
CMSC412 DISCUSSION 
Project 3 [Due Friday, October 19 @ 6:00pm] 



Review 

• Questions about Project 2 



Project 3 Requirements 

• Add a custom scheduler 

• Sys_SetSchedulingPolicy 

• Sys_GetTimeOfDay 

• Add semaphores 

• Note: These functions must all be done atomically 

• Sys_Open_Semaphore 

• Sys_Close_Semaphore 

• Sys_P 

• Sys_V 



Current Scheduler 

• Round Robin 

• At every time slice, or “quantum”, the next thread in the runnable 

thread list is chosen to run. 

• Issues 

• This punishes IO heavy processes, and rewards CPU intensive 

processes. 



Implementation – Custom Scheduler 

• In /src/geekos/syscall.c: 
• Implement Sys_SetSchedulingPolicy() 

• Change some global flag to indicate which scheduler should be 
operating (either custom or round-robin) 

• Implement Sys_GetTimeOfDay() 

• Return g_numTicks from timer.c 

• In /src/geekos/kthread.c: 
• Change Get_Next_Runnable() to chose the next thread based on 

the global flag set earlier 

• It is up to you how you chose the next thread in your custom 
implementation, but it is necessary to be faster than the default 
scheduler. 

• Suggest looking at http://en.wikipedia.org/wiki/Scheduling_(computing) 

• Write a README.scheduler per the Project 3 
Specification 

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)


Implementation - Semaphores 

• In /src/geekos/sem.c: 
• Add some data structure for a semaphore containing the following: 

• name: at most 25 characters 

• semaphore id (or SID): integer 

• value: non-negative integer 

• open users: set of user threads that currently have the semaphore “open” 

• Anything else you deem necessary 

• Implement Sys_Open_Semaphore: 
• Look at the current open semaphores to see if a semaphore with the 

specified name already exists 

• If not, create a new one (unless there are too many [20] semaphores 
already, then return ENOSPACE) 

• With the found or newly created semaphore, add the current process to the 
list of “open users” 

• Implement Sys_Close_Semaphore: 
• Remove the current process from the list of “open users” 

• If no more users exist, return semaphore to pool of available semaphores 

 



Implementation – Semaphores (cont.) 

• In /src/geekos/sem.c: 

• Implement Sys_P: 

• Atomically check the value of the specified semaphore 

• If value > 0: 

• Return 0, after decrementing value by 1 

• Otherwise: 

• Block – thread should not be in run queue anymore (use Wait() in kthread.c) 

• Once value > 0, perform action as described above 

• Implement Sys_V: 

• Atomically increment the value of the specified semaphore 

• This should release a (or any) blocked thread(s) waiting on the semaphore 
(use Wake_Up_One() or Wake_Up() in kthread.c) 

• You have some freedom in how to design this, look at Project Specification for 
more details 

• In /src/geekos/kthread.c: 

• Exit() must now release (aka Close_Semaphore()) any semaphores a 
process has open. 


