
CMSC412 DISCUSSION 
Project 1 [Due Friday, September 21 @ 6:00pm] 



Review: 

• Questions about Project 0 



Project 1 Requirements 

• Add “detached” (background) processes 

• Add asynchronous killing of processes 

• Add the ability to print the process table (i.e., information 

about current processes) 



Lifetime of a User Process 

• The shell [src/user/shell.c] spawns a user process using 

Spawn_With_Path 

• Spawn_With_Path [src/libc/process.c] → Spawn_Program 

(a.k.a. Sys_Spawn) 

• Sys_Spawn [src/geekos/syscall.c] → Spawn 

• Spawn [src/geekos/user.c] → Start_User_Thread 

• Start_User_Thread [src/geekos/kthread.c] adds the 

thread to the struct Kernel_Thread list (s_runQueue) 



Information about User Processes 

• User processes terminate… 

• …normally, via Exit (called automatically when main finishes, as 

you discovered in Project 0) 

• …abnormally, via Sys_Kill which is the goal of Project 1 

• Parent process can wait via Wait call (in fact they must to 

avoid a zombie process) 

• …perhaps the parent does not want to Wait on it’s children. This is 

the point of background processes. 



Implementation – Adding “Detached” 

Processes 
• In /src/user/shell.c: 

• Parse ‘&’ 

• If ‘&’ detected – spawn in background, don’t Wait 

• If ‘&’ not detected – spawn normally, do Wait 

• In /src/libc/process.c (and process.h): 
• Modify DEF_SYSCALL macro (and Spawn_Program definition) to 

handle extra parameter 

• In /src/geekos/user.c + /src/geekos/syscall.c: 
• Accommodate extra background parameter in Sys_Spawn / Spawn 

• Additional Notes: 
• Detached processes cannot be Wait()ed on 

• Detached processes cannot receive input from Get_Key (and 
neither can any children of a detached process(!)) 

 

 



Implementation – Killing Processes 

• Add kill.c in /src/user/ 

• In /src/libc/process.c (and process.h): 

• Add Kill() function declaration and macro (wrapper for Sys_Kill) 

• In /src/geekos/syscall.c (Sys_Kill): 

• Get the PID of the victim process 

• Lookup the victim’s Kernel_Thread (see Lookup_Thread 

[src/geekos/kthread.c]) 

• Dequeue thread from all queues and ‘kill’ it 

• Run queue, join queues, device queues, etc. 

• The currently running thread can kill itself 



Implementation – Printing the Process 

Table 
• Add ps.c in /src/user/ 

• Takes information from Sys_PS and prints it (look at Project 

Specification) 

• In /src/geekos/syscall.c (Sys_PS): 

• Prepare a struct Process_Info array (note: this is in kernel space) 

• Examine all threads: s_allThreadList [src/geekos/kthread.c], and fill 

out the above array 

• There are helper functions for traversing this list, use them! 

• Copy array into user space: Copy_To_User() 

• This is important! Look at the “Further Reading” to understand why. 


