Address Types

= Three kinds of addresses

= Logical addresses

= X = relative user addresses
= Process P accesses memory address X

= Linear addresses

= L = base address of P + X
= Mapped via segmentation

= Physical addresses
= P =f(L) where fis a 1-1 function

= P in kernel-land is where data is!
= Mapped via paging

Addresses in GeekOS

= Currently in GeekOS

= Logical address — Linear address = Physical
address

= Downsides:

= Need space allocated for each process

= Limited by physical memory of the system
(GeekOS has 8MB of physical memory)

= Less flexible

|A-32 Memory Management

Logical Address
(ar Far Pointer)

Segment *
Selector Crffset Linear Address
| | | I Space
. Linear Address
Global Descriptor : .
—= Dir | Table Offset Physical
Tahle (GDT) | | | Address
Space
Segment
Seament Fage Table Page
. Descrptor™m (¢ 1Vt | |1 rFE==="7
_______ Fage Directory Phv Addr
Lin. Addr. ¥ -
I——n- Entry = ———-——-
_ .ﬁlh | Entry -
Segment___j \
Base Address \
[FPage
I Segmentation I Faging

Figure 3-1. Segmentation and Paging

Paging Schemes

= Two-level paging scheme — directory and tables

= Why use this instead of a giant page table?

Linear Address
— == [Oir | Tahle Offset Physical
Address
Space
Fage Table Page
Fage Directory L Phy_Addr.
B = Eniry L)— ———————
= Entry -

GeekOS Paging

= Given a linear address, how to get page?
= Take linear address (32 bits)
= First 10 bits to get directory entry — page table

= 10 bits = 1024 entries per directory
= Next 10 bits to get table entry — page

= 10 bits = 1024 entries per table
= Last 12 bits to get byte in page Linear Address

Dir | Table | Offset Physical
= 12 bits = 4096 bytes Space
Per page Page Table Page
= Therefore, memory is split up N e O O i
: " ., : Page Directory |
into "chunks” of size 4KB _ [Phy. Addr.
= Entry [(H=ft—-—--—-
called pages
= Entry -

Mapping Kernel Memory (Part |)

For the kernel, linear addresses = physical
addresses

Therefore, for all linear pages, map linear
address X to physical address X

= Example!

GeekOS should still work exactly the same,
except you've added a transparent paging
system

Deadline April 8

GeekOS Memory — Linear

addresses

= (0x0000 0000 (0GB) - Kernel Memory starts

= 0x8000 0000 (2GB) - User Memory data/text start (base
address)

= OxFFFF EOOO - User Memory - initial stack at top of this page
= OxFFFF FOOO - User Memory - args in this page
= OxFFFF FFFF (4GB) - Memory space ends here

User Memory Mapping

= Implement in uservm.c, but copy-paste
massively from userseg.c

= Copy kernel page directory (bottom 2GB) so
that kernel can access memory when handling
Interrupts

= Allocate pages for text/data/stack for the upper
2GB, but only pages the program needs!

Demand Paging

= Errors with paging trigger interrupt 14

= Register a page fault handler to handle this
= Default one provided kills user program

= Only user programs can fault
= Kernel accessing wrong address = boom

= |f a user program accesses right above its
current stack limit, grow the stack!

= Page doesn't exist, so will trigger handler

Paging to Disk

= Before: only had 8MB physical memory
= What if a program wanted to use 20MB?
= Solution: write "unused” memory to disk!

= First, we allocate swappable pages using
Alloc_Pageable Page instead of Alloc_Page

= |f our memory is full, call
Find Page To Page Out

= "pseudo” LRU: Maintain ptr to a page, check
accessed bit

= if zero, reclaim page, otherwise, set to zero

Paging to Disk

= Take page, write it to disk
(Find_Space On_Paging_File,
Write_To Paging File)

= Overwrite that page with whatever new data

= Later on... you try to access that page again,
and it's not there! It will trigger a page fault, so
you need to modify the interrupt handler to
swap it back in.

= Get index of block on disk from page table entry
pageBaseAddr

= Read From Paging File

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

