
CMSC412 Discussion
Wed. Sept 26



Overview

● Some background info
● High level p2 overview
● Misc. notes



Read the Source!
Start Early!



Adding signals (High level)

● Allow processes to "communicate" with one 
another via signalling

● Allow processes to register behavior upon 
receiving some signal

● Basically need:
○ A way for a process to "send" something
○ A way for a process to "receive" something
○ A way for processes to register what they want to do
○ A way for a process's execution to change based on 

whether it received something / what it received
○ A way for a process's execution to resume "normal 

execution" once the signal has been handled



Some background

● Process flow:
○ Threads get a small quantum to run
○ When time's up / blocks does context switch

■ changes program counter to some instruction
○ More detail in P2 spec

● Process memory
○ Each (user) process has kernel stack / user stack
○ Much more detail in P1 spec



A way for a process to "send" 
something

● Modify Sys_Kill to send signals
○ Process A can call Sys_Kill at some other process to 

send a signal
● (Confusing naming: Sys_Kill does not mean 

"Kill process" anymore)



A way for a process to "receive" 
something

● Information about what processes have 
received what signals needs to be stored 
somewhere.

● This information should be modified via 
Sys_Kill



A way for processes to register what 
they want to do

● Sys_Signal
○ Give it a function pointer indicating the user code to 

execute when it receives some signal
● Similarly, this needs to be stored somewhere 

as well



Read the Source!
Start Early!



Handle signals

● Sys_RegDeliver (see _Entry.c)
● Check_Pending, Setup_Frame
● Process resumes, if it has a signal 

(Check_Pending), it will enter Setup_Frame
● High level concept:

○ Either handle signal directly in the kernel (e.g. 
terminate)

○ Manipulate kernel stack (i.e. the Interrupt_State's 
program counter) to control what code to execute 
next (handle signal)

○ Manipulate user stack - to control what code to 
execute after handling signal (trampoline function)



Recover from signals

● Because you have manipulated user stack...
● Sys_ReturnSignal -> Complete_Handler
● In Complete_Handler:

○ Want to return kernel stack to the way it was before 
signal handling...



(Actual) Handle signals

● High level concept:
○ Either handle signal directly in the kernel (e.g. 

terminate)
○ SAVE current state of kernel stack somewhere

■ convenient location: on the user stack
○ Manipulate kernel stack (i.e. the Interrupt_State's 

program counter) to control what code to execute 
next (handle signal)

○ Manipulate user stack - to control what code to 
execute after handling signal (trampoline function)



Recover from signals

● Sys_ReturnSignal -> Complete_Handler
● In Complete_Handler:

○ Want to return kernel stack to the way it was before 
signal handling

○ Take that snapshot of the kernel stack that you 
saved on user stack and put it back on top of the 
kernel stack



Misc. notes (more details in spec)

● Implement Sys_WaitNoPid
○ Wait without needing pid

● Various edge cases:
○ e.g. multiple signals
○ e.g. Getting a signal while handling a signal
○ e.g. Invalid input
○ e.g. Is the process going to execute in user space?

● Various changes from p1
○ e.g. Sys_Kill
○ e.g. detached children refcount



Read the Source!
Start Early!


