To send or not to send: Reducing the cost of data transmission

Leana Golubchik, Samir Khuller, Koyel Mukherjee, Yuan Yao
INFOCOM 2013
Network Bandwidth- A Costly Resource

- Large volume of data transmitted daily over high speed links.
- High associated costs for network bandwidth.
- Cost accounting performed differently from other utilities.
- Billing is not by the total volume of utility consumed.
- ISP’s use the 95th percentile widely for charging.
Network Traffic (UMD for example)

Utility usage

Accounting Cycle: L
Network Traffic

Utility usage

Sampling Cycle: w

Accounting Cycle: L

Time units

Network Traffic

Utility usage

Sampling Cycle: w

Accounting Cycle: L

Time units
The Percentile Rule

Accounting Cycle: L

Sampling Cycle: w

Average Utility usage

Time units

100th percentile

80th percentile
Why is ‘Percentile’ a good measure?

- May help to smoothen the network traffic…
- Potentially avoid network congestion…
- Allow ISP’s to distribute network resources among several organizations at the same time…
Optimization Opportunity

- The performance requirements of such data transfers include transmission delay:
 - Data chunks have to be delivered within some time period.
 - Not necessary to transmit it at arrival

- Opportunity to optimize data transfers costs!
Possible Cost Savings when Delay is Allowed

Data set: 6 times series generated with different characteristics using the Wikipedia hit records as the basis.
Scheduling Problem

- Data chunks ➔ unit jobs
- Links (senders) ➔ servers
- Jobs can be delayed for D time units.
- All jobs need to be done.
- $A(i)$: number of jobs arriving in time slot $i = 1, 2, ..., N$.
- $S(i)$: number of jobs served in time slot $i = 1, 2, ..., N$.
- Servers have capacity C.

Goal: Choose $S(i)$ to minimize 95th percentile.
Related Work

- Bounded delay buffer management problem, introduced by Kesselman et al. (STOC 2001).
 - Andelman et al. (SODA 2003)
 - Zhu (J. Algs, 2004)
 - Bartal et al. (STACS 2004, JODA 2006)
 - Li et al. (SODA 2005, 2007)
 - Englert and Westermann (SODA 2007),
 - Bienkowski et al. (SODA 2009)
 - Jez (STACS 2010, ESA 2011)
An Example

Time slots

Job Arrivals:

Maximum Delay = 1 time slot

Number of jobs

1 2 3 4

1 2 3 4 5

Time slots
Example (contd.)

Job Arrivals:

Jobs Scheduled:

Number of jobs

Maximum Delay = 1 time slot

100th percentile

80th percentile
Our Results

- **Optimal offline** algorithm for minimizing any specified percentile where jobs can be delayed by D time slots.
- **No bounded competitive ratio** possible in the online setting.
- **Online algorithm** for the **min-max** problem. (The min-max problem is similar to the 100th percentile problem.)
- **Lower bound** on the performance of any online algorithm for min-max problem, almost matching upper bound.
- Propose and test an online **heuristic** for the percentile problem.
Offline Problem for D=1
Offline Problem for D=1

- Job arrivals $A(i), i = 1, 2, ..., N$ known a priori.
- Jobs served in the top 5% of the total time slots are not included in accounting. Consider these slots “free”.
- Let $T = 5\% \times N$ be the number of free time slots.
Offline Problem for D=1 (contd.)

- Free slots: up to C jobs.
- Accounted $N - T$ slots, upto H jobs ($H \leq C$).
- Find the smallest feasible H.
- Guess H, verify if feasible. Use binary search for H.

Source: beyondinsurance.wordpress.com
Define $OPT(i, t)$: the minimum number of total jobs left unfinished by the end of time slot i, using t “free” slots.

\[
OPT(1, 0) = \max\{A(1) - H, 0\}
\]

\[
OPT(1, 1) = 0
\]

\[
OPT(i, t) = \min \begin{cases}
\max\{OPT(i - 1, t - 1) + A(i) - C, 0\} & \text{if } OPT(i - 1, t) \leq H \\
\max\{OPT(i - 1, t) + A(i) - H, 0\} & \text{if } OPT(i - 1, t) > H
\end{cases}
\]
Theorem 1. \(OPT(i,t) \) minimizes the number of unserved jobs in the first \(i \) slots, assuming that at most \(t \) slots can have load \(> H \), and all the other slots have load at most \(H \).
Offline Problem for D=1 (contd.)

- Proof by induction.
- Assume claim is true for \((i - 1, j)\) \(\forall j \leq (i - 1)\).
- If in optimal solution, slot \(i\) has load \(> H\), then we can use upto capacity \(C\) here.
- Else, if opt has load \(\leq H\) in slot \(i\), and if more than \(H\) jobs are passed on, then it is not feasible since \(D = 1\).

\[
H \text{ feasible} \iff OPT(N, T) = 0
\]
Offline Problem for $D>1$:
General Uniform Delay
General Uniform Delay D

- $D > 1 \implies$ Jobs can be delayed for $1, 2, \ldots, D$ time slots.

- Service priority should be different: Earliest first

- Let $U(i) = (U_1(i), \ldots, U_D(i))$ be the vector of unfinished jobs at the end of time slot i.

- $U_D(i)$: Jobs unserved for D time slots.
Dynamic program to calculate $OPT(i, t)$.

\[
OPT(1, 0) = \max(A(1) - H, 0)
\]
\[
OPT(1, 1) = 0
\]
\[
OPT(i, t) = 0 \quad \forall \ t \geq i
\]
\[
OPT(i, t) = \min \left\{ \begin{array}{l}
\max\{OPT(i - 1, t - 1) + A(i) - C, 0\} \\
\max\{OPT(i - 1, t) + A(i) - H, 0\} \text{ if } U_D(i - 1, t) \leq H
\end{array} \right.
\]

Theorem 2. $OPT(i, t)$ minimizes the number of unserved jobs in the first i slots, assuming that at most t slots can have load $> H$ and all the other slots have load at most H.
General Uniform Delay D (contd.)

- Define Augmented vector $\mathbf{U}^A(i) = (A(i), \mathbf{U}(i))$.
- Service vector: $\mathbf{S}(i) = (S_0(i), ..., S_D(i))$.

Feasible $H \rightarrow$

- For an “accounted” slot: $\sum_{j=0}^{D} S_j(i) \leq H$
- For a “free” slot: $\sum_{j=0}^{D} S_j(i) \leq C$
- Moreover, $0 \leq S_j(i) \leq U^A_j(i)$
Free Slot i

- Capacity available: C
- Greedily distribute capacity among jobs in $U^A(i,t) = (A(i), U(i-1, t-1))$ favoring earlier jobs.
- The jobs unserved form vector $U^C(i,t)$

$$OPT_1(i,t) = \sum_{j=1}^{D} U^C_j(i,t)$$
Accounted Slot i

- Capacity Available: H
- Greedily distribute capacity among jobs in
 $U^A(i, t) = (A(i), U(i - 1, t))$ favoring earlier jobs.
- If $U^A_D(i, t) > H$, $OPT_2(i, t) = \infty$
- The jobs unserved form vector $U^H(i, t)$.

$$OPT_2(i, t) = \sum_{j=1}^{D} U^H_j(i, t)$$
General Uniform Delay D (contd.)

- \(OPT(i, t) = \min(OPT_1(i, t), OPT_2(i, t)) \)
- Correspondingly, \(U^C(i, t) \) or \(U^H(i, t) \) is retained as \(U(i, t) \).
- Therefore, by definition, \(OPT(i, t) = \sum_{j=1}^{D} U_j(i, t) \)

- Proof is similar to D=1, except now we need to prove that \(U_D(i-1, t) \leq U^O_D(i-1, t) \ \forall \ t \leq (i-1) \) for any algorithm \(O \).

Claim: For any \((i', t') \), if \(U_j(i', t') > 0 \) for any \(1 < j \leq D \), then \(U_k(i', t') = A(i'-k+1) \ \forall \ k < j \).

Now we use induction hypothesis to complete the proof.
Online Percentile Problem: Unbounded Competitive Ratio
Online Problem: Hardness

- For this version, we assume that $A(i)$ cannot be observed until time slot i.

- We use N^X_A to denote the 95th percentile of the service schedule generated by algorithm X for arrival sequence $A(1)$ through $A(N)$.

Theorem 3. For any online algorithm OL, there exists an arrival series $A(i), i = 1, 2, ..., N$ for unit delay, such that \[\frac{N^{OL}_A}{N^{OPT}_A} \] cannot be bounded by any constant.
Generate such arrivals until the number of time slots with non-zero job service \((S(\cdot))\) is exactly \(T\) for the online algorithm. Suppose this happens at time slot \(T^* \leq 2T\).
Lower Bound Sequence $T^* < 2T$

Jobs Arrivals:

Number of Jobs

$0 \rightarrow x \rightarrow (\alpha+1)x$

Time slots

$T^* \rightarrow T^*+1$
Lower Bound Sequence \(T^* < 2T \)

Since \(T^* \leq 2T + 1 \), \(N_{A}^{OPT} = 0 \), but \(N_{A}^{OL} > 0 \).
Lower Bound Sequence \(T^* = 2T \)

<table>
<thead>
<tr>
<th>Time slots</th>
<th>Number of Jobs Arrivals:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((\alpha+1)x)</td>
</tr>
<tr>
<td></td>
<td>(2\alpha x)</td>
</tr>
<tr>
<td></td>
<td>(4\alpha x)</td>
</tr>
</tbody>
</table>

\[T^* + 1 = T^* + \frac{x}{2} \]
Lower Bound Sequence $T^* = 2T$

<table>
<thead>
<tr>
<th>Time slots</th>
<th>Number of Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>x</td>
</tr>
<tr>
<td>T^*</td>
<td>$(\alpha+1)x$</td>
</tr>
<tr>
<td>T^*+1</td>
<td>$2\alpha x$</td>
</tr>
</tbody>
</table>

Jobs Arrivals:

Jobs Scheduled by OL:
Lower Bound Sequence $T^* = 2T$

Jobs Arrivals:

Jobs Scheduled by OL:

Jobs Scheduled by OPT:

$N_{A}^{OPT} = \frac{x}{2}$, but $N_{A}^{OL} = 2\alpha x$
Online Min-Max Problem:
Upper Bound and Lower Bound
The Min-Max Problem

- The online percentile problem is inapproximable.…
- We consider a related problem: The Min-Max Problem.
- Here we minimize the maximum number of jobs served in a slot, instead of the 95th percentile.

Problem Definition:

- \(A(i) \) unit jobs arrive in slot \(i \),
- \(S(i) \): the vector of jobs served in time slot \(i \).
- Jobs can be delayed for at most \(D \) time slots.

Goal: Minimize maximum \(\sum_j S_j(i) \) over all \(i \).
Related Work

- The offline min-max problem is a special case of the energy minimization problem solved by Yao, Demers and Shenker (FOCS 1995).
- An online algorithm for the general case was provided by Bansal, Kimbrel and Pruhs (FOCS 2004).
- We provide a better approximation for the specific problem we consider.
- We also provide an almost matching lower bound for this specific problem.
Equal Split: An Online Algorithm for Min-Max

Define $A(i) = 0$ when $i \leq 0$.

Algorithm 1 ES: Calculate $S^{ES}(i)$, $i = 1, 2, \ldots$

1: for time slot $i = 1, 2, \ldots$ do
2: Obtain $A(i)$
3: $S(i) \leftarrow \frac{1}{D+1}(A(i-D), A(i-D+1), \ldots, A(i))$
4: end for

Theorem 4. The competitive ratio of ES is $\frac{2D+1}{D+1}$.
Theorem 5. For the min-max problem with maximum allowed delay D, the competitive ratio of any deterministic online algorithm denoted by OL is at least $\frac{2D + 1}{D + F(D)}$, where,

$$F(D) = \sum_{i=1}^{D+1} \frac{i}{D + i}.$$

[The lower bound construction is non-trivial, and hence not depicted here. Please refer to the paper for details.]
Heuristic Approach
A Heuristic Approach: HELPER

- Traffic in real systems sometimes exhibits a repetitive pattern.
- Such correlation can be leveraged to obtain good prediction for the next accounting cycle.
- Based on the above idea, we propose and extensively test a heuristic: HELPER.
- Observe job arrivals for day x, apply OPT, and calculate S_x and U_x.
- Calculate $r_x(i) = \frac{S_x(i) - U_x(i)}{A_x(i)}$.
- On day $(x+1)$, serve either $r_x(i)A_{x+1}(i) + U_{x+1}(i-1)$ or $A_{x+1}(i) + U_{x+1}(i-1)$.
Data Set Used

We generated 6 times series with different characteristics using the Wikipedia hit records as the basis. An example shown below:
Experiments: Comparing OPT, ES and HELPER for Percentile Problem
Experiments: Comparing OPT, ES and HELPER for Min-Max Problem
Concluding Remarks
Conclusion and Future Work

We have shown…

- Optimal offline solutions for the percentile problem.
- Online algorithm for the min-max problem.
- Lower bounds for online versions of both problems.

Several interesting questions remain…

- Resource augmentation
- Varying delays
- Bicriteria optimization
- Randomized algorithms
Thank You!