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Density for Undirected Graphs

• Given an undirected graph G = (V , E), density of a
subgraph H ⊆ G, is defined as dH = |E(H)|

|V (H)| .
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Density for Directed Graphs

• Given two subsets of nodes S and T of a directed graph
G = (V , E), density is defined as

d(S, T ) =
|E(S, T )|
√

|S||T |
• S and T may not be disjoint.
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Density for Directed Graphs

• Proposed by Kannan and Vinay in 1999.

• Subsequently used in many other works [Charikar’00,
Andersen’08].
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Previous Results on Maximum Density Subgraphs

Undirected Graphs:

• Maximum density subgraph can be found in polynomial
time for undirected graphs.

• Combinatorial algorithms based on maxflow computations
[Lawler’76, Goldberg’84].

• Linear programming based algorithm [Charikar’00].

• Fast linear time algorithms for computing 2-approximate
solutions [Kortsarz & Peleg’92, Charikar’00].
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Previous Results on Maximum Density Subgraphs

Directed graphs:

• Maximum density subgraph can be found in polynomial
time.

• Linear programming based algorithm by rounding the LP
solution [Charikar’00].

• Requires computations of |V |2 linear programs.

• No combinatorial algorithm known.

• O(|V |3 + |V |2|E |) algorithm for computing 2-approximate
solutions [Charikar’00].
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Densest k Subgraph Problem

|V (H)| = k

• NP hard.

• Best approximation algorithm known: |V | 13−ǫ [Feige,
Kortsarz, Peleg’93].

• Best hardness result known: No PTAS exists [Khot’04].
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Relaxations of Densest k Subgraph Problem
[Andersen, Chelapilla’08]

• Densest at least k Subgraph Problem.
• |V (H)| ≥ k

• Densest at most k Subgraph Problem.
• |V (H)| ≤ k
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Previous Results on Densest At Least k Subgraph
Problem

• 3-approximation linear time greedy algorithm [Andersen &
Chelapilla’08]

• Polynomial time 2 approximation [Andersen]
• Requires |V |2 parametric flow computations.

• It was not known whether the problem is NP hard.
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Previous Results on Densest At most k Subgraph
Problem

• NP hard.

• A γ approximation to this problem implies a γ2

approximation algorithm to the densest k subgraph
problem.
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Maximum Density Subgraph Problem

• First combinatorial algorithm for maximum density
subgraph problem on directed graphs.

• A 2-approximation O(|V |+ |E |) time algorithm for
computing maximum density subgraphs on directed
graphs.

• Improves the previous running time of O(|V |3 + |V |2|E |).
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Densest At least k Subgraph Problem

Undirected Graphs:

• We show the problem is NP-complete.

• We give a combinatorial algorithm that requires only
max(1, k − dG) parametric flow computations and achieves
2-approximation.

• Previous 2 approximation algorithm required n2 parametric
flow computations.

• We give a LP rounding based algorithm that also achieves
an approximation factor of 2 and requires to solve the LP
only once.
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• We give a combinatorial algorithm that requires only
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Densest At least k Subgraph Problem

Directed Graphs:

• We define the densest at least k1, k2 subgraph problem
for directed graphs.

• |S| ≥ k1, |T | ≥ k2

• We give a combinatorial 2 approximation algorithm for it.
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Directed Graphs:

• We define the densest at least k1, k2 subgraph problem for
directed graphs.

• |S| ≥ k1, |T | ≥ k2

• We give a combinatorial 2 approximation algorithm for
it.
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Densest At most k Subgraph Problem

• We show a γ approximation algorithm for densest at
most k subgraph problem implies a 4γ approximation
algorithm for the densest k subgraph problem.

• Previously only a quadratic dependency on the
approximation factors between at most k and exact k
densest subgraph problem was known.
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Today’s Talk

Maximum Density Subgraph:No Size Constraint
Complexity -
Undirected -
Directed Combinatorial solution, linear time 2 approx

Densest At least k Subgraph Problem
Complexity NP hard
Undirected Fast combinatorial and LP based algorithm 2 approx
Directed Combinatorial 2 approx

Densest At most k Subgraph Problem
Complexity Linear dependency with exact k
Undirected -
Directed -
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Combinatorial Algorithm for Maximum Density
Subgraph in Directed Graphs

Main Idea

• Suppose the optimum subgraph is (S, T ).

• Let g = d(S, T ) and let a = |S|
|T | .

• Guess the value of g and a. For every possible guess,
construct a flow network from G.
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Combinatorial Algorithm for Maximum Density
Subgraph in Directed Graphs

Main Idea

• The network satisfies the property:
• For the correct guess of g and a, the densest subgraph is

easy to detect.

• We will try all values of a and for each choice of a, we will
do a binary search on the value of g.



Densest Subgraph Problem and Variations
Some Results

Open Problems

Combinatorial Algorithm for Maximum Density
Subgraph in Directed Graphs

Main Idea

• The network satisfies the property:
• For the correct guess of g and a, the densest subgraph is

easy to detect.

• We will try all values of a and for each choice of a, we will
do a binary search on the value of g.



Densest Subgraph Problem and Variations
Some Results

Open Problems

Combinatorial Algorithm for Maximum Density
Subgraph in Directed Graphs

Main Idea

• The network satisfies the property:
• For the correct guess of g and a, the densest subgraph is

easy to detect.

• We will try all values of a and for each choice of a, we will
do a binary search on the value of g.



Densest Subgraph Problem and Variations
Some Results

Open Problems

Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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Replicate vertices on both sides and add forward edges of
weight 0.
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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∀v ∈ V1
⋃

V2, add the edge (s, v) and set w(s, v) = |E | = m.
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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∀v ∈ V1, add the edge (v , t) with weight w(v , t) = m + g√
a
.
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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∀v ∈ V2, add the edge (v , t) with weight
w(v , t) = m +

√
ag − 2dv .
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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Trivial cut has value m(|V1|+ |V2|).
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Flow Network Construction for Maximum Density
Subgraph in Directed Graphs
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• Trivial cut=m(|V1|+ |V2|).
• Nontrivial cut=m(|V1|+ |V2|) + |S′|√

a

(

g − |E(S′,T ′)|
|S′|/

√
a

)

+

|T ′|√a
(

g − |E(S′,T ′)|
|T ′|

√
a

)
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• Trivial cut=m(|V1|+ |V2|).
• Nontrivial cut=m(|V1|+ |V2|) + |S′|√

a

(

g − |E(S′,T ′)|
|S′|/

√
a

)

+

|T ′|√a
(

g − |E(S′,T ′)|
|T ′|

√
a

)

Case 1: g < d(S, T ),

• Argue that if the guessed a is correct, both
(

g − |E(S,T )|
|S|/

√
a

)

and
(

g − E(S,T )

|T |
√

a

)

are negative.

• Therefore mincut is formed by some nontrivial cut.
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• Trivial cut=m(|V1|+ |V2|).
• Nontrivial cut=m(|V1|+ |V2|) + |S′|√

a
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+
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Case 2: g > d(S, T ),

• Argue by contradiction that we always obtain a trivial cut.
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• Trivial cut=m(|V1|+ |V2|).
• Nontrivial cut=m(|V1|+ |V2|) + |S′|√

a

(

g − |E(S′,T ′)|
|S′|/

√
a

)

+

|T ′|√a
(

g − |E(S′,T ′)|
|T ′|

√
a

)

Case 3: g = d(S, T ),

• If a is correct, argue that both the trivial cut and the cut
({s, S ⊆ V1, T ⊆ V2},{t , (V1 \ S) ⊆ V1, (V2 \ T ) ⊆ V2} are
min-cuts.

• If a is not correct, argue that the min cut is the trivial cut.
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Linear Time 2 Approximation Algorithm for the
Densest Subgraph in Directed Graphs
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Algorithm

Algorithm 2.1: DENSEST-SUBGRAPH-DIRECTED(G =
(V , E))

n← |V |, H2n ← G, i ← 2n
while Hi 6= ∅

do































Let v be a vertex in Hi of minimum degree
if category(v) = IN

then Delete all the incoming edges incident on v
else Delete all the outgoing edges incident on v

if v has no edges incident on it then Delete v
Call the new graph Hi−1, i ← i − 1

return (Hj which has the maximum density among H ′
i s)
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Linear Time 2 Approximation Algorithm for the
Densest Subgraph in Directed Graphs

Proof Sketch

• Detect two values λi and λo, such that in the optimum
solution any vertex in S cannot have outdegree < λo and
any vertex in T cannot have indegree < λi .

• Argue that λi = |E(S∗, T ∗)|
(

1−
√

1− 1
|T∗|

)

and

λo = |E(S∗, T ∗)|
(

1−
√

1− 1
|S∗|

)

are appropriate choices.

• Consider the iteration of the algorithm when all the vertices
have out-degree ≥ λo and indegree ≥ λi and argue that for
the above choices of λi and λo, density is at least 1

2 of the
optimum.
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Densest At least k Subgraph Problem is NP Hard

G=(V,E),   |V|=n

Densest subgraph

of size >= n2+k ?

G’ clique on  n2 vertices

Want to know, whether there exists a subgraph of size k in
G = (V , E), |V | = n of density ≥ λ.
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Densest At least k Subgraph Problem is NP Hard

G=(V,E),   |V|=n

Densest subgraph

of size >= n2+k ?

G’ clique on  n2 vertices

Add a clique G′ of size n2 and ask for the optimum densest at
least n2 + k subgraph in G

⋃

G′.
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Densest At least k Subgraph Problem is NP Hard

Densest subgraph

of size >= n2+k ?

G=(V,E),   

|V|=n

Size exactly k

|V|=n

G’ clique on  n2 vertices

Argue that the optimum solution consists of G′ and the densest
k subgraph of G.
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2-approximation Algorithm for Densest At least k
subgraph

H1

Obtain the maximum density subgraph H1 of G. If |V (H1)| ≥ k
STOP.
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2-approximation Algorithm for Densest At least k
subgraph

H1

H2

Otherwise, remove H1. If v /∈ V (H1) has x edges to V (H1), add
a self-loop of weight x to it. Compute the densest subgraph H2

in G − H1.
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2-approximation Algorithm for Densest At least k
subgraph

H1

H2

H3

If |V (H1)|+ |V (H2)| ≥ k , STOP. Else remove H2, adjust edge
weights and compute H3.
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2-approximation Algorithm for Densest At least k
subgraph

H1 + H2 & arbitrary k-

|V(H1)|-|V(H2)| |V(H1)|-|V(H2)| 

vertices

Suppose |V (H1)|+ |V (H2)|+ |V (H3)| ≥ k . Consider H1
⋃

H2

and some arbitrary vertices to make up for size k .
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2-approximation Algorithm for Densest At least k
subgraph

H1+H2+H3H1+H2+H3

Consider H1
⋃

H2
⋃

H3.



Densest Subgraph Problem and Variations
Some Results

Open Problems

2-approximation Algorithm for Densest At least k
subgraph

H1+H2+H3H1+H2+H3

Return the one which has higher density.
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2-approximation Algorithm for Densest At least k
subgraph

Proof Sketch.

• If H1 and H2 already covers half the edges of the optimum,
then we get a 2 approximation from the first option.

• Otherwise, half the edges of the optimum still remains and
therefore density of H3 is at least half the density of the
optimum. So the second option gives a 2 approximation in
this case.
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• Otherwise, half the edges of the optimum still remains and
therefore density of H3 is at least half the density of the
optimum. So the second option gives a 2 approximation in
this case.
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Open Problems

• Obtain linear time algorithm for maximum density subgraph
problem for both directed and undirected cases, with
approximation factor better than 2.

• Improve the running time of the combinatorial algorithm for
computing maximum density subgraph in directed graphs.

• How can we get rid off trying all possible values of a ?

• Improve the approximation factor of 2 for densest at least k
subgraph problem for both undirected and directed graphs.
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THANK YOU

ANY DENSE QUESTIONS !!
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