
412-F13 (Shankar) Quiz 4 SOLUTION Page 1/2

3 problems. 40 points. 30 minutes Closed book. Closed notes. No electronic device. Write your name above.

1. [20 points] A byte-addressable segmentation system has 46-bit virtual address, 32-bit physical address, and 16-bit
segment number. A segment’s size can be any number of bytes upto its maximum. A segment in physical memory
always starts at a 4 KB-aligned addresss (i.e., the least significant 12 bits are zero). Each segment table entry includes
8 bits for access and usage.

a. Draw the segment table for a process. Give the number of rows in the table and the label and size of each field.

Solution [11 pt]

Virtual address (46-bit): 16-bit segment number 30-bit offset

hence max segment size = max value of offset = 230 bytes

Physical address (32-bit): 32-bit

A segment’s physical base addr has ls 12 bits zero, so 32− 12 (= 20) bits suffices for segment base addr.

Segment table has 216 entries (since segment number is 16 bits) [1 pt]

Segment table

valid (1) base addr (20) size (30) access-usage (8)
[1 pt] [2 pt] [2 pt] [2 pt] [2 pt] [1 pt]

...

[−1 pt] for having a “segment number” column.

End of solution

b. The hardware has a TLB of 6 entries managed with LRU replacement. Draw the TLB, showing its fields and
their sizes. Indicate which part of the TLB is asociatively searched.

Solution [9 pt]

TLB needs a 3-bit LRU field to maintain the usage order of its 6 entries.

TLB valid (1) seg # (16) base addr (20) size (30) access-usage (8) LRU (3)
[1 pt] [2 pt] [1 pt] [1 pt] [2 pt]

...

valid and seg # fields are associatively searched [2 pt]

End of solution



412-F13 (Shankar) Quiz 4 SOLUTION Page 2/2

2. [10 points] A process with 3 physical pages initially empty issues the following string of virtual page references.

What is the smallest possible number of page faults. Justify your answer.

Solution [11 pt]

The optimal policy yields the smallest number of page faults [2 pt]

The optimal policy is to replace the page that is used farthest in the future. [3 pt]

Applying the optimal policy yields the following, with 9 page faults [5 pt]

0 1 3 4 8 2 3 4 0 1 2 3 4 2

virtual 0 0 0 0 8 2 2 2 0 1 1 1 4 4
pages in 1 1 3 3 3 3 3 2 2 2 2 2 2
memory 3 4 4 4 4 4 3 3 3 3 3 3

Fault F F F F F F F F F

[5 pt] for using LRU correctly.

End of solution

3. [10 points] A demand-paging system uses page-fault frequency to adjust the physical page allocation and swap
state of processes. Specifically, each pcb has a variable x that is zero when the pcb is created or swapped in, and is
incremented by 1 at each page fault of its process.

A thread periodically reads and zeros the x values of all swapped-in processes and then “adjusts” the allocations and
swap state. The goal is to keep the x values it reads close to 20.

Give an appropriate “adjustment” rule (i.e., that selects processes and changes their allocation or swap state)

Solution [9 pt]

If there are (many) free pages,

• allocate a page to any process that needs it (x > 0) [3 pt]

If there are no (or hardly any) free pages, do one of the following:

• if all (or most) processes have x > 20, swap out a process with the highest (or high) x [1 pt]

• if all (or most) processes have x < 20, swap in a process (if available) [1 pt]

• otherwise, take pages from low-x processes and given them to high-x processes
This requires two scans:

– the first scan to quantify the spread [3 pt]
– the second to adjust the allocation [2 pt]

For example

– sort the process ids by x;
then take from the head and give to the tail

– compute average m and std deviation s of the x’s;
then move pages from processes with x < m− 2s to processes with x > m+ 2s

End of solution


