  them	
  much	
  be`er	
  
(journal	
  version).	
  

•  Combinatorial	
  Approxima7on	
  Algorithm?	
  
•  Online	
  versions	
  of	
  these	
  problems?	
  



Details	
  in	
  her	
  Ph.D.	
  thesis!	
  



Why	
  isnt	
  Barna	
  here?	
  


