1. [6 points] An OS has 1 cpu, 2 io devices (io1, io2), pre-emptive cpu scheduling, and no multi-threaded processes. A process is terminated only by itself. The possible states of a process are given below. Draw the possible transitions (and omit the impossible ones).

new ready running io1 wait io2 wait terminated

2. [6 points] A collection of cpu-bound processes are scheduled on a cpu. The curve in the graph below shows the average wait vs service for SJF (shortest-job first, non-preemptive) scheduling. (Recall: the service of a process is the total cpu time it requires; the wait of a process is the total time it spends in the ready queue; the average wait for service \(s \) is the average wait of all processes with service \(s \).) Draw on the same graph the expected curve for FIFO (instead of SJF). Repeat for SJF-preemptive. Repeat for RR (round robin). (So your answer is three curves on the same graph.)
3. [12 points] A multi-cpu shared-memory machine has a swap instruction (and no other “read-modify-write” instructions). Specifically, \texttt{swap}(x,y) atomically exchanges the contents of register \texttt{x} and memory location \texttt{y}.

Implement a (weak or strong) spin lock using the swap instruction. Specifically, give code chunks (at a level of detail as in the os-process slides) for

- lock definition
- lock \texttt{acq}()
- lock \texttt{rel}()
4. [16 points] You are given a multi-cpu machine with spin locks. Give an efficient implementation for a lock whose acquired durations can be long (e.g., seconds or minutes). Specifically, give code chunks (at a level of detail as in the os-process slides) for
 - lock definition
 - lock acq()
 - lock rel()