
CMSC412 Discussion

11/07/2012

(note: based on Daozheng's slides
from last semester)

Overview

• Project 4

• using virtual memory instead of segmentation

• set up for this in Part I

• userseg.c -> uservm.c

• demand paging and paging to disk

Project 4

• Part II

• User Memory Mapping

• Demand Paging and Paging to Disk

• Recommendations:

• Start the coding from copying functionality from
userseg.c to uservm.c

• Add pageability later

Part II – User Memory Mapping

0x80000000

0x00000000

0xFFFFF000

0xFFFFE000

Kernel Memory

User Memory

Linear Address

0x80001000

Start of kernel memory

Start of User memory (unmapped page)

Text segment usually load
here
(segment->startAddress)

Argument in this page

0xFFFFFFFF

Initial stack on the top of this page
(0xFFFF F000)

Copy_From_User & Copy_To_User

• bool Copy_From_User(void *destInKernel,
ulong_t srcInUser, ulong_t bufSize)

• bool Copy_To_User(ulong_t destInUser, void
*srcInKernel, ulong_t bufSize)

• given from/to addresses + size, copy data around

• key difference: address translation

• page may be paged out to disk (can worry
about later)

Copy_From_User & Copy_To_User

• “User pages may need to be paged in from
disk before being accessed.”

• Page_Fault_Handler

• “Before you touch (read or write) any data in
a user page, **disable the PAGE_PAGEABLE
bit**.”

• Section “Copy Data Between Kernel and User
Memory”

Copy_From_User & Copy_To_User

• May want to write a claim_a_page function
which does the following
• Given a linear address in user space

• Allocate a page for this linear address if it is not present

• Disable the PAGE_PAGEABLE bit to make the page not able to be
paged out to disk

• Need to access user context’s page directory

• May want to write an unclaim_a_page
function which enables the PAGE_PAGEABLE
bit

Copy_From_User & Copy_To_User (cont.)

• “Be very careful with race conditions in reading a
page from disk. Kernel code must always assume that
if the struct Page for a page of memory has the
PAGE_PAGEABLE bit set, IT CAN BE STOLEN AT ANY
TIME. The only exception is if interrupts are disabled;
because no other process can run, the page is
guaranteed not to be stolen.”

• You may choose to do this outside the claim_a_page or
the unclaim_a_page functions.

• In case multiple pages need to be claimed or unclaimed, an
atomic section needs to be enable only once.

• Note: an atomic section is not enabled when copying the data

Copy_From_User & Copy_To_User (cont.)

• All pages should be claimed before data
copying starts.

• All pages should be unclaimed after data
copying finishes.

Create_User_Context

• Linear memory space is identical for all processes
now

• Base address is always 0x8000 0000

• Size is always 0x8000 0000

• User context’s page directory (pageDir) is used in
paging to validate and map user memory accesses
to physical memory.

Destroy_User_Context

• Free stuff

• Before: free malloc'd memory

• Now: free pages

Switch_To_Address_Space

• Spec:

• "You will also need to add code to switch the
PDBR (cr3) register as part of a context switch.
For this, in Switch_To_Address_Space you
should add a call to Set_PDBR (provided for
you in lowlevel.asm), after you load the LDT.
You will use the pageDir field in the
User_Context structure that will store the
address of the process's page directory."

Read the Source!

Load_User_Program Overview

• Find maximum virtual address

• Determine size for argument block

• Determine size needed for memory block (to run process)

• Create User_Context(size)

• Load segment data into memory

• Format argument block

• Fill in code entry point

• Fill in addresses of argument block and stack

Load_User_Program Overview

• Find maximum virtual address

• Determine size for argument block

• Determine size needed for memory block (to run process)

• Create User_Context(size)

• Load segment data into memory

• Format argument block

• Fill in code entry point

• Fill in addresses of argument block and stack

Load_User_Program Overview

• Find maximum virtual address

• Determine size for argument block

• Determine size needed for memory block (to run process)

• Create User_Context(size)

• Load segment data into memory

• Format argument block

• Fill in code entry point

• Fill in addresses of argument block and stack

Load_User_Program Overview

• Determine size for argument block

• Create User_Context

• also need to initialize pageDir

• Load segment data into memory

• bit more complicated since not malloc'd

• and now everything is at specific locations

• Format argument block

• again, everything is at specific location

• Fill in code entry point

• Fill in addresses of argument block and stack

• again, specific locations (Note: "userContext stuff" is in
user (logical) addresses

Load_User_Program

• Allocate page directory for a user process (Alloc_Page)
• userContext->pageDir

• Contain entries to address the kernel memory

• Copy entries value of the bottom half of the kernel page
directory (0-2GB for kernel space)

• Set the PDBR to be the newly allocate page directory
(Why?)

• Allocate pages for segment data and copy values
(Alloc_Pageable_Page)

• Is it similar to what Copy_To_User is doing?

• Claim all pages for the segment data, copy the data, and then
unclaim all pages (claim_a_page & unclaim_a_page)

Load_User_Program (cont.)

• Allocate the page for argument block and stack and
format argument block (Alloc_Pageable_Page)
• Claim the page argument block, format the block,

unclaim the page (claim_a_page & unclaim_a_page)

• Which page to claim? (figure on slide 4)

• Allocate the initial page for the stack

• Update argBlockAddr and stackPointerAddr

• Set the PDBR back to be the original page directory
(Why?)

Page Fault Error Codes

Part II – Demand Paging

• Two valid fault conditions

• The fault is within one page of current stack limit

• The page is on disk

• Otherwise

• Process termination

• Test: use rec.c to trigger a fault (memory
pressure by stack expansion)

Within One Page of Current Stack Limit

• May want to create a new stack limit field

• Initialize it to be proper value in
Load_User_Program

• Detect the within-one-page condition in
Page_Fault_Handler and allocate the new
stack page

• Update this field accordingly

Within One Page of Current Stack Limit

0x80000000

0x80001000

The 1st page for stack

A page for arguments

An unallocated page

Fault at an address
in this page

0x80000000

0x80001000

The 1st page for stack

A page for arguments

The 2nd page for stack

Allocate a new
page for stack

User Memory

Pages are on Disk

• Condition to check: kernelInfo ==
KINFO_PAGE_ON_DISK

• Allocate a new page (Alloc_Pageable_Page)

• Read the contents of the indicated block of space
in the paging file into the allocated page
(Read_From_Paging_File)

• Update the relevant page table entry

• Free the page-sized chunk of disk space in the
paging file (Free_Space_On_Paging_File)

Paging to Disk

• Allocate_Pageable_Page

• has codes to page out a page

• Find_Space_On_Paging_File & Write_To_Paging_File

• Find your own way to manage paging file.

• Write Init_Paging to initialize paging file structure

• Call it in main.c (which location?)

• Paging_Device (Get_Paging_Device)

• The block device for paging file, the 1st disk block number, the number
of disk blocks

• To read and write the paging files

• Block_Read and Block_Write

• Initial blockNum for a page

• [the 1st block number] + 8*pageTable->pageBaseAddr

• Need to ensure a page cannot be stolen (why?)

Paging files

A block

1 page = 8 consecutive disk blocks

• How many pages are on disk?
• Disk read and write is block by block

startSector

Pseudo-LRU

• Optional implementation

• LRU in theory: in textbook (somewhere)

• http://en.wikipedia.org/wiki/Page_replacement_al
gorithm

