CMSC412 Discussion

11/07/2012

(note: based on Daozheng's slides
from last semester)

Overview

* Project4
* using virtual memory instead of segmentation

e set up for this in Part |
* userseg.c -> uservm.c
 demand paging and paging to disk

Project 4

* Partll
* User Memory Mapping
* Demand Paging and Paging to Disk
 Recommendations:

 Start the coding from copying functionality from
userseg.c to uservm.c

« Add pageability later

Part Il — User Memory Mapping

Linear Address

— 0x00000000
Kernel Memory]
— 0x80000000
0x80001000
I
User Memory — :
OxFFFFEOOO
OxFFFFFOO0O
OxFFFFFFFF >

Start of kernel memory

Start of User memory (unmapped page)

Text segment usually load
here

(segment->startAddress)

Initial stack on the top of this page

OxFFFF FO_OO% ,
rgument in this page

Copy From User & Copy To User

* bool Copy_From_User(void *destinKernel,
ulong_t srcinUser, ulong_t bufSize)

* bool Copy_To User(ulong_t destinUser, void
*srclnKernel, ulong_t bufSize)

* given from/to addresses + size, copy data around
* key difference: address translation

e page may be paged out to disk (can worry
about later)

Copy From User & Copy To User

e “User pages may need to be paged in from
disk before being accessed.”

 Page_Fault_Handler

« “Before you touch (read or write) any data in
a user page, **disable the PAGE_PAGEABLE
bit**.”

* Section “Copy Data Between Kernel and User
Memory”

Copy From User & Copy To User

 May want to write a claim_a_page function
which does the following

* @Given a linear address in user space

* Allocate a page for this linear address if it is not present

Disable the PAGE_PAGEABLE bit to make the page not able to be
paged out to disk

Need to access user context’s page directory

 May want to write an unclaim_a_page
function which enables the PAGE_PAGEABLE
bit

Copy From_User & Copy_To User (cont.)

* “Be very careful with race conditions in reading a
page from disk. Kernel code must always assume that
if the struct Page for a page of memory has the
PAGE_PAGEABLE bit set, IT CAN BE STOLEN AT ANY
TIME. The only exception is if interrupts are disabled,;
because no other process can run, the page is
guaranteed not to be stolen.”

* You may choose to do this outside the claim_a_page or

the unclaim_a_page functions.

* In case multiple pages need to be claimed or unclaimed, an
atomic section needs to be enable only once.

* Note: an atomic section is not enabled when copying the data

Copy From_User & Copy_To User (cont.)

* All pages should be claimed before data
copying starts.

* All pages should be unclaimed after data
copying finishes.

Create User Context

Linear memory space is identical for all processes
now

Base address is always 0x8000 0000
Size is always 0x8000 0000

User context’s page directory (pageDir) is used in
paging to validate and map user memory accesses
to physical memory.

Destroy User Context

* Free stuff

« Before: free malloc'd memory

 Now: free pages

Switch To Address Space

* Spec:

* "You will also need to add code to switch the
PDBR (cr3) register as part of a context switch.
For this, in Switch_To_Address_Space you
should add a call to Set_PDBR (provided for
you in lowlevel.asm), after you load the LDT.
You will use the pageDir field in the
User_Context structure that will store the
address of the process's page directory."

Read the Source!

Load User Program Overview

Find maximum virtual address

Determine size for argument block

Determine size needed for memory block (to run process)
Create User_Context(size)

Load segment data into memory

Format argument block

Fill in code entry point

Fill in addresses of argument block and stack

Load User Program Overview

Find maximum virtual address

Determine size for argument block

Determine size needed for memory block (to run process?}
Create User_Context{size}

Load segment data into memory

Format argument block

Fill in code entry point

Fill in addresses of argument block and stack

Load User Program Overview

Cind : : Ladd
* Determine size for argument block
- . . o £ block |
* Create User_Context{size}
* Load segment data into memory
* Format argument block
* Fillin code entry point
* Fill in addresses of argument block and stack

Load User Program Overview

Determine size for argument block

Create User_Context

« also need to initialize pageDir

Load segment data into memory

« bit more complicated since not malloc'd

« and now everything is at specific locations
Format argument block

« again, everything is at specific location

Fill in code entry point

Fill in addresses of argument block and stack

« again, specific locations (Note: "userContext stuff" is in
user (logical) addresses

Load User Program

* Allocate page directory for a user process (Alloc_Page)

* userContext->pageDir
* Contain entries to address the kernel memory

* Copy entries value of the bottom half of the kernel page
directory (0-2GB for kernel space)

* Set the PDBR to be the newly allocate page directory
(Why?)

* Allocate pages for segment data and copy values
(Alloc_Pageable_Page)
* |s it similar to what Copy_To User is doing?

* Claim all pages for the segment data, copy the data, and then
unclaim all pages (claim_a_page & unclaim_a_page)

Load User Program (cont.)

Allocate the page for argument block and stack and
format argument block (Alloc_Pageable Page)

* Claim the page argument block, format the block,
unclaim the page (claim_a_page & unclaim_a_page)
* Which page to claim? (figure on slide 4)

Allocate the initial page for the stack
Update argBlockAddr and stackPointerAddr

Set the PDBR back to be the original page directory
(Why?)

Page Fault Error Codes

Interrupt 14—Page-Fault Exception (#PF) (Continued)

31

mw—=Cc|mn

o<um | ¢
=~3|-
-

Reserved

W/R

U/S

RSVD

—

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.

The access causing the fault originated when the processor
was executing in user mode.

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits setto 1 in a page directory.

Figure 5-7. Page-Fault Error Code

Part Il - Demand Paging

* Two valid fault conditions
* The fault is within one page of current stack limit
* The page is on disk

* Otherwise

* Process termination

* Test: use rec.c to trigger a fault (memory
pressure by stack expansion)

Within One Page of Current Stack Limit

May want to create a new stack limit field

Initialize it to be proper value in
Load _User Program

Detect the within-one-page condition in
Page Fault _Handler and allocate the new
stack page

Update this field accordingly

Within One Page of Current Stack Limit

User Memory

0x80000000
0x80001000

An unallocated page

The 15t page for stack

A page for arguments

ault at an address
in this page

0x80000000
0x80001000

The 2nd page for stack

The 15t page for stack

A page for arguments

Allocate a new
page for stack

Pages are on Disk

Condition to check: kernellnfo ==
KINFO_PAGE_ON_DISK

Allocate a new page (Alloc_Pageable_ Page)

Read the contents of the indicated block of space
in the paging file into the allocated page
(Read_From_Paging File)

Update the relevant page table entry

Free the page-sized chunk of disk space in the
paging file (Free_Space_On_Paging_File)

Paging to Disk

* Allocate_Pageable Page
* has codes to page out a page
®* Find_Space_On_Paging_ File & Write_To_Paging_File
* Find your own way to manage paging file.
®* Write Init_Paging to initialize paging file structure
® Callit in main.c (which location?)
®* Paging_Device (Get_Paging_Device)
* The block device for paging file, the 15t disk block number, the number
of disk blocks
®* To read and write the paging files
* Block_Read and Block_Write

* Initial blockNum for a page
* [the 1t block number] + 8*pageTable->pageBaseAddr

* Need to ensure a page cannot be stolen (why?)

Paging files

* How many pages are on disk?
* Disk read and write is block by block

1 page = 8 consecutive disk blocks

startSector

Pseudo-LRU

* Optional implementation
* LRU in theory: in textbook (somewhere)

* http://en.wikipedia.org/wiki/Page_replacement_al
gorithm

