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Clustering Problems
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Figure 1: K-Center Clustering
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Clustering Problems
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Figure 2: K-Median Clustering
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The K-Center problem

Select locations for K fire stations so that no house is too far

from its nearest fire station.

Formally: Given a graph G = (V,E) and integer K , find a

subset S (|S| ≤ K) of centers that minimizes the following:

Radius R = max
u∈V

min
v∈S

d(u, v).

• NP-Hard — (2− ε)-approximation also NP-Hard (reduction

from Dominating Set).

• 2-approximable (Gonzalez (85), Hochbaum-Shmoys (85)).

• Can also be extended to weighted K-centers.

Radius R = max
u∈V

min
v∈S

w(u) · d(u, v).
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Observations

Radius R∗ of OPT must be the distance between a pair of

nodes in the graph (when S ⊂ V ).

=⇒ “Guess” each possible value for R∗.

(At most (O(n2).)

Definition 1 Gδ is the unweighted graph with all the nodes of

G and edges (x, y) such that d(x, y) ≤ δ.
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Goal

K=3

Gδ:

δ = 5

Assume solution of radius δ exists.

Goal: find a solution with radius at most c · δ using at most K

centers.
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Intuition

If we select v as a center, and v is covered in OPT by node v∗

within radius δ, then v covers all nodes covered by v∗ within

distance 2δ.

Pick an uncovered node v as a center. Mark all nodes within 2

hops in Gδ of v as covered. Repeat.

≤ 2δ

v v∗

Gδ
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Algorithm

Try increasing values of δ.

Find a MIS S in G2
δ .

If |S| ≤ K then S is the solution.

K=3

Gδ:

δ = 5
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Proof

Distance of each node from a node in S is at most 2δ.

At the correct radius, the algorithm must succeed, since G2
δ

cannot have any MIS > |S|.

If Ri is the smallest radius for which the algorithm succeeds,

then Ri ≤ δ∗. Our cost is at most 2Ri.

j R

2R

Figure 3: Hochbaum-Shmoys Method
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Generalizations

1. (Capacities) Each center has an upper bound of L points

that can be assigned to it. Parameters: K,L.

2. (Outliers) Cluster at least p points (≤ n) into one of K

clusters. Parameters: K, p. Or we can assume we are

allowed z points to be dropped as outliers.

3. (Anonymity) Each cluster should have at least r points in it.

Parameters: K, r. Problem is hard even if K is

unrestricted!

r-Gather problem: Unbounded K .

We can also study these problems in the streaming model in

which the main restriction is that the volume of data is extremely

large and we can only use very limited amount of memory and

are permitted a single scan on the data.
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Capacties on Cluster Sizes

(Bar-Ilan, Kortsarz, Peleg (93)) Develop a factor 10

approximation for the capacitated K-center problem.

(Khuller, Sussmann (96)) Improve to factor 5 approximation.

Figure 4: Tree of Centers

Uses BFS to build a “tree” of centers, and then uses network

flow for coming up with a good lower bound on the optimal

solution. Easy to get a bound of 7. More work to improve that.
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Outliers

2-center robust solution (K=2, p=11)2-center solution (K=2)

Figure 5: We are only required to cluster p points.

Why is the outlier version tricky?

• Hochbaum-Shmoys method inherently assumes that each

point is covered. This is not true anymore.

• Main difficulty comes from “fragmentation” of an OPT

clustering.

• In the asymmetric distance function case, NO

approximation is possible.
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Outliers

(Charikar, Khuller, Mount, Narasimhan (01)) There is a factor 3

approximation for the K-center problem with outliers.

We also prove a 3− ε hardness for any ε > 0 for the problem

when some locations are forbidden.

The upper bound works even with forbidden locations!
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Observations

Suppose we know the optimal solution radius (R) (try them all!).

For each point vi ∈ V , let Di (Ei, resp.) denote the set of

points that are within distance R (3R, resp.) from vi. Di are

disks of radius R and the sets Ei are the corresponding

expanded disks of radius 3R. Size of a disk (or expanded disk)

is its cardinality.

Disk has 6 points
Expanded disk has 
18 points

Di

Ei

Figure 6: Disks and Expanded Disks.
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New Algorithm (Outlier K-centers)

1. Initially all points are uncovered.

2. Construct all disks and corresponding expanded disks.

3. Repeat the following K times:

• Let Dj be the disk containing the most uncovered points.

• Mark as covered all points in the corresponding

expanded disk Ej after placing facility at j.

• Update all the disks and expanded disks (i.e., remove

covered points).

4. If at least p points of V are marked as covered, then answer

YES, else answer NO.
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Bad Example

The algorithm fails if we greedily pick the heaviest expanded

disk instead!

K=2

3R

R

Figure 7: Bad example for choosing based on Ej .



17

Proof Idea

Let the sets of points covered by the OPTIMAL solution be

O1, . . . , OK .

The key observation is that if we ever pick a set Dj that covers

a point in some Oi, then Ej covers all points in Oi.

O1
O2 Ok

D1

E1

Figure 8: Optimal Clusters and the Greedy Step
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Proof Idea

Theorem 1 With radius R if there exists a placement of K

centers that covers p customers, then the algorithm finds a

placement of K centers that with a radius of 3R cover at least p

customers.

|E1| ≥ |O1|+
k∑

i=2

|E1 ∩Oi|. (1)

Consider the (k − 1)-center problem on the set S − E1. We

choose E2, E3, . . . , Ek. For S − E1, it is clear that

O2 − E1, O3 − E1, . . . , Ok − E1 is a solution, although not

an optimal one. By induction, we know that

|E2 ∪ . . . ∪ Ek| ≥ |
k⋃

i=2

(Oi − E1)| (2)

Adding gives the result.
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Streaming Model of Computation

Points presented one at a time. We have only O(K) memory to

store a subset of points.

Goal: Retain a subset S of points, so that every input point is

within cR of a point in S, where R is the radius of the optimal

K-center clustering.

Seems a bit hard at first glance!
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K-Center Streaming

Factor 8 approximation (Charikar, Chekuri, Feder, Motwani (97))

Algorithm maintains a lower bound on the radius r (initially 0),

and selects the first K points as S.

Let S = {c1, c2, . . . c`}. When a new point i arrives.

• If d(i, cj) ≤ 8r, assign i to cj . Exit.

• Let c`+1 = i add it to S.

• If ` = K then

1. Let r ← t
2
, where t = smallest distance between a pair

of points in S.

2. Pick a point from S and let it be the new center c′1.

Remove all points from S that are within 4r from c′1. All

removed clusters are merged into c′1.

3. Repeat step (2) until S is empty. This is the new S.
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Streaming

Let r1, r2, . . . be the sequence of values of r.

Observation: The minimum pairwise distance between points in

S is≥ 4ri. Thus t ≥ 4ri and thus ri+1 ≥ 2ri.

This also implies that we do reduce the size of S, certainly the

closest pair are at most t = 2ri+1 apart.
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Proof

The distance of a point from its center was at most 8ri. This

center may be merged with another cluster center at distance at

most 4ri+1. The radius may go up to 8ri + 4ri+1 ≤ 8ri+1!

X
Y

Z

8ri

4ri+1

8ri+1

Figure 9: Streaming Model Clustering Merging
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Streaming

Using “parallel” copies of the algorithm we can improve the

bound to (2 + ε) (Guha (07), McCutchen & Khuller (08)). This

still uses O(K) memory but with a dependence on ε.

New: Guha (09) shows that we cannot get rid of the +ε factor.
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Streaming with Outliers (McCutchen Khuller (08))

Recall that we assume that there are z outliers. Using O(Kz)

memory we can get a 4 + ε approximation via complex

generalization of the doubling algorithm.

Previous random sampling method due to Charikar,

O’Callaghan, Panigrahy leaves out O(z) outliers. Their memory

usage is very high when z is small.
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Streaming with Outliers

New result: Using O(K + z) memory we can get a 14 + ε

approximation.

Uses a simple shifting idea, that can get constant approximation

even for the anonymity application.
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Streaming with Outliers

Using O(K + z) memory we can get a 14 + ε approximation.

CENTRAL IDEA: As each point is assigned to a cluster center,

we keep track of a count of the number of points that were

assigned to the cluster center. These counts are maintained

when the clusters are merged. We use K + z clusters.

6

13
3 4

7
2

Figure 10: Streaming Model Clustering
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Streaming with Outliers

We run an offline K center algorithm with outliers on the

compressed representation, to select K centers that cover all

but z points. This is our final output.
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Conclusions

1. Concept of outliers can also be used for standard facility

location (Charikar, Khuller, Mount, Narasimhan).

2. Extensions for the two metric case (Bhatia, Guha, Khuller,

Sussmann). Fix K centers so that everyone is close to a

center in each of two metrics.

Approximation factor: 3. Uses matchings.
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Lower bound on Cluster Size (Anonymity)

How do we publish data about individuals?

One solution: Remove identifying information (names) and then

publish the information.

Problem: using public databases (voter records) people are able

to infer information about individuals (or narrow the options

down to a very small number).

Another approach (Agarwal, Feder, Kentapadhi, Khuller,

Panigrahy, Thomas, Zhu) is to fudge the data slightly to provide

anonymity.
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Lower bound on Cluster Size (Anonymity)

Another approach: cluster data into dense clusters of small

radius. Publish information about the cluster centers.

Problem is NP -complete even when the number of clusters is

not specified!

50 points

��� ���

��� ���

��� ���

8 points

20 points

Maximum Cluster Radius = 10

Figure 11: Publishing anonymized data
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(K, r)-Center Problem

Cluster data into K clusters and minimize the largest radius.

Moreover, each cluster should have size at least r.

Condition (1) Each point in the database should have at least r − 1 other

points within distance 2R.

Condition (2) Let all nodes be unmarked initially.

Select an arbitrary unmarked point as a center. Select all

unmarked points within distance 2R to form a cluster and

mark these points.

Repeat this as long as possible, until all points are marked.
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Example

1
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Example

1

2
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Example

1

2

3
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Re-assignment Step

Reassign points to clusters to get at least r in each cluster.

S T

C V

r
r
r

r
r

Let C be the set of centers that were chosen. Add edges

(capacity r) from s to each node in C . Add an edge of unit

capacity from a node c ∈ C to a node v ∈ V d(v, c) ≤ 2R.

Check to see if a flow of value r|C| can be found.
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Re-assignment

Suppose r units of flow enter a node v ∈ C . The nodes of V

through which the flow goes to the sink are assigned to v.

Nodes of V through which no flow goes to the sink can be

assigned anywhere.



37

(K, r, p)-Centers

Find K small clusters of size at least r so that at least p points

are clustered.

Algorithm:

(Filtering Step) Let S be points v such that |N(v, 2R)| ≥ r.

Check if |S| ≥ p, otherwise exit. We only consider points in S.

(Greedy Step) Choose up to K centers. Initially Q is empty. All

points are uncovered initially. Let N(v, δ) be the set of

uncovered points within distance δ of v. Once a point is covered

it is removed.
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Algorithm

At each step i, pick a center ci that satisfies the following

criteria:

(a) ci is uncovered.

(b) |N(ci, 2R)| is maximum.

All uncovered points in N(ci, 4R) are then marked as covered.

After Q is chosen, check to see if at least p points are covered,

otherwise exit with failure.

(Assignment step): Form clusters as follows. For each ci ∈ Q,

form a cluster Ci centered at ci. Each covered point is assigned

to its closest cluster center.

Denote Gi = N(ci, 2R) and Ei = N(ci, 4R), which are

uncovered points within distance 2R and 4R of ci, when ci is

chosen.
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(K, r, p)-Centers

O1

O2

O3
E1

Gi

Ei

Oi

ci

c1 G1

Figure 12: Optimal Clusters and the Greedy Step
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Observations

Gi

Ei

Oi

ci

O1

O2

O3
E1

E2

G2

G1
c1

c2

Figure 13: Optimal Clusters and the Greedy Step
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Observations

ci

Oi

O1

O2

O3

c1

c2

Figure 14: Optimal Clusters and the Greedy Step
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Proof

Key Points:

• Cluster centers are far apart (> 4R), so we get all the

points within radius 2R (at least r).

• Once a cluster is covered by Gi, it is completely covered by

Ei (get all the points).

• Ei may grab a few points from any cluster making it sparse.

However, these points will eventually be re-assigned to the

center in this cluster if all the points are not covered by

Ej, j ≥ i.

• Proof that we get at least p points is similar to the proof

done earlier.
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Lower Bound on Cluster Sizes

For facility location Karger, Minkoff and Guha, Meyerson,

Munagala give a ( r
2
, 3ρOPTr) bound.

ρ is the approximation guarantee for facility location.

Currently ρ ≈ 1.5.
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r-Cellular Clustering

Find clusters such that each cluster has at least r points. The

cost for cluster Ci is Ri · ni (upper bound on distortion of data)

and a facility cost of fi.

Min
∑

i

cost(Ci) + fi

Use primal-dual methods to get a O(1) approximation for this

problem.
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Conclusions

1. Concept of outliers can also be used for standard facility

location (Charikar, Khuller, Mount, Narasimhan).

2. Extensions for the two metric case (Bhatia, Guha, Khuller,

Sussmann). Fix K centers so that everyone is close to a

center in each of two metrics.

Approximation factor: 3. Uses matchings.


