412-F12 (Shankar) Exam 1 SOLUTION Page 1/

4 problems. 80 points. Closed book. Closed notes. No electronic device. = Write your name above.

1. [20 points] Jobs A, B, C have the following arrival times and service durations (in seconds):

e A: arrival time 0.0; service duration 3.5.
e B: arrival time 0.5; service duration 3.0.
e (: arrival time 3.5; service duration 2.5.

a. [4 points] Assume fifo ready queue (“runnable queue” in GeekOS), no pre-emption, and zero
context switch time. Complete the following table with a row for each successive service interval;
each row indicates the interval and job being served.

SOLUTION
Interval Job served
0.0-3.5 A
35-6.5 B
6.5-9.0 C

b. [16 points] Assume round robin with 1 second quantum, fifo ready queue, and zero context
switch time. Complete the following table with a row for each service quantum. Indicate when a

job departs.
SOLUTION
Interval Job served [run; ready front; - - -; ready back] at end of quantum.
Each job tagged with remaining service time.
0.0-1.0 A [A2.5; B3.0]
1.0-2.0 B [B2.0; A2.5]
2.0-3.0 A [A1.5; B2.0]
3.0-4.0 B [B1.0; Al5; C2.5]
4.0-5.0 A [A0.5; C25; B1.0]
5.0-6.0 C [C 15, B1.0; A0.5]
6.0-7.0 B [B0.0; A0.5; C1.5] B departs
70-75 A [40.0; C1.5] A departs
7.5-85 C [C 0.5]
8.5-9.0 C [C 0.0] C departs
Grading —1 point for serving C instead of A in quantim 4.0-5.0

412-F12 (Shankar) Exam 1 SOLUTION Page 23l

2. [30 points] This question concerns GeekOS.

a. [10 points] At the end of GeekOS initialization (and before the user does anything), how many
threads exist and what is each thread doing.

SOLUTION

There are 9 threads: [1 point]

Initial kernel thread (aka mainThread): waiting on initProcess. [1 point]

Idle thread: paused at halt instruction (“current thread”) [2 points]

Reaper thread: waiting for input (from reap queue). [3 points]

Shell (aka initProcess) thread: waiting for input (from keyboard) [2 points]

IDE_request thread: waiting to for input (from IDE request queue) [1 point]
Floppy_Request_Thread [1 point]

Alarm_Handler_Thread, Forwarding_Thread, Net_Device_Receive_Thread. [0 points]

Grading Points allocated as shown above.
Lose points for assigning threads to every IO device.
Lose points for assigning threads to memory management (?!), scheduler (?), syscalls, whatnot.

b. [5 points] During GeekOS initialization, Init_Keyboard installs an interrupt handler, but Init_Screen
does not. Why not?

SOLUTION

There are two reasons:
First, the screen is an ouput-only device.

Second, the screen and CPU interact via video memory, so CPU does not have to wait between
successive outputs to screen.

Grading 3 points for only one reason.

(Can keyboard inputs be done (perhaps inefficiently) without interrupts?)

412-F12 (Shankar) Exam 1 SOLUTION Page 3/

c. [5 points] During GeekOS initialization, does Init_IDE have to install an interrupt handler? Ex-
plain briefly.

SOLUTION

Answer 1: [3 points] There should be an interrupt handler (for efficiency) because the CPU
can issue IDE requests (input or output) faster than the IDE can handle them.

Answer 2: [5 points] It’s not necessary to have an interrupt handler. The CPU can simply busy
wait for IDE IO to finish. Inefficient but doable.

(What does GeekOS do?)

d. [10 points]

In GeekOS, from an interrupt occurrence to the interrupt handler being executed, the CPU does an
action and then executes code involving Handle_Interrupt, g_entryPointTable, s_IDT, g_interruptTable.

Write down the order in which these are done and briefly state happens in each.

SOLUTION

First, CPU does the following action (in hardware):

— if user level thread was interrupted, push user SS and SP on (kernel) stack.
push EFLAGS, CS, EIP, and error code (if present) on stack [3 points]
— get new CS, EIP, privilege level from s_IDT; [2 points]

Second, CPU executes code in g_entryPointTable:

— push an error code (if not already present) on stack
push interrupt number on stack [2 points]

Third, CPU executes code in Handle_Interrupt:

— pushes rest of CPU regsiters, constructing “interrupt state”
— go to addresss pointed to be g_interruptTable enry. [2 points]

412-F12 (Shankar)

Exam 1 SOLUTION Page 4/5]

3. [20 points] You are given buffer buff of max size N items and the following non-blocking functions:
num(), returns the number of items in buff; add(x), adds item x to buff; and rmv(), removes and returns
an item from buff. Initially buff is empty.

Obtain functions enQ(x) and deQ() that satisfy the following requirements.

1.
2.

ok W

6.

They can be called by multiple threads simultaneously.

Semaphores are their only synchronization construct (no atomic read-modify-write, no disabling
interrupts, no access to PCBs, no wait/wakeup, etc.). No busy waiting.

enQ(x) calls add(x) exactly once, waiting if num() = N holds.

deQ() calls rmv() exactly once, waiting if num() = 0 holds.

If a thread is in enQ and num() < N holds, then an enQ invocation returns.

If a thread is in deQ and num() > 0 holds, then an rmv invocation returns.

Be neat and clear. You lose points if I can’t understand your code in a reasonable time.

SOLUTION 1 (from multi-threading note)

Shared variables:
Semaphore(1) mutex
Semaphore(0) gateE // enQ thread waits here if buff full
int nE — 0 // tracks number of enQ threads waiting on gateE
Semaphore(0) gateD // deQ thread waits here if buff empty
int nD — 0 // tracks number of deQ threads waiting on gateD

enQ(x): deQ():
mutex.P() mutex.P()
if num() =N if num() =0
nE —nk +1 n—nD+1
mutex.V() mutex. V()
gateE.P() gateD.P()
nE —nk -1 m«—nD -1
add(x) X — rmv()
ifnD >0 if nE >0
gateD.V() gateE.V()
else else
mutex.V() mutex.V()
return x

SOLUTION 2 (from multi-threading note)

Shared variables:
Semaphore(1) mutex
Semaphore(N) spaces // enQ thread waits here if buff full
Semaphore(0) items // deQ thread waits here if buff empty

enQ(x): deQ():
spaces.P() items.P()
mutex.P() mutex.P()
add(x) X — rmv()
mutex.V() mutex.V()
items.V() spaces.V()
return x
Grading

e 15 points if you had the framework but details were wrong.
e 10 points if you had only some elements of the framework.

e 5 points if your solution did not satisfy requirement 2 but otherwise worked. (You’ve had ample
warning about this, in class, in the notes, and in the practice exam.)

412-F12 (Shankar) Exam 1 SOLUTION Page 5[

4. [10 points] This extends problem 3.

You are given buff, num(), add(x), and rmv() as in problem 3.
Obtain functions enQ(x), deQ() and enQ2(x) that satisfy the following requirements.

1 — 6. Same as in problem 3.
7. enQ2(x) calls add(x) exactly twice, waiting if nun() > N-1 holds.
8. If (a thread is in enQ2 or enQ) and (num() < N-1 holds continuously),
then an invocation of enQ2 or enQ returns.

Be neat and clear. You lose points if I can’t understand your code in a reasonable time.

NOT A SOLUTION

It’s not clear how to solve this along the lines of solution 2 in problem 3. A natural attempt is to define
enQ and deQ as in problem 3 and define enQ2 as follows:

enQ2(x): This does not satisfy requirement 5 as follows.
spaces.P() . .
spaces.PO) Suppose there is only one space in buff,
nutex.PO) threads call enQ and enQ2,
add(x) and the enQ2 thread completes th'e ﬁrs} spaces.P()
20d 00 Then both threads are stuck, which ylolates requirement 5
(num() < N holds and the enQ thread is stuck).
mutex. V()
items.V()
items.V()
SOLUTION
Whereas it can be solved along the lines of solution 1 in problem 3.
Shared variables:
Semaphore(1) mutex
Semaphore(0) gateE // for enQ thread to wait
int nE—~0 // number of enQ threads waiting deqQ):
Semaphore(0) gateE2 // for enQ2 thread to wait r?utex.P()‘
int nE2 — 0 // number of enQ2 threads waiting 1T buff.size =0
Semaphore(0) gateD // for deQ thread to wait D —m w1
int nD — 0 // number of deQ threads waiting mutex. V()
gateD.P()
m—nd -1
enQ(x): enQ2(x): X — buff.remove
mutex.P() mutex.P() if (nE > 0)
if num() = N if num() >N -1 gateE.V()
nE — nE + 1 NE2 — nE2 + 1 else if (nE2 > 0 and
mutex.V() mutex.V() num() < N-1)
gateE.P() gateE2.P() gateE2.V()
nE —nE -1 nE2 —nk2 -1 else if nD > 0
add(x) add(x) gateD.V() // note
ifmD >0 add(x) else
gateD.V() ifnD >0 mutex. V()
else gateD.V() // 1V return x
mutex.V() else
mutex.V()
Grading

e 5 points if your solution works except for requirement 5.
E.g., the one under “NOT A SOLUTION” gets 5 points.
e Zero points if you did not satisfy requirement 2.

